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Random Graph models

I V = {1, 2, . . . , n}. G = (V ,E ). p = p(n).

I G ∈ G(n, p) : e ∈ E independently with probability p.

I D ∈ D(n, p) : p ≤ 0.5. Choose G ∈ G(n, 2p). Orient each
e ∈ E uniformly and independently.

I D ∈ D2(n, p) : p ≤ 0.5. Choose each e ∈ V × V − {(u, u)}u
independently with probability p. Allows 2-cycles.



α(G ) and ω(G )

I G ∈ G(n, p), p ≤ 0.5.

I ω(G ) = maximum size of a clique in G .

I α(G ) = maximum size of an indep set in G .

I Determination of ω(G ) and alpha(G ) are equivalent.

I ω(G ∈ G(n, p)) and α(G ∈ G(n, 1− p)) have the same
distribution.

I Pr(ω(G ∈ G(n, p)) = b) = Pr(α(G ∈ G(n, 1− p)) = b).



α(G ) and ω(G )

I concentration of ω(G ) :

I ω(G ) is tightly concentrated in just two values.

I Eg : p = 1/2 ⇒ ω ∈ {k, k + 1} almost surely

I for some k = 2 log n − 2 log log n + O(1).

I No simple closed-form expression for k .

I

I Concentration of α(G ) :

I Assume p ≥ C/n. q = (1− p)−1. Almost surely,

I α(G ) = 2
ln q (ln np − ln ln np ± O(1)).

I α is not tightly concentrated.



mat(D) and mas(D)

I Similar phenomena in random directed graphs.

I D ∈ D(n, p). p ≤ 0.5.

I mat(D) = maximum size induced acyclic tournament in D.

I mas(D) = maximum size induced acyclic subgraph in D.

I mat(D) is 2-poin

I mas(D) = maximum size induced acyclic tournament in D.t
concentrated or even one-point concentrated. Also, admits
sharp thresholds.

I Unlike ω(G ), admits a nice closed form expression.

I mas(D) has coarse concentration like α(G ).



ω(G ) vs mat(D) and α(G ) vs mas(D)

I D ∈ D(n, p) and G ∈ G(n, p); b ≥ 1.

I Pr[mas(D) ≥ b] ≥ Pr[α(G ) ≥ b].

I τ - a fixed linear ordering of V .

I Pr(mas(D) ≥ b) is at least the probability that D[A] is
consistent with τ for some A, |A| = b.

I Equals Pr(ω(G ) ≥ b).

I

I similarly, for mat(D),

I Pr[mas(D) ≥ b] ≥ Pr[α(G ) ≥ b].



2-point concentration of mat(D)

(Kunal and CRS)

I D ∈ D(n, p), p ≥ 1/n.

I b∗ = b2(logp−1 n) + 0.5c.
I almost surely, mat(D) ∈ {b∗, b∗ + 1}.
I Fact : A dag has at most one directed hamilton path.

I

I Proof Sketch : For b ≥ 1, define

I Xb = number of induced acyclic tournaments of size b.

I E [Xb] =
(n
b

)
b!p(b2) ≈

(
np(b−1)/2

)b
.

I E [Xb]→ 0 for b = b∗ + 2.

I Hence mat(D) ≤ b∗ + 1 almost surely.



2-point concentration of mat(D)

I To prove mat(D) ≥ b∗ almost surely,

I Show : µ = E [X ∗b ]→∞ and also

I Pr(Xb∗ = 0) ≤ Pr(|Xb∗ − µ| ≥ µ)→ 0 using Chebyshev.

I Suffices to show that, for b = b∗,

I Var(Xb) ≤ µ+ µ
(∑

i ,j :|Ai∩Aj |∈[2,b−1] E (Xj |Xi )
)

.

I Var(X ) ≤ µ+ o(µ2).



One point concentration of mat(D)

I D ∈ D(n, p), w = w(n)→∞ sufficiently slowly.

I d = 2 logp1 n + 1 and δ = dde − d .

I Suppose w
ln n ≤ δ ≤ 1− w

ln n for large values of n.

I almost surely, mat(D) = bdc.
I δ ≤ 0.5⇒ bdc = b∗.

I δ > 0.5⇒ bdc = b∗ + 1.



one-point concentration

I p fixed but arbitrary.

I mat(D) is one-point concentrated for each n from a subset of
integers of density 1.

I Proof sketch :

I Every n must be of the form t(k−1−δ)/2 for some k ≥ 0.
t = p−1.

I every good n should satisfy

I t
k−1−δ

2
+ w

2 ln n ≤ n ≤ t
k−1−δ

2
− 2

2 ln n .

I does not hold when p varies with n. Eg : p = n−2/3.



threshold phenomena and algorithms

I For every i , there exist pi = pi (n) and qi = qi (n) with

I qi = o(pi ) such that almost surely

I p ≥ pi + qi ⇒ mat(D) ≥ i

I p ≤ pi − qi ⇒ mat(D) < i .

