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The problem of PIT 
 Polynomial identity testing: given a polynomial 

p(x1,x2,…,xn) over F, is it identically zero?
 All coefficients of p(x1,…,xn) are zero.

 (x+y)2 - x2 - y2 - 2xy is identically zero.
 So is: (a2+b2+c2+d2)(A2+B2+C2+D2)

                   - (aA+bB+cC+dD)2 - (aB-bA+cD-dC)2

                   - (aC-bD-cA+dB)2  - (aD-dA+bC-cB)2

 x(x-1) is NOT identically zero over F2.



Circuits: Blackbox or not

 Non blackbox: can analyze structure of C
 Blackbox: cannot look inside C

 Feed values and see what you get
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αp1 + βp2 + γp3

We want algorithm whose 
running time is polynomial in 
size of the circuit.

C



A simple, randomized test

 [Schwartz80, Zippel79] This is a randomized 
blackbox poly-time algorithm.

 (Big) open problem: Find a deterministic polynomial 
time algorithm.
 We would really like a black box algorithm
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If output is 0, 
we guess it is 
identity.

Otherwise, we 
know it isn’t.
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Why?

 Come on, it’s an interesting mathematical problem. 
Do you need a further reason?

 [Impagliazzo Kabanets 03] Derandomization implies 
circuit lower bounds for permanent

 [AKS]  Primality Testing ; (x + a)n–xn-a=0 (mod n)
 [L, MVV] Bipartite matching in NC?...
 Many more



What do we do?

If you can't solve a problem, then there is an easier 
problem you can solve. Find it.

George Pólya 1887-1985



Get shallow results
 Let’s restrict the depth and see what we get
 Depth 2? Non-blackbox trivial!

 [GK87, BOT88,…,KS01, A05] Polytime & blackbox
 Depth 3?
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Sum of products of kd 
linear forms in n variables



Some good news

 They say…
 [Agrawal Vinay 08] Chasm at Depth 4!
 If you can solve blackbox PIT for depth 4, then 

you’ve “solved” it all.

 Build the bridge from depth 3 end!

M. Agrawal V. Vinay



The past… 

A ΣΠΣ(k,d,n) circuit:

[Dvir Shpilka 05] Non-blackbox poly(n)exp((log d)k)  
    algorithm.

[Kayal Saxena 06] Non-blackbox poly(n,dk) algorithm.



The past...
A Tale of Three Methods

[Karnin Shpilka 08] poly(n)exp((log d)k) algorithm.
[Saxena Seshadhri 09] poly(n)exp(k3(log d)2)

        algorithm.
[Kayal Saraf 09] poly(n)exp(kklog d) algorithm over 
Q. 

[Us] poly(n)exp(k2log d) algorithm over Q. 
       This almost matches the non-blackbox test!

[Us] poly(n)exp(k2(log d)2) algorithm. 



The rank

 Introduced by [DS05]: fundamental property of depth 3 
circuits

 [DS] Rank of simple minimal identity < (log d)k-2     
(compare with kd)

 How many independent variables can an identity have?
 An identity is very constrained, so few degrees of freedom

M =
α1  α2                 αn

n

kd

Rank(C) = Rank (M) n-dim vector over F



What we did

Rank of depth 3 (simple minimal) real identity < 3k2

 There is identity with rank k, so this is almost optimal.
 Over any field, we prove 3k2(log 2d).

Therefore, [KS] gives det. blackbox exp(k2log d) test.

   We develop powerful techniques to study depth 3 
circuits. 

Probably more interesting/important than result.
Every depth 3 identity contains a (k-1)-dim Sylvester-
Gallai Configuration (SGk-1 config.).



To be simple and minimal

Depth-3: C = T1 + T2 + … + Tk

Simplicity: no common (linear) factor for all Tr’s
 x1x2…xn - x1x2…xn  (Rank = n)

Minimality: no subset of Tr’s is identity
 x1x2…xnz1 - x1x2…xnz1 + y1y2…ynz2 - y1y2…ynz2               

(Rank = 2n+2)

  Strong minimality: T1  ,…, Tk-1 are linearly independent.



Theorem: If S⊂R2 is a finite set whose every two 
points lie on a line passing through a third point. 
Then S is collinear.
This is a fundamental property of the field R.

It is not true for C2.
We abstract the following concepts out,
SGk-closed: S⊂ Fn such that for all linearly 

independent v
1
,...,v

k
∈ S, there is another point of S in span(v

1
,...,v

k
).

SGk(F,m): the largest rank of a SGk-closed subset S (|S|≤m) of Fn.

Rephrasing SG Theorem: SG2(R,m) ≤ 2, for all m.
 

J. J. Sylvester 1814-1897

Meet Sylvester-Gallai (SG2 
Config.)



More Examples of SG2 Config.

SG2 Config. in Rn of rank 2

SG2 Config. in Cn  of rank 3 SG2 Config. in F
2

n of rank 3



Higher dim Sylvester-Gallai
Theorem [Hansen65, BE67]: SGk(R,m) ≤ 2(k-1).

We feel that for any field F of zero char: 
SGk(F,m) = O(k).

S:=Fp
r is SG2-closed. Thus SG2(Fp,m) = Ω(logpm).

We prove for any field: SGk(F,m) = O(k log m) .



