Coloring Simple Hypergraphs

Dhruv Mubayi
Department of Mathematics, Statistics and Computer Science
University of Illinois
Chicago

August 28, 2010
Let $n \geq 2$ and suppose that $S \subseteq [n] \times [n]$ with

$$|S| \geq 2n - 1.$$

Then some three points in S determine a right angle.
Let \(n \geq 2 \) and suppose that \(S \subset [n] \times [n] \) with
\[
|S| \geq 2n - 1.
\]
Then some three points in \(S \) determine a right angle.

If true, then sharp by letting
\[
S = \{(x, y) : x = 1 \text{ or } y = 1\} \setminus (1, 1).
\]
Heilbronn Problem/Conjecture (1947)

How large is the smallest triangle among n points in general position in the unit square?
Heilbronn Problem/Conjecture (1947)

How large is the smallest triangle among \(n \) points in general position in the unit square?

\(S \) – collection of \(n \) points in general position in the unit square

\[
T(S) = \text{area of smallest triangle}
\]

\[
T(n) = \max_S T(S)
\]
Trivial: \(T(n) < c/n \)

Observation (Erdős): \(T(n) > c/n^2 \)
Trivial: \(T(n) < c/n \)

Observation (Erdős): \(T(n) > c/n^2 \)

Explicit Construction (first lower bound)
\(n = \text{prime}, \quad y = x^2 \mod n \)
Trivial: \(T(n) < c/n \)

Observation (Erdős): \(T(n) > c/n^2 \)

Explicit Construction (first lower bound)
\(n = \text{prime}, \quad y = x^2 \mod n \)

- No three points on a line (line and parabola have at most two common points)
Trivial: \(T(n) < \frac{c}{n} \)

Observation (Erdős): \(T(n) > \frac{c}{n^2} \)

Explicit Construction (first lower bound)
\(n = \text{prime}, \quad y = x^2 \mod n \)

- No three points on a line (line and parabola have at most two common points)
- Every lattice triangle has area at least \(\frac{1}{2} \) (follows from Pick’s Theorem)
Trivial: $T(n) < c/n$

Observation (Erdős): $T(n) > c/n^2$

Explicit Construction (first lower bound)
$n = \text{prime}, \quad y = x^2 \mod n$

- No three points on a line (line and parabola have at most two common points)
- Every lattice triangle has area at least $1/2$ (follows from Pick’s Theorem)
- Shrink by a factor of $n - 1$. Areas shrink by a factor of $(n - 1)^2$.

Conjecture: $T(n) = \Theta(1/n^2)$
Trivial: \(T(n) < c/n \)

Observation (Erdős): \(T(n) > c/n^2 \)

Explicit Construction (first lower bound)
\(n = \text{prime}, \quad y = x^2 \mod n \)

- No three points on a line (line and parabola have at most two common points)
- Every lattice triangle has area at least 1/2 (follows from Pick’s Theorem)
- Shrink by a factor of \(n - 1 \). Areas shrink by a factor of \((n - 1)^2 \).
- \(T(n) > \frac{1}{2(n-1)^2} \)

Conjecture: \(T(n) = \Theta(1/n^2) \)
Upper Bounds

Roth (1951) \(n \sqrt{\log \log n} \)

Schmidt (1971) \(n \sqrt{\log n} \)

Roth (1972) \(n^{1.117+o(1)} \)

Komlós-Pintz-Szemerédi (1982) \(n^{1.142+o(1)} \)

Lower Bound

Komlós-Pintz-Szemerédi (1982) \(T(n) > c \log n \)
Upper Bounds

- Roth (1951)
 \[
 \frac{1}{n\sqrt{\log \log n}}
 \]
Upper Bounds

- Roth (1951)
 \[\frac{1}{n \sqrt{\log \log n}} \]

- Schmidt (1971)
 \[\frac{1}{n \sqrt{\log n}} \]
Upper Bounds

- Roth (1951): \(\frac{1}{n \sqrt{\log \log n}} \)
- Schmidt (1971): \(\frac{1}{n \sqrt{\log n}} \)
- Roth (1972): \(\frac{1}{n^{1.117 \ldots + o(1)}} \), \(1.117 \ldots = \frac{17 - \sqrt{65}}{8} \)
Upper Bounds

