Twice-Ramanujan Sparsifiers

Nikhil Srivastava

MSR India / Yale

with Josh Batson and Dan Spielman
Sparsification

Approximate any graph G by a sparse graph H.

- Nontrivial statement about G
- H is faster to compute with than G
Cut Sparsifiers [Benczur-Karger’96]

H approximates G if for every cut $S \subset V$ the sum of weights of edges leaving S is preserved.

Can find H with $O(n \log n/\varepsilon^2)$ edges in $\tilde{O}(m)$ time.
The Laplacian (quick review)

\[L_G = D_G - A_G = \sum_{ij \in E} c_{ij}(\delta_i - \delta_j)(\delta_i - \delta_j)^T \]

Quadratic form

\[x : V \to \mathbb{R} \]

\[x^T L_G x = \sum_{ij \in E} c_{ij}(x(i) - x(j))^2 \]

Positive semidefinite

Ker\((L_G) = \text{span}(\mathbf{1}) \) if \(G \) is connected
Cuts and the Quadratic Form

For characteristic vector \(x_S \in \{0, 1\}^n \) of \(S \subseteq V \)

\[
x_S^T L_G x_S = \sum_{ij \in E} c_{ij} (x(i) - x(j))^2
= \sum_{ij \in (S, \overline{S})} c_{ij}
= \text{wt}_G(S, \overline{S})
\]

So BK says:

\[
1 - \epsilon \leq \frac{x^T L_H x}{x^T L_G x} \leq 1 + \epsilon \quad \forall x \in \{0, 1\}^n
\]
A Stronger Notion [ST’04]

For characteristic vector $x_S \in \{0, 1\}^n$, $S \subseteq V$

$$x_S^T L_G x_S = \sum_{ij \in E} c_{ij} (x(i) - x(j))^2$$

$$= \sum_{ij \in (S, \overline{S})} c_{ij}$$

$$= wt_G(S, \overline{S})$$

So BK says:

$$1 - \epsilon \leq \frac{x^T L_H x}{x^T L_G x} \leq 1 + \epsilon$$

$\forall x \in \mathbb{R}^n$

$\forall x \in \{0, 1\}^n$
Why?
1. All eigenvalues are preserved

By Courant-Fischer,

\[(1 - \epsilon)\lambda_i(G) \leq \lambda_i(H) \leq (1 + \epsilon)\lambda_i(G)\]

\(G\) and \(H\) have similar eigenvalues.

For spectral purposes, \(G\) and \(H\) are equivalent.
(x^T L x says a lot)

2. Behavior of electrical flows.
 \((x^T L x = \text{“energy” for potentials } x: V \to R) \)

3. Behavior of random walks: commute times, mixing time, etc.

4. ‘Relative condition number’ in lin-alg.

5. Fast linear system solvers.

 strong notion of approximation.
Examples
Example: Sparsify Complete Graph by Ramanujan Expander [LPS,M]

G is complete on n vertices. $\lambda_i(L_G) = n$

H is d-regular Ramanujan graph. $\lambda_i(L_H) \sim d$

$\lambda_i\left(\frac{n}{d}L_H\right) \sim n$
Example: Sparsify Complete Graph by Ramanujan Expander [LPS,M]

G is complete on n vertices. $\lambda_i(L_G) = n$

H is d-regular Ramanujan graph. $\lambda_i(L_H) \sim d$

$\lambda_i\left(\frac{n}{d}L_H\right) \sim n$

$$\frac{x^T \left(\frac{n}{d}L_H\right) x}{x^T L_G x} \sim 1$$

Each edge has weight (n/d)

So, $\frac{n}{d}H$ is a good sparsifier for G.
Example: Dumbell

\[K_n \xrightarrow{1} K_n \]

\[d\text{-regular Ramanujan, times } n/d \xrightarrow{1} d\text{-regular Ramanujan, times } n/d \]
Example: Dumbell

\[G = G_1 + G_2 + G_3 \]

\[x^T G x = x^T G_1 x + x^T G_2 x + x^T G_3 x \]
Results
Results

*We can do this well for every G.
(upto a factor of 2)*
Previously Known

Expanders/Ramanujan graphs exist:
“There are very sparse H that look like K_n”
Previously Known

Expanders/Ramanujan graphs exist:

“There are very sparse H that look like K_n”

degree d

$$1 \leq \frac{x^T L_H x}{x^T L_{K_n} x} = \frac{d + 2\sqrt{d-1}}{d - 2\sqrt{d-1}}$$
New Result

Expanders/Ramanujan graphs exist:
“There are very sparse H that look like K_n”

SPARSIFIERS EXIST:
“There are very sparse H that look like any graph G.”

Degree d

$$1 \leq \frac{x^T L_H x}{x^T L_G x} = \frac{d + 2\sqrt{d-1}}{d - 2\sqrt{d-1}}$$

Avg. degree $2d$
New Result

Expanders/Ramanujan graphs exist:
“There are very sparse H that look like K_n”

Sparsifiers exist:
“There are very sparse H that look like any graph G.”