Our Structure Theorem
The rank of a simple, strongly minimal ΣΠΣ(k,d) identity 
is : SGk-1(F,d) + 2k2.

Let the identity be C=T1+...+Tk . We show that forms 

in Ti yield a SGk-1-configuration in Fn.

Meta-Theorem: ΣΠΣ(k) identity is an SGk-1-configuration. 

From SG Theorems this gives rank bounds of:
O(k2) over reals.
O(k2log d) over all fields.



Where's the Beef ? k=3.
 C = T1 + T2 + T3 = Π Li + Π Mj + Π Nk = 0
 [AB99,AKS02,KS06] Go modulo!

Vanishes!

 By unique factorization, there is a bijection between M’s and 
N’s (they are same upto constants)

 This is the L1 matching.



Matching all the Gates

M’s N’s

L1

L1

L1

L1

Mj Nk

L’s N’s

M1

M1

M1

M1

Lj Nk

Lj ≡  α'Nk (mod M1) 

Lj =  α'Nk+β'M1 
Mj ≡  αNk (mod L1) 

Mj =  αNk+βL1 

and



We get to the Nucleus

M’s N’s L’s

L1

L1

L1

L1

Mj Nk

M1

M1

M1

M1

Li

L1
L1 M1

αL1+βM1 

   Forms in nucleus are in span(L1,M1)=:K. 
  Forms in non-nucleus are matched mod K.

Non-nucleus

Nucleus



Proof Idea
L1

L1

L1

L1

Nh

M1

M1

M1

M1 L1
L1 M1

αL1+βM1 

  Pick Mi, Mj non-similar mod K. 
  T1 ≡ 0 (mod Mi, Nh) 
  There exists L in T1 s.t. L = αMi+βNh
  Its image M satisfies : M (mod K) ∈ span(Mi, Mj) 

Nucleus K
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T
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L’sN’sM’s

LM



Proof Idea (Contd.)
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L1

L1

Nh

M1

M1

M1

M1 L1
L1 M1

αL1+βM1 

   M (mod K) ∈ span(Mi, Mj) 
  The non-nucleus part of Ti is SG2-closed (mod K).
  Explicitly, the map (∑αi xi) ↦ (α1,...,αn) converts linear forms
  to a SG2-closed subset of Fn/K.
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Proof Idea (Contd.)
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L1 M1

αL1+βM1 

  The non-nucleus part of Ti is SG2-closed (mod K).
   Rank of this identity ≤ 2 + SG2(F,d)

   Over reals, ≤ 2 + 2 = 4
   Any field, ≤ 2 + log d = O(log d)
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A Bonus...
L1

L1

L1

L1

Nh

M1

M1

M1

M1 L1
L1 M1

αL1+βM1 

  The non-nucleus part of Ti is SG2-closed (mod K).
   By degree comparison, the green part forms a subidentity. 
   The nucleus part is a simple minimal subidentity.
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Larger k: can’t induct easily

 C = T1 + T2 + T3 + T4 

 L ϵ T1. So how about C (mod L)? Top fanin is now 3.
 But C(mod L) may not be simple or minimal any more!
• x1x2 + (x3-x1)x2 + (x4-x2)x3 – x3x4

• Going (mod x1), we get x2x3 + (x4-x2)x3 – x3x4

L
T1 T2 T3 T4



The ideal way to Matchings

 We'll avoid induction and attack directly!

 We saw the power of matchings for k=3

 We extend matchings to ideal matchings for all k
 Looking at C modulo an ideal, not just a linear form



Ideal matchings

 C (mod L1, L2) or C (mod I)
 I is ideal <L1, L2>

 T3 + T4 = 0 (mod I)
 By unique factorization, we get I-matching

L1

L2

T1 T2 T3 T4



Life isn’t ideal

 C (mod L1, L2) has no terms (i.e. we get 0=0)
 How can we get a matching?

 We need L1, L2  s.t. T3 (mod L1, L2) is nonzero.

L1

L2

Lin. comb. of L1 and L2

T1 T2 T3 T4



The Right Path

 We need L1, L2  s.t. T3 (mod L1, L2) is nonzero.
 By minimality of C, T1+T2+T3 ≠ 0.
 A generalization of [KS06]'s non-blackbox ideas ensures

the existence of a path {L1, L2} not hitting T3. 
 Now T3+T4=0 (mod L1,L2) is nontrivial and matches.

L1
L2

T1 T2 T3 T4



Summing Up...

  The non-nucleus part of Ti is SG3-closed (mod K).
   Rank of this identity ≤ (rk K)+ SG3(F,d)
   This idea (with a lot of work!) gives ≤ 2k2+ SGk-1(F,d)
   The nucleus part is a simple, strongly minimal subidentity.

Nucleus 
K:=span(I1,I2,I3)

Li

T1 T2 T4T3

Lj
Lh

L
I1 I2 I3

P

N
M



In conclusion…

 Interesting matching & geometric structures in depth 
3 identities.

 Combinatorial view of algebraic properties

 Every depth 3 identity hides a nucleus subidentity.
Can we characterize the nucleus?

 SGk(F,d) is a fundamental property of fields. 
Is SGk(F,d)=O(k) for fields of zero char. (large char.) ?



A Saxena-Seshadhri paper
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