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simple function f on X holds

1
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∑
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f (x) =

∫
X
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• Construct small designs.
• Show no small designs exist.
• Here: the second goal.
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Why?

• Interesting for Numerical Analysis : mechanical quadrature.
• Theoretical CS: a pseudo-random set∣∣∣EDf − EX f

∣∣∣ < ε

for any simple f
• Combinatorics: Some designs turn out to be very nice
combinatorial objects, such as combinatorial designs.
• Somewhere in between: The (main) goal of this line of
research is to obtain a better understanding of the Delsarte
theory of linear programming bounds for codes and designs.



Some spaces

• We are interested in symmetric spaces



Some spaces

• We are interested in symmetric spaces
• That is, mostly spaces with a strong group of symmetries.



Some spaces

• We are interested in symmetric spaces
• That is, mostly spaces with a strong group of symmetries.
• Examples

1 X is the Hamming cube {0,1}n or {−1,1}n. The group of
symmetries S is generated by shifts Ta : x → x + a and
permutations of coordinates.



Some spaces

• We are interested in symmetric spaces
• That is, mostly spaces with a strong group of symmetries.
• Examples

1 X is the Hamming cube {0,1}n or {−1,1}n. The group of
symmetries S is generated by shifts Ta : x → x + a and
permutations of coordinates.

2

X = Sn−1; S = Rotations by the orthogonal group



Some spaces

• We are interested in symmetric spaces
• That is, mostly spaces with a strong group of symmetries.
• Examples

1 X is the Hamming cube {0,1}n or {−1,1}n. The group of
symmetries S is generated by shifts Ta : x → x + a and
permutations of coordinates.

2

X = Sn−1; S = Rotations by the orthogonal group

3 X is the Johnson space,
([n]

k

)
, also known as the Hamming

sphere. The group of symmetries S are the permutations.



Some spaces

• We are interested in symmetric spaces
• That is, mostly spaces with a strong group of symmetries.
• Examples

1 X is the Hamming cube {0,1}n or {−1,1}n. The group of
symmetries S is generated by shifts Ta : x → x + a and
permutations of coordinates.

2

X = Sn−1; S = Rotations by the orthogonal group

3 X is the Johnson space,
([n]

k

)
, also known as the Hamming

sphere. The group of symmetries S are the permutations.

• In all these examples S is 2-transitive.
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Notions of simplicity

• For the Hamming cube X = {−1,1}n, simple functions of
strength t are multilinear polynomials of degree at most t , that
is the span of

∏
i∈T xi for T ⊆ [n], |T | ≤ t .

• For the Euclidean sphere Sn−1, simple functions of strength t
are multivariate real polynomials of degree at most t restricted
to the sphere.
• For the Hamming sphere... There is a notion of simplicity
leading to nice designs
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Example: One-dimensional sphere, aka the circle

•
S1 = (cos(φ), sin(φ)), 0 ≤ φ < 2π

• Simple functions are spanned by cos(kφ), sin(kφ),
k = 0, ..., t on [0,2π).
• We need all of these basis functions f to satisfy the design
condition. That is, for 0 < k ≤ t ,

1
|D|

∑
φ∈D

cos(kφ) =
1
|D|

∑
φ∈D

sin(kφ) = 0
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3
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3
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= 0

• For any t , an equipartition of the circle into t + 1 points is a
minimal design.
• Nice question, nice answer.
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Second example: The Hamming cube

• Simple functions are spanned by
∏

i∈T xi , for 0 ≤ |T | ≤ t .
• We need all of these basis functions f to satisfy the design
condition. That is, for 0 < k ≤ t , and for any subset T ⊆ [n] with
|T | = k ∑

x∈D

∏
i∈T

xi = 0

• For t = 1, want for all i = 1...n∑
x∈D

xi = 0

• That is, any coordinate to be 1 and −1 same number of times
on D.
• Take D = {(1,1, ...,1), (−1,−1, ...,−1)}.
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• t = 2. Want for all i < j ∑
x∈D

xixj = 0

• Easy to check: any pair (i , j) of coordinates has to contain all
4 choices (1,1), (−1,1), (1,−1), (−1,−1) same number of
times.
• Can take D to be a Hadamard code or any binary linear code
with dual distance 3. |D| ≈ log n and this is optimal.
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• In general, for any t , need a t-wise independent set.
• Can do reasonably well for small t , by taking linear codes
with dual distance t + 1. Worse for large t .
• Nice question, mostly nice answers... Downhill from now on...
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Third example: The Hamming sphere
(