- **Roth (1951)**
 \[\frac{1}{n^{\sqrt{\log \log n}}} \]

- **Schmidt (1971)**
 \[\frac{1}{n^{\sqrt{\log n}}} \]

- **Roth (1972)**
 \[\frac{1}{n^{1.117\ldots+o(1)}}, \quad 1.117\ldots = \frac{17-\sqrt{65}}{8} \]

- **Komlós-Pintz-Szemerédi (1982)**
 \[\frac{1}{n^{1.142\ldots+o(1)}} \]
Upper Bounds

- Roth (1951) \[\frac{1}{n\sqrt{\log \log n}}\]
- Schmidt (1971) \[\frac{1}{n\sqrt{\log n}}\]
- Roth (1972) \[\frac{1}{n^{1.117\ldots+o(1)}}\]
- Komlós-Pintz-Szemerédi (1982) \[\frac{1}{n^{1.142\ldots+o(1)}}\]

Lower Bound

Komlós-Pintz-Szemerédi (1982) \[T(n) > \frac{c\log n}{n^2}\]
S is a Sidon set if its pairwise sums are all distinct.
S is a Sidon set if its pairwise sums are all distinct

Greedy Algorithm shows that there exists an infinite S with

$$|S \cap [n]| > cn^{1/3}$$

for all n
S is a Sidon set if its pairwise sums are all distinct.

Greedy Algorithm shows that there exists an infinite S with

$$|S \cap [n]| > cn^{1/3}$$

for all n

Ajtai-Komlós-Szemerédi (1981) $(n \log n)^{1/3}$
S is a Sidon set if its pairwise sums are all distinct.

Greedy Algorithm shows that there exists an infinite S with

$$|S \cap [n]| > cn^{1/3}$$

for all n.

Ajtai-Komlós-Szemerédi (1981) $(n \log n)^{1/3}$

Ruzsa (1998) $n^{\sqrt{2} - 1 - o(1)}$
A Sidon set is a set whose elements form a system of distinct representatives in the sense that any two distinct elements have different sums. Given a set S, denote by $|S \cap [n]|$ the number of elements of S that are also in $[n]$. The Greedy Algorithm shows that there exists an infinite S such that $|S \cap [n]| > cn^{1/3}$ for all n. Ajtai-Komlós-Szemerédi (1981) proved that $n \log n^{1/3}$, whereas Ruzsa (1998) improved this to $n^{\sqrt{2}-1-o(1)}$. Erdős conjectured that $n^{1/2-\epsilon}$ is the best possible bound for all $\epsilon > 0$. Conjecture (Erdős)
Fix $k, r \geq 2$. Let A be an $n \times M$ matrix over \mathbb{Z}_2 with

- k one's in each column
- every r columns linearly independent over \mathbb{Z}_2 (i.e. every set of at most r column vectors does not sum to 0)
Fix $k, r \geq 2$. Let A be an $n \times M$ matrix over Z_2 with

- k one's in each column
- every r columns linearly independent over Z_2 (i.e. every set of at most r column vectors does not sum to 0)

$M := M(n, k, r) =$ maximum number of columns in A

In other words, M is the maximum length of a binary linear code with minimum distance at least $r + 1$ and parity check matrix with n rows and every coordinate having at most k check equations.
Lefmann-Pudlak-Savický (1997)

\[M(n, k, r) > cn^{\frac{kr}{2(r-1)}} \]

Results of Frankl-Füredi on union closed families yield

\[M(n, k, 4) < cn^{\left\lceil \frac{4k}{3} \right\rceil} \]

so when \(k \equiv 0 \pmod{3} \), \(M(n, k, 4) = \Theta(n^{\frac{2k}{3}}) \)

Kretzberg-Hofmeister-Lefmann (1999)

If \(r \geq 4 \) is even, \(\gcd(r - 1, k) = 1 \), then

\[M(n, k, r) > cn^{\frac{kr}{2(r-1)}} (\log n)^{\frac{1}{k-1}} \]

Naor-Verstraëte (2009) Improvements for different ranges of \(k, r \);
connections to extremal graph theory
Let $k \geq 2$ be fixed, $n \to \infty$