$1 \leq \frac{x^T L_H x}{x^T L_G x} = \frac{d + 2\sqrt{d-1}}{d - 2\sqrt{d-1}}$

Degree d

Avg. degree $2d$

Weighted subgraph
New Result

Expander/Ramanujan graphs exist:
“There are very sparse H that look like K_n”

Sparsifiers exist:
“There are very sparse H that look like any graph G.”

\[
1 \leq \frac{x^T L_H x}{x^T L_G x} = \frac{d + 2\sqrt{d-1}}{d - 2\sqrt{d-1}}
\]

degree d

avg. degree $2d$

weighted subgraph
New Result

Expanders/Ramanujan graphs exist:

“There are very sparse H that look like K_n”

Sparsifiers exist:

“There are very sparse H that look like any graph G.”

\[1 \leq \frac{x^T L_H x}{x^T L_G x} \leq \frac{1 + \epsilon}{1 - \epsilon} \]

avg. degree \(\frac{8}{\epsilon^2} \)

weighted subgraph
The Method
The Method

(13-approximation with 6n edges.)
Step 1: Reduction to Linear Algebra
Goal

\[
L_G \xrightarrow{\text{Goal}} L_H
\]

\[
1 \leq \frac{x^T L_H x}{x^T L_G x} \leq 13 \quad \forall x \in \mathbb{R}^n
\]
Outer Product Expansion

Recall:

\[L_G = \sum_{ij \in E} (\delta_i - \delta_j)(\delta_i - \delta_j)^T = \sum_{e \in E} b_e b_e^T. \]
Outer Product Expansion

Recall:

$$L_G = \sum_{ij \in E} (\delta_i - \delta_j)(\delta_i - \delta_j)^T = \sum_{e \in E} b_e b_e^T.$$

For a weighted subgraph H:

$$L_H = \sum_{e \in E} s_e b_e b_e^T$$

where $s_e = \text{wt}(e)$ in H.
$1 \leq \frac{x^T L_H x}{x^T L_G x} \leq 13 \quad \forall x \in \mathbb{R}^n$
\[1 \leq \frac{x^T L_H x}{x^T L_G x} \leq 13 \quad \forall x \in \mathbb{R}^n \]

\[1 \leq \lambda(L_{G}^{-1/2} L_H L_{G}^{-1/2}) \leq 13. \]
1 \leq \frac{x^T L_H x}{x^T L_G x} \leq 13 \quad \forall x \in \mathbb{R}^n

1 \leq \lambda(L_G^{-1/2} L_H L_G^{-1/2}) \leq 13.

1 \leq \lambda \left(\sum_{e \in E} s_e L_G^{-1/2} b_e b_e^T L_G^{-1/2} \right) \leq 13.
\[1 \leq \frac{x^T L_H x}{x^T L_G x} \leq 13 \quad \forall x \in \mathbb{R}^n \]

\[1 \leq \lambda \left(L_G^{-1/2} L_H L_G^{-1/2} \right) \leq 13. \]

\[1 \leq \lambda \left(\sum_{e \in E} s_e L_G^{-1/2} b_e b_e^T L_G^{-1/2} \right) \leq 13. \]

\[1 \leq \lambda \left(\sum_{e \in E} s_e v_e v_e^T \right) \leq 13 \]

with \(v_e = L_G^{-1/2} b_e \).
A closer look at \mathbf{v}_e

$$\mathbf{v}_e = L_G^{-1/2} b_e.$$
A closer look at v_e

\[
\sum_e v_e v_e^T = L_G^{-1/2} \left(\sum_e b_e b_e^T \right) L_G^{-1/2} = I
\]
A closer look at \mathbf{v}_e

"decomposition of identity"

m vectors in \mathbb{R}^{n-1}

$$\forall u \quad \sum_e \langle u, \mathbf{v}_e \rangle^2 = 1$$
Choosing a Subgraph
New Goal

\[\forall u : 1 \leq \sum_e s_e \langle u, v_e \rangle^2 \leq 13 \]
New Goal

\[1 \leq \frac{x^T L_H x}{x^T L_G x} \leq 13 \quad \forall x \in \mathbb{R}^n \]

\[\forall u : 1 \leq \sum_e s_e \langle u, v_e \rangle^2 \leq 13 \]
Main theorem

If

\[\sum_{e} v_{e}v_{e}^{T} = I_{n} \]

then there are scalars \(s_{e} \geq 0 \) with

\[1 \leq \lambda(\sum_{e} s_{e}v_{e}v_{e}^{T}) \leq 13 \]

and \(|\{ s_{e} \neq 0 \}| \leq 6n \).
Main theorem

If
\[\sum_{e} v_{e} v_{e}^T = I_n \]
then there are scalars \(s_e \geq 0 \) with
\[1 \leq \lambda(\sum_{e} s_e v_{e} v_{e}^T) \leq \frac{d + 2\sqrt{d-1}}{d-2\sqrt{d-1}} \]
and \(\left| \{ s_e \neq 0 \} \right| \leq dn \)
Main theorem