[n]
k

)

• There is a notion of simple functions of strength t , t = 0, ..., k .
• For this notion a design of strength t is a combinatorial
design Sλ(t , k , v).
• a not-so-nice question, nice answer.
• What about lower bounds on the size of designs?
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Linear programming bounds for codes and designs
Delsarte’s theory

• We have considered spaces with many symmetries, that is
isometries - distance preserving transformations.
• Now, more attention to the distance. In our example spaces:

1 The Hamming cube: the Hamming distance (number of
coordinates two strings differ in).

2 The Euclidean sphere: The Euclidean distance.
3 The Hamming sphere: The Hamming distance divided by

2.
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Codes

• An (Error-correcting) code of minimal distance d is a subset
C ⊆ X such that the distance between any two distinct points in
X is at least d .
• It is a disjoint packing of metric balls of radius d/2.
• Want to construct large codes, or prove that large codes do
not exist.
• Here: The second goal. What is the largest possible
cardinality A(X ,d) of a code with minimal distance d?
• Classical bounds:

|X |
|B(d)|

≤ A(X ,d) ≤ |X |
|B (d/2) |
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Linear programming bounds
Delsarte ’73

• Hamming’s bound

A(X ,d) ≤ |X |
|B (d/2) |

uses the fact that X has a 1-transitive group of symmetries.
• LP-approach uses more of geometry of the space X to get
stronger upper bounds on A(X ,d).
• In this talk we use 2-transitivity of the symmetry group.
Delsarte’s approach holds in higher generality.
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• For any two pairs of points (x , y), (x ′, y ′) with
d(x , y) = d (x ′, y ′) there is an isometry I such that

I : x 7→ x ′ and y 7→ y ′
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Delsarte’s linear programming approach for the
Hamming cube

• Shifts and permutations form a 2-transitive group of
isometries for the Hamming cube.
• Pairwise distances - in the space. Let

Ai(x , y) = 1 if d(x , y) = i and Ai(x , y) = 0 if d(x , y) 6= i

If the metric space is 2-transitive, the matrices {Ai} span a
commutative matrix algebra over the reals.
• Pairwise distances - in the code C.

ai =
1
|C|
·
∣∣∣{(x , y) ∈ C × C : d(x , y) = i}

∣∣∣
The distance distribution (a0...an) satisfies a system of linear
constraints derived from the matrix algebra.
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Maximize
n∑

k=0

ak

Given
•

ak ≥ 0; a0 = 1 ; a1 = ...ad−1 = 0

•
n∑

k=0

Qi,kak ≥ 0, i = 0...n

• A linear programming relaxation of the original problem.
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Linear programming bounds

• Any feasible solution of the dual program gives an upper
bound on A(n,d).
• The coefficients Qi,k of the linear constraints on distance
distribution are bad news.
• Delsarte - these coefficients are values of orthogonal
polynomials.
• Obtaining an LP bound reduces to an extremal problem for
orthogonal polynomials.
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The best known bounds

• MRRW ’77, using orthogonal polynomial theory: The first
linear programming bound for codes

A(X ,d) ≤ 2H
(

1
2−
√
δ(1−δ)

)
·n

• The chain of events: Combinatorial problem –> relaxation
(using algebra) –> optimization problem –> analytic problem
(extremal problem in orthogonal polynomials).
• What about designs?
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• Delsarte: in nice familiar spaces the distance distribution of a
design satisfies linear constraints:
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• This immediately leads to Delsarte’s linear program for
designs.
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Minimize
n∑

k=0

ak

Given
•

ak ≥ 0; a0 = 1;

•
n∑

k=0

Qi,kak ≥ 0,
n∑

k=0

Qi,kak = 0, i = 1, ..., t

• A formal dual of the coding problem.
• The MRRW solution leads to the first linear programming
bound for designs.
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Discussion