Fact (Turán’s theorem) Let H be a k-uniform hypergraph with average degree d. Then

$$\alpha(H) > c_k \frac{n}{d^{1/(k-1)}}.$$
Let $k \geq 2$ be fixed, $n \to \infty$

Fact (Turán’s theorem) Let H be a k-uniform hypergraph with average degree d. Then

$$\alpha(H) > c_k \frac{n}{d^{1/(k-1)}}.$$

Proof. Pick vertices randomly; delete a vertex for each edge among picked vertices.
Let $k \geq 2$ be fixed, $n \to \infty$

Fact (Turán’s theorem) Let H be a k-uniform hypergraph with average degree d. Then

$$\alpha(H) > c_k \frac{n}{d^{1/(k-1)}}.$$

Proof. Pick vertices randomly; delete a vertex for each edge among picked vertices.

Sharp. Let $H = K^k_n$, then $d = \binom{n-1}{k-1} = \Theta(n^{k-1})$, $d^{\frac{1}{k-1}} = \Theta(n)$ and

$$\alpha(H) = k - 1 = \Theta(1)$$
What if \(H \) is locally sparse?

2–cycle

\[
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{cycle2}}
\end{array}
\]

3–cycle

\[
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{cycle3}}
\end{array}
\]

4–cycle

\[
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{cycle4}}
\end{array}
\]

girth \(g \) – no cycle of length less than \(g \)

simple or linear – girth 3 or no 2-cycle
Theorem (Komlós-Pintz-Szemerédi $k = 3$, Ajtai-Komlós-Pintz-Spencer-Szemerédi $k \geq 3$ 1982)

Let $k \geq 3$ be fixed. Let H be a k-uniform hypergraph with girth at least 5 and (average) maximum degree Δ. Then

$$\alpha(H) > c_k \frac{n}{\Delta^{1/(k-1)}} (\log \Delta)^{1/(k-1)}.$$
Theorem (Komlós-Pintz-Szemerédi \(k = 3 \), Ajtai-Komlós-Pintz-Spencer-Szemerédi \(k \geq 3 \) 1982)

Let \(k \geq 3 \) be fixed. Let \(H \) be a \(k \)-uniform hypergraph with girth at least 5 and (average) maximum degree \(\Delta \). Then

\[
\alpha(H) > c_k \frac{n}{\Delta^{1/(k-1)}} (\log \Delta)^{1/(k-1)}.
\]

Conjecture (Spencer 1990), Theorem (Duke-Lefmann-Rödl 1995)

Same conclusion holds as long as \(H \) is simple.
Theorem (Komlós-Pintz-Szemerédi $k = 3$,
Ajtai-Komlós-Pintz-Spencer-Szemerédi $k \geq 3$ 1982)

Let $k \geq 3$ be fixed. Let H be a k-uniform hypergraph with girth at least 5 and (average) maximum degree Δ. Then

$$\alpha(H) > c_k \frac{n}{\Delta^{1/(k-1)}(\log \Delta)^{1/(k-1)}}.$$

- $T(n) > c \frac{\log n}{n^2}$
- $|S| > c(n \log n)^{1/3}$ (Improved by Ruzsa)
- $M(n, k, r) > cn^{\frac{kr}{2(r-1)}} (\log n)^{\frac{1}{k-1}}$.

Dhruv Mubayi
Coloring Simple Hypergraphs
\[\Delta = \Delta(G) = \text{max degree of } G \]

Greedy Algorithm: \[\chi(G) \leq \Delta + 1 \]

Brook’s Theorem: \[\chi(G) \leq \Delta \text{ unless } G = K_{\Delta+1} \text{ or } G = C_{2r+1} \]
Graph Coloring

\[\Delta = \Delta(G) = \text{max degree of } G \]

Greedy Algorithm: \(\chi(G) \leq \Delta + 1 \)

Brook’s Theorem: \(\chi(G) \leq \Delta \) unless \(G = K_{\Delta+1} \) or \(G = C_{2r+1} \)

What if \(G \) is triangle-free?
$\Delta = \Delta(G) = \text{max degree of } G$

Greedy Algorithm: $\chi(G) \leq \Delta + 1$

Brook’s Theorem: $\chi(G) \leq \Delta$ unless $G = K_{\Delta+1}$ or $G = C_{2r+1}$

What if G is triangle-free?