If

\[\sum_{e} v_ev_e^T = I_n \]

then there are scalars \(s_e \geq 0 \) with

\[1 \leq \lambda(\sum_{e} s_e v_ev_e^T) \leq 13 \]

and \(|\{s_e \neq 0\}| \leq 6n \).
Step 2: Intuition for the proof
Main theorem

If

$$\sum_{e} v_ey_e^T = I_n$$

then there are scalars $s_e \geq 0$ with

$$1 \leq \lambda(\sum_{e} s_ey_ev_e^T) \leq 13$$

and $|\{s_e \neq 0\}| \leq 6n$.
Main theorem

If

\[\sum_{e} v_e v_e^T = I_n \]
then there are scalars \(s_e \geq 0 \) with

\[1 \leq \lambda \left(\sum_{e} s_e v_e v_e^T \right) \leq 13 \]

and \(\left| \{ s_e \neq 0 \} \right| \leq 6n \)

will build this one vector at a time.
What happens when we add a vector?

\[\lambda(A) \]
Interlacing

\[\lambda(A) \]

\[\lambda(A + vv^T) \]
More precisely

Characteristic Polynomial:

\[p_A(x) = \det(xI - A) \]
More precisely

Characteristic Polynomial:

\[p_A(x) = \det(xI - A) \]

Matrix-Determinant Lemma:

\[p_{A + vv^T} = p_A \left(1 + \sum_i \frac{\langle v, u_i \rangle^2}{\lambda_i - x} \right) \]
More precisely

Characteristic Polynomial:

\[
p_A(x) = \det(xI - A)
\]

Matrix-Determinant Lemma:

\[
p_{A + vv^T} = p_A \left(1 + \sum \frac{\langle v, u_i \rangle^2}{\lambda_i - x} \right)
\]

\(\lambda(A + vv^T)\) are zeros of this.
Physical model of interlacing

\(\lambda_i = \text{positive unit charges resting at barriers on a slope} \)
Physical model of interlacing

\[\langle v, u_i \rangle^2 = \text{charges added to barriers} \]

\[\lambda(A + vv^T) \]
Physical model of interlacing

\[\langle v, u_i \rangle^2 = \text{charges added to barriers} \]
Physical model of interlacing

Barriers repel eigs.

$$+ \langle v, u_n \rangle^2$$

$$+ \langle v, u_2 \rangle^2$$

$$+ \langle v, u_1 \rangle^2$$

$$\lambda_1$$

$$\lambda_2$$

$$\lambda_3$$

$$\lambda(A + vv^T)$$
Physical model of interlacing

Barriers repel eigs.

Inverse law repulsion

Gravity

$1 + \sum_i \frac{\langle v, u_i \rangle^2}{\lambda_i - x} = 0$
Physical model of interlacing

Barriers repel eigs.

\[\lambda(A + uv^T) \]
Examples

\[\lambda(A) \]
Ex1: All weight on u_1
Ex1: All weight on \mathbf{u}_1
Ex1: All weight on u_1
Ex1: All weight on u_1

$$\lambda(A + vv^T)$$
Ex2: Equal weight on u_1, u_2
Ex2: Equal weight on u_1, u_2
Ex2: Equal weight on u_1, u_2

\[
\lambda(A + vv^T)
\]
Ex3: Equal weight on all u_1, u_2, \ldots, u_n
Ex3: Equal weight on all u_1, u_2, \ldots, u_n

$$\lambda(A + vv^T)$$
Adding a balanced vector

\[p_A + \nu \nu^t = p_A \left(1 + \sum_i \frac{\langle \nu, u_i \rangle^2}{\lambda_i - x} \right) \]

\[= p_A \left(1 + \sum_i \frac{1}{\lambda_i - x} \right) \]

\[= p_A - p'_A \]
Consider a random vector

If

$$\sum_e v_e v_e^T = I$$

For every u_i:

$$\sum_e \langle v_e, u_i \rangle^2 = 1.$$
Consider a random vector

If

\[\sum_e v_e v_e^T = I \]

For every \(u_i \):

\[\sum_e \langle v_e, u_i \rangle^2 = 1. \]

thus a ‘random’ vector has the same expected projection in every direction \(i \):