I sharp threshold exists.

I

I lbi (n) = n−4/(2i−1−2w/ ln n) and ubi (n) = n−4/(2i−1+
2w
ln n

)

I pi (n) = (lbi (n) + ubi (n))/2,

I qi (n) = (ubi (n)− lbi (n))/2.



improved algorithm

I w = w(n)→∞. almost surely,

I every maximal solution is of size at least

I d = bδ logp−1 nc where δ = 1− ln(ln n+w)
ln n .

I c ≥ 1 constant. p ≥ n−1/c
2
.

I ∃ deter. poly time algor A which almost surely

I finds a solution of size at least logp−1 n + c
√

logp−1 n.

I

I Can one find in poly time a soln of size at least

I (1 + ε) logp−1 n, for some fixed ε > 0.



Results on mas(D)

I D ∈ D(n, p), p ≤ 0.5.

I difficulty : Given A, what is

I Pr(D[A] is acyclic ) ?

I

I |mas(D)−mas(D ′)| ≤ 1 if D and D ′ differ only with respect
to a single vertex.

I Using a vertex-exposure martingale and Azuma’s martingale
inequality, with µ = E [mas(D)],

I |mas(D)− µ| ≤ w
√
n for any w →∞.

I the ”likely” values of mas(D) still not known.



Some easy consequences (CRS)

I D ∈ D(n, p), p ≤ 0.5. Define q = (1− p)−1, w = np.

I mas(D) ≤ b2 logq n + 1c.
I mas(D) ≥ 2

ln q (lnw − ln lnw − O(1)).

I the ratio of the two bounds can be very large,

I particularly, if p = n−1+o(1).

I

I conj : Is it true that

I mas(D) = 2(lnw)
ln q (1± o(1)) ?



improved upper bound on mas(D) (due to Spencer)

I Fix A of size b.

I D[A] is acyclic only if ∃A = A1 ∪ A2

I with no arc going from A2 to A1.

I

I Pr(D[A] is acyclic ) ≤ 2b(1− p)b
2/4.

I Pr(∃A, |A| = b : D[A] is acyclic) ≤
(
2en
b

)b
(1− p)b

2/4.

I mas(D) ≤ 4 lnw
ln q almost surely.

I the ratio of the bounds is now at most two.



improved bounds on mas(D) (due to CRS)

I constant 4 can be brought down further.

I For suitable k , choose a k-partition instead of a bipartition.

I k cannot become too large. to be chosen carefully.

I choose b = b 2
ln q (lnw + 3e)c and

I choose k the integer nearest to 2(lnw)(3e)−1 + 2.

I mas(D) ≤ b almost surely.

I

I mas(D) = 2(lnw)
ln q (1± o(1)) almost surely.



additively improved bounds on mas(D) (Kunal and CRS)

I the ratio of the bounds is 1 + o(1).

I Still, an additive gap of ln lnw
ln q exists.

I Y = Y (b) = |{(A, σ) : |A| = b, σ certifies A}|.
I Y =

∑
i≤m Yi where m = (n)b.

I (A1, σ1), . . . , (Am, σm).

I E [Y ] = (n)b(1− p)(b2).

I b∗ = b2 lnwln q − X c where

I X = W if p ≥ n−1/3+ε

I X = W /(ln q) if p ≥ n−1/2(ln n)2.



additive improvements

I At b = b∗, E [Y ]→∞ as n→∞.

I Var(Y ) ≤ µ+ µ2 ·M where

I M =
∑

j :2≤|Ai∩Aj |≤b E [Yj |Yi = 1]/µ.

I E [Yj |Yi = 1] = (1− p)(b2)−( l
2)
(
1−2p
1−p

)i(π)
.

I here, l = |Ai ∩ Aj |. π is the relative ordering of Ai ∩ Aj with
respect to the ordering imposed by σi .

I Uses the following well-known fact :

I
∑

σ∈Sn q
i(σ) = (1 + q)(1 + q + q2) . . . (1 + q + . . .+ qn−1).



additive improvements

I ∃W > 0 : ∀ε > 0, p ≥ n−1/3+ε,

I mas(D) ≥ 2(lnw)
ln q −W almost surely.

I

I ∃W > 0 : ∀p ≥ n−1/2(ln n)2,

I mas(D) ≥ 2
ln q (lnw −W ) almost surely.

I

I p ≥ n−1/2+ε ⇒ mas(D) ≤ 2
ln q (lnw + ln(7e)) almost surely.



Algorithms

I Every maximal induced dag is of size at least δ(logq w) for
some δ → 1 as w → 1.

I

I An induced dag of size at least logq w + c
√

logq w can be
found almost surely.

I

I Most of these results carry over to the D2(n, p) model with
some small changes.



Further work

I Further progress made in reducing the additive gap.

I A tighter concentration based on Talagrand’s inequality is
possible. Details later.
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