Borodin-Kostochka: $\chi(G) \leq \frac{2}{3}(\Delta + 2)$
\(\Delta = \Delta(G) = \text{max degree of } G \)

Greedy Algorithm: \(\chi(G) \leq \Delta + 1 \)

Brook’s Theorem: \(\chi(G) \leq \Delta \) unless \(G = K_{\Delta+1} \) or \(G = C_{2r+1} \)

What if \(G \) is triangle-free?

Borodin-Kostochka: \(\chi(G) \leq \frac{2}{3}(\Delta + 2) \)

What about independence number?
Graph Coloring

\[\Delta = \Delta(G) = \text{max degree of } G \]

Greedy Algorithm: \[\chi(G) \leq \Delta + 1 \]

Brook’s Theorem: \[\chi(G) \leq \Delta \text{ unless } G = K_{\Delta+1} \text{ or } G = C_{2r+1} \]

What if \(G \) is triangle-free?

Borodin-Kostochka: \[\chi(G) \leq \frac{2}{3}(\Delta + 2) \]

What about independence number?

Ajtai-Komlós-Szemerédi, Shearer: \[\alpha(G) > c \frac{n}{\Delta} \log \Delta \]
Question (Vizing 1968): What is the best possible bound on the chromatic number of a triangle-free graph G in terms of its maximum degree?
Question (Vizing 1968): What is the best possible bound on the chromatic number of a triangle-free graph G in terms of its maximum degree?

Random graphs show that there exist triangle-free graphs G with

$$\chi(G) > c \frac{\Delta}{\log \Delta}$$
Question (Vizing 1968): What is the best possible bound on the chromatic number of a triangle-free graph G in terms of its maximum degree?

Random graphs show that there exist triangle-free graphs G with

$$\chi(G) > c \frac{\Delta}{\log \Delta}$$

Kim (1995): If $\text{girth}(G) \geq 5$, then $\chi(G) < c \frac{\Delta}{\log \Delta}$
Question (Vizing 1968): What is the best possible bound on the chromatic number of a triangle-free graph G in terms of its maximum degree?

Random graphs show that there exist triangle-free graphs G with

$$\chi(G) > c \frac{\Delta}{\log \Delta}$$

Kim (1995): If $\text{girth}(G) \geq 5$, then $\chi(G) < c \frac{\Delta}{\log \Delta}$

Johansson (1997): If G is triangle-free, then

$$\chi(G) < c \frac{\Delta}{\log \Delta}$$
Theorem (Frieze-M) Let $k \geq 3$ be fixed. Then there exists $c = c_k$ such that every k-uniform simple H with maximum degree Δ has

$$
\chi(H) < c \left(\frac{\Delta}{\log \Delta} \right)^{\frac{1}{k-1}}.
$$
Theorem (Frieze-M) Let $k \geq 3$ be fixed. Then there exists $c = c_k$ such that every k-uniform simple H with maximum degree Δ has

$$\chi(H) < c \left(\frac{\Delta}{\log \Delta} \right)^{\frac{1}{k-1}}.$$

The proof is independent of K-P-S and A-K-P-S-S (and D-L-R) so it gives a new proof of those results.
Theorem (Frieze-M) Let $k \geq 3$ be fixed. Then there exists $c = c_k$ such that every k-uniform simple H with maximum degree Δ has

$$\chi(H) < c \left(\frac{\Delta}{\log \Delta} \right)^{\frac{1}{k-1}}.$$

- The proof is independent of K-P-S and A-K-P-S-S (and D-L-R) so it gives a new proof of those results.
- The result is sharp apart from the constant c.
Semi-Random or “Nibble” Method

A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach.

Rodl’s proof (1985) of the ErdHos-Hanani conjecture on asymptotically good designs.

Frankl-Rodl (1985) result on hypergraph matchings.

Pippenger-Spencer (1989) result of hypergraph edge-coloring.

Kahn (1990s) proved many results, list coloring using different approach to P-S.

Johansson (1997) additional new ideas for triangle-free graphs.

Vu (2000+) extended Johansson’s ideas to more general situations.