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m \]
Ideal proof

\[A^{(0)} = 0 \]

\[p^{(0)} = x^n \]
Ideal proof

$$E_e \langle v_e, u_i \rangle^2 = \frac{1}{m}$$

\[A(0) = 0 \]
\[p(0) = x^n \]
$A^{(1)} = 0 + vv^T$

$p^{(1)} = x^n - nx^{n-1}$

$\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m}$
Ideal proof

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[A^{(2)} = A^{(1)} + vv^T \]

\[p^{(2)} = x^n - 2nx^{n-1} + n(n - 1)x^{n-2} \]
Ideal proof

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[A^{(3)} = A^{(2)} + vv^T \]

\[p^{(3)} = p^{(2)} - p^{(2)'} \]
\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[A(i+1) = A(i) + vv^T \]

\[p(i+1) = p(i) - p(i)' \]
Ideal proof

\[A(i+1) = A(i) + \nu \nu^T \]

\[p(i+1) = p(i) - p(i)' \]

\[\mathbb{E}_e \langle \nu_e, u_i \rangle^2 = 1/m \]
\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m \]

\[A(i+1) = A(i) + vv^T \]

\[p(i+1) = p(i) - p(i)' \]
Ideal proof

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[
A^{(i+1)} = A^{(i)} + vv^T
\]

\[
p^{(i+1)} = p^{(i)} - p^{(i)}'
\]
Ideal proof

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[A^{(i+1)} = A^{(i)} + vv^T \]

\[p^{(i+1)} = p^{(i)} - p^{(i)'} \]
Ideal proof

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[A(i+1) = A(i) + vv^T \]

\[p(i+1) = p(i) - p(i)' \]
Ideal proof

\[E_e \langle \nu_e, u_i \rangle^2 = 1/m \]

\[
A(i+1) = A(i) + \nu \nu^T
\]

\[
p(i+1) = p(i) - p(i)'
\]
Ideal proof

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m \]

\[A(i+1) = A(i) + vv^T \]

\[p(i+1) = p(i) - p(i)' \]
\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[A(i+1) = A(i) + vv^T \]

\[p(i+1) = p(i) - p(i)' \]

\[\frac{\lambda_n(A)}{\lambda_1(A)} \leq 13? \]
\[p(i) = \text{Laguerre}^{(i)} \]

\[p(i+1) = p(i) - p(i)' \]

\[E_e \langle v_e, u_i \rangle^2 = 1/m \]

\[\frac{\lambda_n(A)}{\lambda_1(A)} \leq 13? \]
Punch Line

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[p^{(i)} = \text{Laguerre}^{(i)} \]

\[p^{(i+1)} = p^{(i)} - p^{(i)'} \]

In \(dn \) steps:

\[\frac{\lambda_n(A)}{\lambda_1(A)} \leq \frac{d+2\sqrt{d-1}}{d-2\sqrt{d-2}} \]
find actual vectors that realize this ideal behavior.

\[\mathbb{E}_e \langle v_e, u_i \rangle^2 = \frac{1}{m} \]

\[p^{(i)} = \text{Laguerre}^{(i)} \]

\[p^{(i+1)} = p^{(i)} - p^{(i)'} \quad \lambda_n(A) < 1 \]

In \(dn \) steps: \[\frac{\lambda_n(A)}{\lambda_1(A)} \leq \frac{d+2\sqrt{d-1}}{d-2\sqrt{d-2}} \]
Step 3: Actual Proof
(for 6n vectors, 13-approx)
Broad outline: moving barriers

\[A = \emptyset \]
Step 1

\[A = \emptyset \]

\[+vv^T \quad v \in \{v_e\} \]
Step 1

\[A = \emptyset \]

\[+ vv^T \quad v \in \{ v_e \} \]

\[A = vv^T \]
Step 1

\[A = \emptyset \]

\[+ v v^T \quad v \in \{v_e\} \]

\[A = v v^T \]

\[-n \quad 0 \quad n \]

\[-n + \frac{1}{3} \quad 0 \quad n + 2 \]
Step 1

\[A = \emptyset \]

\[A = vvv^T \quad v \in \{v_e\} \]

+1/3

+n+1/3

-1

0

looser constraint

tighter constraint
Step $i+1$

$A^{(i)}$

0

$\leq \lambda_i \leq$
Step $i+1$

$A^{(i)}$

$\begin{array}{c}
+1/3 \\
\hline
+2 \\
\hline
\end{array}$

$\begin{array}{c}
\downarrow \quad \downarrow \\
0 \\
\downarrow \quad \downarrow \\
\uparrow \quad \uparrow \\
\begin{bmatrix} v \\ v \end{bmatrix}^T \\
\hline
\end{array}$
Step $i+1$

$A(i), A(i+1)$

0

$\leq \lambda_i \leq$
Step $i+1$

$A(i), A(i+1)$

$+\frac{1}{3}$

$+2$

vv^T
Step $i+1$

$A(i), A(i+1), A(i+2)$

$\lambda_i \leq \lambda_i \leq$
Step $i+1$

$A(i), A(i+1), A(i+2)$

+1/3

+2

0

$\mathbf{v}v^T$
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3)$
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3), \ldots$
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3), \ldots$