• Linear programming approach reduces the problem of
bounds for codes and designs to a difficult analytic problem in
orthogonal polynomials.
• It works mysteriously well, leading to the best known bounds
for codes and designs.
• Is MRRW’s solution leading to LP bounds optimal?
• Why does the LP approach work so well?
• Can we improve on LP bounds? Failing that, can we at least
understand them better?
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Other proofs and improvements
Some history

• Schrijver’05, Bachoc-Valentin’07: semi-definite relaxation for
the coding problem.
• Kalai-Linial ’89 A Fourier-analytic approach to obtain
Delsarte’s linear program for codes and designs.
• Friedman-Tillich ’02: A different proof of the first LP bound for
binary linear codes, bounding the eigenvalue of a certain
related Cayley graph.
• Navon-S.’05: Combining the two approaches above. A
Fourier-analytic proof of lower bounds for designs in the
Hamming cube. A design is large because a union of small
Hamming balls around its points "covers" the whole space.
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This talk
Sales pitch

• We prove lower bounds on designs in symmetric spaces,
generalizing the result for the Hamming cube.
A design is large because a union of small metric balls around
its points "covers" the whole space.
• We do not add to geometric understanding of the space,
compared to Delsarte’s approach, but use the symmetries of
the space in a (seemingly) different way.
• Our proof is easy, using simple linear algebra and the
symmetries of the space directly (rather than going through
Fourier analysis). However, in the general case, need the
language and some claims from Fourier analysis on symmetric
spaces.
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Some examples

• For any t there is a radius r = r(t) (depending on the space)
such that

1 Union of Hamming balls of radius r(t) around a t-wise
independent set "covers" the Hamming cube.

2 Union of spherical caps of radius r(t) around a spherical
design of strength t "covers" the Euclidean sphere.

3 Union of "Hamming spherical caps" of radius r(t) around a
combinatorial t-design "covers" the Hamming sphere.

• Recovers the first linear programming bound for these
spaces.
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Some ingredients of this approach

• A simple description of simple functions.
• The Laplacian.

1 For the Euclidean space Rn

Lf = −

(
∂2f
∂x2

1
+ ...+

∂2f
∂x2

n

)

2 For the Euclidean sphere Sn−1 the Laplacian is the
restriction of the Laplacian on Rn.

3 For k -regular graphs it is the usual graph Laplacian (This
takes care of the Hamming cube and sphere.)

Lf (x) = k · f (x)−
∑
y∼x

f (y)
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Some ingredients of this approach - continued

• Definition: The space of simple functions of strength t is
spanned by the eigenfunctions of the Laplacian which belong to
the first t eigenvalues.
• Definition: The eigenvalue of a subset Ω ⊆ X is the minimal
eigenvalue of the Laplacian restricted to functions supported on
Ω (with appropriate boundary and smoothness conditions if
needed.)



Main Theorem

Let D be a design of strength t on X . Let Ω be a subset of X
with eigenvalue λ. Then, assuming X and Ω are sufficiently
symmetric, and λ < λt , we have

|D| ≥ λt − λ
λt

· |X |
|Ω|

In fact, a union of isomorphic copies of Ω taken around each
point of D covers X (up to a λt−λ

λt
-factor).
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• D is a design of strength t . Let |D| = d . Let Ω1, ...,Ωd be
copies of Ω around the points of D.
• We define a function F on ∪iΩi and show

‖F‖22
‖F‖21

≤ λt

λt − λ

• This means the support size of F is at least λt−λ
λt
· |X |. (Done).
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Proof by hand-waiving: the main point

• Let fi be a function with eigenvalue λ = λ(Ω) supported on
Ωi . Take F =

∑d
i=1 fi .

•
〈fi ,Lfi〉 ≤ λ 〈fi , fi〉 =⇒ 〈F ,LF 〉 ≤ λ 〈F ,F 〉

• F inherits the design properties:

〈F , φ〉 = 0 for any eigenfunction φ with eigenvalues λ1 < ... < λt

• This means F is spanned by the constant function and
eigenfunctions with large eigenvalues.
• This has to mean F has a large constant component. Done