Dhruv Mubayi

Coloring Simple Hypergraphs
Semi-Random or “Nibble” Method

- A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach

- Rodl’s proof (1985) of the Erdos-Hanani conjecture on asymptotically good designs

- Frankl-Rodl (1985) result on hypergraph matchings

- Pippenger-Spencer (1989) result of hypergraph edge-coloring

- Kahn (1990s) proved many results, list coloring using different approach to P-S

- Kim (1995) graphs of girth five

- Johansson (1997) additional new ideas for triangle-free graphs

- Vu (2000+) extended Johansson’s ideas to more general situations
Semi-Random or “Nibble” Method

- A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach
- Rödl’s proof (1985) of the Erdős-Hanani conjecture on asymptotically good designs
Semi-Random or “Nibble” Method

- A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach
- Rödl’s proof (1985) of the Erdős-Hanani conjecture on asymptotically good designs
- Frankl-Rödl (1985) result on hypergraph matchings
A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach

Rödl’s proof (1985) of the Erdős-Hanani conjecture on asymptotically good designs

Frankl-Rödl (1985) result on hypergraph matchings

Pippenger-Spencer (1989) result of hypergraph edge-coloring
Semi-Random or “Nibble” Method

- A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach
- Rödl’s proof (1985) of the Erdős-Hanani conjecture on asymptotically good designs
- Frankl-Rödl (1985) result on hypergraph matchings
- Pippenger-Spencer (1989) result of hypergraph edge-coloring
- Kahn (1990s) proved many results, list coloring using different approach to P-S
A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach.

Rödl’s proof (1985) of the Erdős-Hanani conjecture on asymptotically good designs.

Frankl-Rödl (1985) result on hypergraph matchings.

Pippenger-Spencer (1989) result of hypergraph edge-coloring.

Kahn (1990s) proved many results, list coloring using different approach to P-S.

Semi-Random or “Nibble” Method

- A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach
- Rödl’s proof (1985) of the Erdős-Hanani conjecture on asymptotically good designs
- Frankl-Rödl (1985) result on hypergraph matchings
- Pippenger-Spencer (1989) result of hypergraph edge-coloring
- Kahn (1990s) proved many results, list coloring using different approach to P-S
- Kim (1995) graphs of girth five
- Johansson (1997) additional new ideas for triangle-free graphs
Semi-Random or “Nibble” Method

- A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first papers using this approach
- Rödl’s proof (1985) of the Erdős-Hanani conjecture on asymptotically good designs
- Frankl-Rödl (1985) result on hypergraph matchings
- Pippenger-Spencer (1989) result of hypergraph edge-coloring
- Kahn (1990s) proved many results, list coloring using different approach to P-S
- Kim (1995) graphs of girth five
- Johansson (1997) additional new ideas for triangle-free graphs
- Vu (2000+) extended Johansson’s ideas to more general situations
More Tools

Concentration Inequalities

- Hoeffding/Chernoff
- Talagrand
- Local Lemma
- Kim-Vu polynomial concentration takes care of dependencies

Example of Kim-Vu: Let $G = G(n, p)$, $p = \frac{1}{\sqrt{n}}$. Fix a vertex x in G. $T(x)$ is the number of triangles containing x. Then $\mu = \mathbb{E}(T(x)) = \binom{n-1}{2}p^3$ but triangles are not independent. Still $\Pr(\left| T(x) - \mu \right| > \delta \mu) < e^{-c \delta \mu}$.
Concentration Inequalities

- Hoeffding/Chernoff
- Talagrand
- Local Lemma
- Kim-Vu polynomial concentration takes care of dependencies

Example of Kim-Vu: Let $G = G(n, p)$, $p = \frac{1}{\sqrt{n}}$. Fix a vertex x in G.

$T(x)$ is the number of triangles containing x.