$0 \leq \lambda_i \leq$
Step i+1

\[A(i), A(i+1), A(i+2), A(i+3), \ldots \]
Step 6n

$A(i), A(i+1), A(i+2), A(i+3), \ldots, A(6n)$
Step 6n

\[A(i), A(i+1), A(i+2), A(i+3), \ldots, A(6n) \]

13-approximation with 6n vectors.
Problem

need to show that an appropriate

\[v_e v_e^T \]

always exists.
Problem

need to show that an appropriate $v_0 v_e^T v_e$ always exists.

is not strong enough to do the induction.
Problem

need to show that an appropriate

need a better way to measure quality of eigenvalues.

\[\leq \lambda_i \leq \]

is not strong enough to do the induction.
The Upper Barrier

\[\Phi^u(A) = \text{Tr}(uI - A)^{-1} = \sum_i \frac{1}{u - \lambda_i} \]
The Upper Barrier

\[\Phi^u(A) = \text{Tr}(uI - A)^{-1} = \sum_i \frac{1}{u - \lambda_i} \]

\[\Phi^u(A) \leq 1 \implies \lambda_{\max}(A) \ll u \]
The Upper Barrier

$$\Phi^u(A) = \text{Tr}(uI - A)^{-1} = \sum_i \frac{1}{u - \lambda_i}$$

- No λ_i within dist. 1
- No 2 λ_i within dist. 2
- No 3 λ_i within dist. 3

No $k \lambda_i$ within dist. k

$$\Phi^u(A) \leq 1 \Rightarrow \lambda_{\text{max}}(A) \ll u$$
The Upper Barrier

\[\Phi^u(A) = \text{Tr}(uI - A)^{-1} = \sum_i \frac{1}{u - \lambda_i} \]

No \(\lambda_i \) within dist. 1
No 2 \(\lambda_i \) within dist. 2
No 3 \(\lambda_i \) within dist. 3

\[\Phi^u(A) \leq 1 \Rightarrow \lambda_{\text{max}}(A) \ll u \]
The Lower Barrier

\[\Phi_\ell(A) = \text{Tr}(A - \ell I)^{-1} = \sum_i \frac{1}{\lambda_i - \ell} \]

\[\Phi_\ell(A) \leq 1 \implies \lambda_{\text{min}}(A) \gg \ell \]
The Beginning

\[A = \emptyset \]
The Beginning

\[A = \emptyset \]

\[\Phi^n(\emptyset) = \text{Tr}(nI)^{-1} = 1 \]

\[\Phi_{-n}(\emptyset) = \text{Tr}(nI)^{-1} = 1. \]
Step $i+1$

$A(i), A(i+1), A(i+2)$

$\Phi^u(A) \leq 1$
$\Phi_\ell(A) \leq 1.$
Step i+1

$A(i), A(i+1), A(i+2)$

Lemma.

can always choose $s v v^T$ so that potentials do not increase

$\Phi^u(A) \leq 1$

$\Phi_\ell(A) \leq 1.$
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3)$

$\Phi^u(A) \leq 1$

$\Phi_\ell(A) \leq 1$.
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3), \ldots$

$\Phi^u(A) \leq 1$

$\Phi_\ell(A) \leq 1.$
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3), \ldots$

$\Phi^u(A) \leq 1$

$\Phi_\ell(A) \leq 1$.
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3), \ldots$

$\Phi^u(A) \leq 1$

$\Phi_\ell(A) \leq 1$
Step 6n

$A(i), A(i+1), A(i+2), A(i+3), \ldots, A(6n)$

$\Phi^u(A) \leq 1$
$\Phi_\ell(A) \leq 1.$
Step 6n

\[A(i), A(i+1), A(i+2), A(i+3), \ldots, A(6n) \]

13-approximation with 6n vectors.
Lemma.

Can always choose $+svvv^T$ so that both potentials do not increase.

$\Phi^u(A) \leq 1$
$\Phi_\ell(A) \leq 1$.

Goal
The Right Question

“Which vector should we add?”
The Right Question

“Which vector should we add?”

“Given a vector, how much of it can we add?”
Upper Barrier Update

Add svv^T & set $u' \leftarrow u + 2$.
Upper Barrier Update

Add \(svv^T \) & set \(u' \leftarrow u + 2 \).

\[
\Phi_{u'}(A + svv^T) = \text{Tr}(u'I - A - svv^T)^{-1}
\]
Upper Barrier Update

Add svv^T & set $u' \leftarrow u + 2$.

$$
\Phi^{u'}(A + svv^T)
= \text{Tr}(u'I - A - svv^T)^{-1}
$$

$$
\text{Tr}(A + vv^T)^{-1} = \text{Tr}A^{-1} - \frac{v^TA^{-2}v}{1 + v^TA^{-1}v}
$$

Sherman-Morrisson
Upper Barrier Update

Add $s v v^T$ & set $u' \leftarrow u + 2$.