Then $\mu = E(T(x)) = \binom{n-1}{2} p^3$ but triangles are not independent. Still

$$P(|T(x) - \mu| > \delta \mu) < e^{-c\delta \mu}$$
The Algorithm \((k = 3)\)

- \(C = [q]\) – set of colors
The Algorithm ($k = 3$)

- $C = [q]$ – set of colors
- U^t – set of currently uncolored vertices
The Algorithm \((k = 3)\)

- \(C = [q]\) – set of colors
- \(U^t\) – set of currently uncolored vertices
- \(H^t = H[U^t]\) – subgraph of \(H\) induced by \(U^t\)
The Algorithm ($k = 3$)

- $C = [q]$ – set of colors
- U^t – set of currently uncolored vertices
- $H^t = H[U^t]$ – subgraph of H induced by U^t
- $W^t = V \setminus U^t$ – set of currently colored vertices
The Algorithm \((k = 3)\)

- \(C = [q] \) – set of colors
- \(U^t \) – set of currently uncolored vertices
- \(H^t = H[U^t] \) – subgraph of \(H\) induced by \(U^t\)
- \(W^t = V \setminus U^t \) – set of currently colored vertices
- \(H^t_2 \) – colored graph
The Algorithm \((k = 3)\)

- \(C = [q]\) – set of colors
- \(U^t\) – set of currently uncolored vertices
- \(H^t = H[U^t]\) – subgraph of \(H\) induced by \(U^t\)
- \(W^t = V \setminus U^t\) – set of currently colored vertices
- \(H^t_2\) – colored graph
- \(p^t_u \in [0, 1]^C, u \in U^t\) – vector of probabilities of colors
The Algorithm \((k = 3)\)

- \(C = [q]\) – set of colors
- \(U^t\) – set of currently uncolored vertices
- \(H^t = H[U^t]\) – subgraph of \(H\) induced by \(U^t\)
- \(W^t = V \setminus U^t\) – set of currently colored vertices
- \(H^t_2\) – colored graph
- \(p^t_u \in [0, 1]^C, u \in U^t\) – vector of probabilities of colors
- \(p^0_u = (1/q, \ldots, 1/q)\) – initial color vector
Dhruv Mubayi | Coloring Simple Hypergraphs
For $u \in U$, $c \in [q]$, tentatively activate c at u with probability
\[\Theta \cdot p_u(c). \]
For $u \in U$, $c \in [q]$, tentatively activate c at u with probability

$$\Theta \cdot p_u(c).$$

A color is lost at u if either

- there is an edge uu_1u_2 such that c is tentatively activated at u_1 and u_2, or

- x has been colored with c and c has been tentatively activated.
For $u \in U$, $c \in [q]$, tentatively activate c at u with probability

$$\Theta \cdot p_u(c).$$

A color is lost at u if either

- there is an edge uu_1u_2 such that c is tentatively activated at u_1 and u_2, or
- x has been colored with c and c has been tentatively activated at ν

Parameters p_u are updated in a (complicated) way to maintain certain properties of $H_t = H[U]$.

Dhruv Mubayi

Coloring Simple Hypergraphs
For $u \in U$, $c \in [q]$, tentatively activate c at u with probability
\[\Theta \cdot p_u(c). \]

A color is lost at u if either

- there is an edge uu_1u_2 such that c is tentatively activated at u_1 and u_2, or
- x has been colored with c and c has been tentatively activated at v

In this case $p_u(c) = 0$ for all further iterations

Assign a permanent color to u if some color c is tentatively activated at u and is not lost
For $u \in U$, $c \in [q]$, tentatively activate c at u with probability

$$\Theta \cdot p_u(c).$$

A color is lost at u if either

- there is an edge uu_1u_2 such that c is tentatively activated at u_1 and u_2, or
- x has been colored with c and c has been tentatively activated at v

In this case $p_u(c) = 0$ for all further iterations

Assign a permanent color to u if some color c is tentatively activated at u and is not lost

Parameters p_u are updated in a (complicated) way to maintain certain properties of $H_t = H[U]$
Parameters \((k = 3)\)

During the process, we must choose update values to maintain the values of certain parameters:

- \(\sum_c p_u(c) \sim 1\)
- \(e_{uvw} = \sum_c p_u(c)p_v(c)p_w(c) \ll \frac{\log \Delta}{\Delta}\)
- \(\deg(v) \leq \left(1 - \frac{1}{\log \Delta}\right)^t \Delta \sim e^{-t/\log \Delta}\)
- Also, entropy is controlled; key new idea of Johansson; don’t need martingales, Hoeffding suffices

Continue till \(t = \log \Delta \log \log \Delta\) and then apply Local Lemma.
What next?

Independence number of locally sparse Graphs

Let G contain no K_4
What next?

Independence number of locally sparse Graphs

Let G contain no K_4

$$\alpha(G) > c \frac{n}{\Delta} \log \log \Delta$$
What next?

Independence number of locally sparse Graphs

Let G contain no K_4

$$\alpha(G) > c \frac{n}{\Delta} \log \log \Delta$$

- Shearer (1995)

$$\alpha(G) > c \frac{n}{\Delta \log \log \Delta}$$
Independence number of locally sparse Graphs

Let G contain no K_4

 \[\alpha(G) > c \frac{n}{\Delta} \log \log \Delta \]

- Shearer (1995)
 \[\alpha(G) > c \frac{n}{\Delta} \frac{\log \Delta}{\log \log \Delta} \]

- Major Open Conjecture (Erdős et. al.)
 \[\alpha(G) > c \frac{n}{\Delta} \log \Delta \]
Conjecture (Frieze-M)
Let F be a fixed k-uniform hypergraph. Then there exists $c = c_F$ such that every F-free k-uniform hypergraph H with maximum degree Δ satisfies

$$\chi(H) < c \left(\frac{\Delta}{\log \Delta} \right)^{\frac{1}{k-1}}.$$
Conjecture (Frieze-M)
Let F be a fixed k-uniform hypergraph. Then there exists $c = c_F$ such that every F-free k-uniform hypergraph H with maximum degree Δ satisfies

$$\chi(H) < c \left(\frac{\Delta}{\log \Delta} \right)^{\frac{1}{k-1}}.$$

Weaker Conjecture: $\chi(H) = o(\Delta^{\frac{1}{k-1}})$
Conjecture (Frieze-M)
Let F be a fixed k-uniform hypergraph. Then there exists $c = c_F$ such that every F-free k-uniform hypergraph H with maximum degree Δ satisfies

$$\chi(H) < c \left(\frac{\Delta}{\log \Delta} \right)^{\frac{1}{k-1}}.$$

Weaker Conjecture: $\chi(H) = o(\Delta^{\frac{1}{k-1}})$

Algorithms??

Convert our proof to a deterministic polynomial time algorithm that yields a coloring with $c(\Delta / \log \Delta)^{1/(k-1)}$ colors

Moser-Tardos results yield a randomized algorithm
Problem (Erdős 1977)

Do n^2 points in the plane always contain $2n - 2$ points which do not determine a right angle?
Problem (Erdős 1977)
Do n^2 points in the plane always contain $2n - 2$ points which do not determine a right angle?

If true, then sharp (take $[n] \times [n]$ and use Problem at the beginning)
Problem (Erdős 1977)
Do \(n^2 \) points in the plane always contain \(2n - 2 \) points which do not determine a right angle?

If true, then sharp (take \([n] \times [n]\) and use Problem at the beginning)

Lower bounds on the number of points
Another Geometric Application

Problem (Erdős 1977)
Do \(n^2 \) points in the plane always contain \(2n - 2 \) points which do not determine a right angle?

If true, then sharp (take \([n] \times [n]\) and use Problem at the beginning)

Lower bounds on the number of points

- Erdős (1977) \(\Omega(n^{2/3}) \)
Another Geometric Application

Problem (Erdős 1977)
Do n^2 points in the plane always contain $2n - 2$ points which do not determine a right angle?

If true, then sharp (take $[n] \times [n]$ and use Problem at the beginning)

Lower bounds on the number of points

- Erdős (1977) $\Omega(n^{2/3})$
- Elekes (2009) $\Omega \left(\frac{n}{\sqrt{\log n}} \right)$
Another Geometric Application

Problem (Erdős 1977)
Do n^2 points in the plane always contain $2n - 2$ points which do not determine a right angle?

If true, then sharp (take $[n] \times [n]$ and use Problem at the beginning)

Lower bounds on the number of points

- Erdős (1977) $\Omega(n^{2/3})$
- Elekes (2009) $\Omega \left(\frac{n}{\sqrt{\log n}} \right)$
- Gyárfás-M $\Omega(n)$ if Frieze-M Conjecture holds for $k = 3$ and $F = K_9^3$
Thank You