$\Phi^{u'}(A + s v v^T)$

$= \text{Tr}(u' I - A - s v v^T)^{-1}$

$= \Phi^{u'}(A) + \frac{v^T (u' I - A)^{-2} v}{1/s - v^T (u' I - A)^{-1} v}$
Upper Barrier Update

\[\text{Add } \mathbf{s} \mathbf{v} \mathbf{v}^T \text{ & set } u' \leftarrow u + 2. \]

\[\Phi^{u'}(A + s \mathbf{v} \mathbf{v}^T) \]

\[= \text{Tr}(u'I - A - s \mathbf{v} \mathbf{v}^T)^{-1} \]

\[= \Phi^{u'}(A) \frac{\mathbf{v}^T(u'I - A)^{-2} \mathbf{v}}{1/s - \mathbf{v}^T(u'I - A)^{-1} \mathbf{v}} \]

\[\text{want } \leq \Phi^{u}(A). \]
How much of \(\mathbf{vv}^T \) can we add?

Rearranging:

\[
\Phi^{u'}(A + svv^T) \leq \Phi^u(A)
\]

\[
\iff \frac{1}{s} \geq v^T \left(\frac{(u'\mathbf{I} - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + (u'\mathbf{I} - A)^{-1} \right) v
\]
How much of \mathbf{vv}^T can we add?

Rearranging:

$$\Phi^{u'}(A + sv\mathbf{v}\mathbf{v}^T) \leq \Phi^u(A)$$

$$\iff$$

$$\frac{1}{s} \geq \mathbf{v}^T \left(\frac{(u'I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + (u'I - A)^{-1} \right) \mathbf{v}$$

$$\frac{1}{s} \geq \mathbf{U}_A \bullet \mathbf{vv}^T$$
The Lower Barrier

Similarly:

$$\Phi_{\ell'}(A + svv^T) \leq \Phi_\ell(A)$$

$$\iff$$

$$\frac{1}{s} \leq v^T \left(\frac{(A - \ell'I)^{-2}}{\Phi_{\ell'}(A) - \Phi_\ell(A)} - (A - \ell'I)^{-1} \right) v$$

$$\frac{1}{s} \leq L_A \bullet vv^T$$
Goal

Show that we can always add some vector while respecting both barriers.
Both Barriers

There is always a vector with

\[U_A \bullet \vv \vv^T \leq L_A \bullet \vv \vv^T \]
Both Barriers

There is always a vector v with

$$U_A \cdot vv^T \leq L_A \cdot vv^T$$

can add

must add
There is always a vector v with

$$U_A \cdot vv^T \leq L_A \cdot vv^T$$

Then, can squeeze scaling factor in between:

$$U_A \cdot vv^T \leq \frac{1}{s} \leq L_A \cdot vv^T$$
Taking Averages

\[\exists \mathbf{v}, U_A \cdot \mathbf{vv}^T \leq L_A \cdot \mathbf{vv}^T \]

\[\sum_{\mathbf{v} \in \{\mathbf{v}_e\}} U_A \cdot \mathbf{vv}^T = U_A \cdot \left(\sum_e \mathbf{v}_e \mathbf{v}_e^T \right) \]

\[= U_A \cdot I \]

\[= \text{Tr}(U_A). \]
Taking Averages

$$\exists v, U_A \cdot vv^T \leq L_A \cdot vv^T$$

$$\sum_{v \in \{v_e\}} U_A \cdot vv^T = U_A \cdot \left(\sum_e v_e v_e^T \right)$$

$$U_A \cdot I = \text{Tr}(U_A).$$
Bounding $\text{Tr}(U_A)$

$$\frac{\text{Tr}(u' I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + \text{Tr}(u' I - A)^{-1}$$
Bounding $\text{Tr}(U_A)$

$$\frac{\text{Tr}(u'I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + \Phi^{u'}(A)$$
Bounding $\text{Tr}(U_A)$

$$\frac{\text{Tr}(u' I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + \leq \Phi^u(A)$$
Bounding $\text{Tr}(U_A)$

\[\frac{\text{Tr}(u' I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + \leq 1 \text{ induction} \]
Bounding $\text{Tr}(U_A)$

\[
-\frac{\partial}{\partial u'} \Phi u'(A) \leq 1
\]

(Recall $\Phi^u(A) = \text{Tr}(uI - A)^{-1}$.)
Bounding $\text{Tr}(U_A)$

\[
\begin{aligned}
&-\frac{\partial}{\partial u'} \Phi u'(A) \\
\geq &\; \delta_u \left(-\frac{\partial}{\partial u'} \Phi u'(A) \right)
\end{aligned}
\]

\[\leq 1 \quad \text{induction} \]

(Recall $\Phi^u(A) = \text{Tr}(uI - A)^{-1}$.)
Bounding $\text{Tr}(U_A)$

\[
-\frac{\partial}{\partial u'} \Phi u'(A) \geq \delta_u \left(-\frac{\partial}{\partial u'} \Phi u'(A) \right)
\]

≤ 1

induction

convexity

$\text{Tr}(U_A) \leq \frac{1}{\delta_u} + 1$
Taking Averages

\[\exists v, U_A \bullet vv^T \leq L_A \bullet vv^T \]

\[\sum_{v \in \{v_e\}} U_A \bullet vv^T \leq \frac{1}{\delta_u} + 1. \]
Taking Averages

\[\exists \mathbf{v}, U_A \cdot \mathbf{vv}^T \leq L_A \cdot \mathbf{vv}^T \]

\[\sum_{\mathbf{v} \in \{v_e\}} U_A \cdot \mathbf{vv}^T \leq \frac{1}{\delta_u} + 1. \]

\[\sum_{\mathbf{v} \in \{v_e\}} L_A \cdot \mathbf{vv}^T \geq \frac{1}{\delta_l} - 1. \]
Taking Averages

$$\exists v, \quad U_A \bullet vv^T \leq L_A \bullet vv^T$$

$$\sum_{v \in \{v_e\}} U_A \bullet vv^T \leq \frac{1}{2} + 1.$$

$$= \frac{3}{2}$$

$$\sum_{v \in \{v_e\}} L_A \bullet vv^T \geq \frac{1}{\delta \ell} - 1.$$
Taking Averages

\[\exists v, U_A \cdot vv^T \leq L_A \cdot vv^T \]

\[\sum_{v \in \{v_e\}} U_A \cdot vv^T \leq \frac{1}{2} + 1. \]

\[= \frac{3}{2} \]

\[\sum_{v \in \{v_e\}} L_A \cdot vv^T \geq \frac{1}{\frac{1}{3}} - 1. \]

\[= 2 \]
Taking Averages

\[\exists v, U_A \bullet vv^T \leq L_A \bullet vv^T \]

\[\sum_{v \in \{v_e\}} U_A \bullet vv^T \leq \frac{1}{2} + 1. \quad = \frac{3}{2} \]

\[\sum_{v \in \{v_e\}} L_A \bullet vv^T \geq \frac{1}{\frac{1}{3}} - 1. \quad 2 \]
Step $i+1$

$A(i), A(i+1), A(i+2)$

Lemma.
can always choose $\sum_{i} vvv^T$ so that potentials do not increase.

$\Phi^u(A) \leq 1$

$\Phi_{\ell}(A) \leq 1.$
Step i+1

$A(i), A(i+1), A(i+2), A(i+3)$

$\Phi^u(A) \leq 1$

$\Phi_\ell(A) \leq 1$
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3), \ldots$

$$\Phi^u(A) \leq 1$$
$$\Phi^\ell(A) \leq 1.$$
Step i+1

$A(i), A(i+1), A(i+2), A(i+3), \ldots$

$\Phi^u(A) \leq 1$

$\Phi^\ell(A) \leq 1$.
Step $i+1$

$A(i), A(i+1), A(i+2), A(i+3), \ldots$

$\phi^u(A) \leq 1$

$\phi_\ell(A) \leq 1.$
Step 6n

\[A(i), A(i+1), A(i+2), A(i+3), \ldots, A(6n) \]

\[\Phi^u(A) \leq 1 \]

\[\Phi_\ell(A) \leq 1. \]
Step 6n

$A(i), A(i+1), A(i+2), A(i+3), \ldots, A(6n)$

13-approximation with 6n vectors.
Main Sparsification Theorem

If

$$\sum_{e} v_{e}v_{e}^{T} = I_{n}$$

then there are scalars $s_{e} \geq 0$ with

$$1 \leq \lambda(\sum_{e} s_{e}v_{e}v_{e}^{T}) \leq 13$$

and $|\{s_{e} \neq 0\}| \leq 6n$.
Sparsification of Graphs

\[1 \leq \frac{x^T L_H x}{x^T L_G x} \leq 13 \quad \forall x \in \mathbb{R}^n \]

\[\forall u : 1 \leq \sum_e s_e \langle u, v_e \rangle^2 \leq 13 \]
Twice-Ramanujan

Fixing dn steps and tightening parameters gives

$$\frac{d+1+2\sqrt{d}}{d+1-2\sqrt{d}}.$$

(zeros of Laguerre polynomials).
Major Themes

• Electrical model of **interlacing** is useful

• Can use barrier potential to **iteratively** construct matrices with desired spectra

• Analysis of progress is **greedy / local**

• Requires **fractional weights** on vectors
Sparsification of PSD Matrices

Theorem. If

\[V = \sum_i v_i v_i^T \]

then there are scalars \(s_i \geq 0 \) for which

\[V \preceq \sum_i s_i v_i v_i^T \preceq (1 + \varepsilon)V \]

and at most \(n/\varepsilon^2 \) are nonzero.
To put this in context...

Given: \[V = \sum_{i \leq m} v_i v_i^T \]

Spectral Theorem: If rank(V) = n then

\[V = \sum_{i \leq n} \lambda_i u_i u_i^T \]

for eigenvectors \(u_i \).
To put this in context...

Given: \[V = \sum_{i \leq m} v_i v_i^T \]

Spectral Theorem: If \(\text{rank}(V) = n \) then

\[V = \sum_{i \leq n} \lambda_i u_i u_i^T \]

\(u_i \) need not be ‘meaningful’ directions...
(e.g., \(v_i = \) edges of graph)
To put this in context...

Given: \[V = \sum_{i \leq m} v_i v_i^T \]

Spectral Theorem: If \(\text{rank}(V) = n \) then
\[V = \sum_{i \leq n} \lambda_i u_i u_i^T \]

This Theorem. Can find scalars \(s_i \) so that:
\[V \sim \epsilon \sum_i s_i v_i v_i^T \]
Open Questions

• The Ramanujan bound
• Unweighted sparsifiers for K_n
• A faster algorithm
• Directed graphs? (must be weaker notion)
• The Kadison-Singer Conjecture
Open Questions

• The Ramanujan bound
• Unweighted sparsifiers for K_n
• A faster algorithm
• Directed graphs? (must be weaker notion)
• The Kadison-Singer Conjecture
Sums of Outer Products

\[A = \sum_{i \leq m} v_i v_i^T \quad v_i \in \mathbb{R}^n, m \gg n \]
Sums of Outer Products

\[A = \sum_{i \leq m} v_i v_i^T \quad v_i \in \mathbb{R}^n, m \gg n \]

- elementary /
- “meaningful” directions
Sums of Outer Products

\[A = \sum_{i \leq m} v_i v_i^T \quad v_i \in \mathbb{R}^n, m \gg n \]

• **Q**: Can we write \(A \) as a *sparse* sum?
Sums of Outer Products

\[A = \sum_{i \leq m} v_i v_i^T \quad v_i \in \mathbb{R}^n, \, m \gg n \]

• **Q:** Can we write \(A \) as a \textit{sparse} sum?

• **A:** Yes, Spectral Theorem:

\[A = \sum_{i \leq n} \lambda_i u_i u_i^T \text{ for eigvecs } u_i \]
Sums of Outer Products

\[A = \sum_{i \leq m} v_i v_i^T \quad v_i \in \mathbb{R}^n, m \gg n \]

• **Q:** Can we write A as a *sparse* sum?
• **A:** Yes, Spectral Theorem:

\[A = \sum_{i \leq n} \lambda_i u_i u_i^T \text{ for eigvecs } u_i \]

• **Good:** only \(n \) terms = optimal!
• **Bad:** \(u_i \) hard to interpret in terms of \(v_i \)
Example: Graphs

Undirected graph $G(V,E)$

Laplacian Matrix

$$L_G = \sum_{ij \in E} (e_i - e_j)(e_i - e_j)^T$$
Example: Graphs

Undirected graph $G(V,E)$

Laplacian Matrix

$$L_G = \sum_{i,j \in E} (e_i - e_j)(e_i - e_j)^T$$

Interested in `sparse approximation`: write L_G as sum of a small number of edges.
Example: Graphs

Undirected graph $G(V,E)$

Laplacian Matrix

$$L_G = \sum_{i,j \in E} (e_i - e_j)(e_i - e_j)^T$$

Interested in `sparse approximation`: write L_G as sum of a small number of edges.

Spectral Thm: $L_G = \sum_{i=1:n} \lambda_i u_i u_i^T$

Sparse, but u_i do not correspond to edges... :(
Spectral Sparsification [BSS’09]

Theorem. Given $A = \sum_{i \leq m} v_i v_i^T$

there are nonnegative weights $s_i \geq 0$ s.t.

$$A \sim \tilde{A} = \sum_i s_i v_i v_i^T$$

and at most $1.1n$ of the s_i are nonzero.
Spectral Sparsification [BSS’09]

Theorem. Given $A = \sum_{i \leq m} v_i v_i^T$
there are nonnegative weights $s_i \geq 0$ s.t.

\[A \sim \tilde{A} = \sum_i s_i v_i v_i^T \]

and at most $1.1n$ of the s_i are nonzero.

• same v_i

• cf. n terms for $\lambda_i u_i u_i^T$
Back to Graphs

Undirected graph $G(V,E)$

Laplacian Matrix

$$L_G = \sum_{i,j \in E} (e_i - e_j)(e_i - e_j)^T$$
Back to Graphs

Undirected graph $G(V,E)$

Laplacian Matrix

$$L_G = \sum_{i,j \in E} (e_i - e_j)(e_i - e_j)^T$$

Apply Theorem:

$$\tilde{L}_G = \sum_{i,j \in E} s_i (e_i - e_j)(e_i - e_j)^T$$

$$L \sim \tilde{L}$$

\(\leq 1.1n \text{ edges!} \)