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Let n > 2 and suppose that S C [n] x [n] with
|S| > 2n—1.

Then some three points in S determine a right angle.
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Let n > 2 and suppose that S C [n] x [n] with
|S| > 2n—1.
Then some three points in S determine a right angle.

If true, then sharp by letting

S={(x,y):x=1lory=1}\(1,1).
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Heilbronn Problem/Conjecture (1947)

How large is the smallest triangle among n points in general
position in the unit square?
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Heilbronn Problem/Conjecture (1947)

How large is the smallest triangle among n points in general
position in the unit square?

S — collection of n points in general position in the unit square

T(S) = area of smallest triangle

T(n) = max T(S)
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Observation (Erdés): T (n) > c/n?
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Observation (Erdés): T (n) > c/n?

Explicit Construction (first lower bound)

n = prime, y = x> mod n
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Trivial:  T(n) < c¢/n
Observation (Erd8s): T (n) > c/n?

Explicit Construction (first lower bound)

n = prime, y = x> mod n

» No three points on a line (line and parabola have at most two
common points)
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Trivial:  T(n) < c¢/n
Observation (Erd8s): T (n) > c/n?

Explicit Construction (first lower bound)

n = prime, y = x> mod n

» No three points on a line (line and parabola have at most two
common points)

» Every lattice triangle has area at least 1/2 (follows from
Pick's Theorem)
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Trivial:  T(n) < c¢/n
Observation (Erd8s): T (n) > c/n?

Explicit Construction (first lower bound)

n = prime, y = x> mod n

» No three points on a line (line and parabola have at most two
common points)

» Every lattice triangle has area at least 1/2 (follows from
Pick's Theorem)

» Shrink by a factor of n — 1. Areas shrink by a factor of
(n—1)>2
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Trivial:  T(n) < c¢/n
Observation (Erd8s): T (n) > c/n?

Explicit Construction (first lower bound)

n = prime, y = x> mod n

» No three points on a line (line and parabola have at most two
common points)

» Every lattice triangle has area at least 1/2 (follows from
Pick's Theorem)

» Shrink by a factor of n — 1. Areas shrink by a factor of
(n—1)>2

Conjecture:  T(n) = ©(1/n?)
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Upper Bounds
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Upper Bounds

1
ny/logn

» Schmidt (1971)
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Upper Bounds

S
» Schmidt (1971) 1
i
ny/logn
1 17 — V65
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Upper Bounds

[
» Schmidt (1971) 1
i
ny/logn
1 17 — V65

1

> Kom|és—PintZ—Szemerédi (1982) m
nl-
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Upper Bounds

[
» Schmidt (1971) 1
i
ny/logn
1 17 — V65

1

> Kom|és—PintZ—Szemerédi (1982) m
nl-

Lower Bound

|
Komlés-Pintz-Szemerédi (1982) T(n) > coen

n2
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Number Theory - Infinite Sidon Sets

S is a Sidon set if its pairwise sums are all distinct
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Number Theory - Infinite Sidon Sets

S is a Sidon set if its pairwise sums are all distinct

Greedy Algorithm shows that there exists an infinite S with
1S [n]] > en*/3

for all n
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Number Theory - Infinite Sidon Sets

S is a Sidon set if its pairwise sums are all distinct

Greedy Algorithm shows that there exists an infinite S with
1S [n]] > en*/3
for all n

Ajtai-Komlés-Szemerédi (1981)  (nlog n)'/3
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Number Theory - Infinite Sidon Sets

S is a Sidon set if its pairwise sums are all distinct

Greedy Algorithm shows that there exists an infinite S with
1S [n]] > en*/3
for all n

Ajtai-Komlés-Szemerédi (1981)  (nlog n)'/3
Ruzsa (1998) nV2-1-o(1)
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Number Theory - Infinite Sidon Sets

S is a Sidon set if its pairwise sums are all distinct

Greedy Algorithm shows that there exists an infinite S with
1S [n]] > en*/3
for all n

Ajtai-Komlés-Szemerédi (1981)  (nlog n)'/3
Ruzsa (1998) nV2-1-o(1)

Conjecture (Erdés) — nl/2—¢
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Coding Theory

Fix k,r > 2. Let A be an n x M matrix over Z> with

» k one's in each column

» every r columns linearly independent over Z, (i.e. every set of
at most r column vectors does not sum to 0)
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Coding Theory

Fix k,r > 2. Let A be an n x M matrix over Z> with

» k one's in each column

» every r columns linearly independent over Z, (i.e. every set of
at most r column vectors does not sum to 0)

M := M(n, k, r) = maximum number of columns in A
In other words, M is the maximum length of a binary linear code

with minimum distance at least r + 1 and parity check matrix with
n rows and every coordinate having at most k check equations.
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Lefmann-Pudlak-Savicky (1997)
kr
M(n, k,r) > cn2=D
Results of Frankl-Fiiredi on union closed families yield

[4k/3]
M(n, k,4) < cn 2

2k

so when k =0 (mod 3), M(n, k,4)=0(n3)

Kretzberg-Hofmeister-Lefmann (1999)
If r >4 is even, gcd(r — 1, k) = 1, then

L
k—

M(n, k,r) > 2D ) (log n)

Naor-Verstraéte (2009) Improvements for different ranges of k, r;
connections to extremal graph theory
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Independent Sets in Hypergraphs

Let kK > 2 be fixed, n — oo

Fact (Turdn's theorem) Let H be a k-uniform hypergraph with
average degree d. Then

n
(,Y(H) > Ckm.
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Independent Sets in Hypergraphs

Let kK > 2 be fixed, n — oo
Fact (Turdn's theorem) Let H be a k-uniform hypergraph with

average degree d. Then

n
(,Y(H) > Ckm.

Proof. Pick vertices randomly; delete a vertex for each edge
among picked vertices. []
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Independent Sets in Hypergraphs

Let kK > 2 be fixed, n — oo

Fact (Turdn's theorem) Let H be a k-uniform hypergraph with
average degree d. Then

n
(,Y(H) > Ckm.

Proof. Pick vertices randomly; delete a vertex for each edge

among picked vertices. []
1

Sharp. Let H = K, then d = (]_1) = ©(nk71), d*1 = ©(n) and

a(H) =k —1=0(1)
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What if H is locally sparse?

2—cycle

3—cycle

4—cycle

girth g — no cycle of length less than g

simple or linear — girth 3 or no 2-cycle
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Theorem (Komlés-Pintz-Szemerédi k = 3,
Ajtai-Komlés-Pintz-Spencer-Szemerédi k > 3 1982)

Let k > 3 be fixed. Let H be a k-uniform hypergraph with girth at

least 5 and (average) maximum degree A. Then

n _
o(H) > ek =gy (log A/ K1),

Al/
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Theorem (Komlés-Pintz-Szemerédi k = 3,
Ajtai-Komlés-Pintz-Spencer-Szemerédi k > 3 1982)

Let k > 3 be fixed. Let H be a k-uniform hypergraph with girth at

least 5 and (average) maximum degree A. Then

a(H) > ¢ (log A)Y/ (1),

n
AL/(k-1)

Conjecture (Spencer 1990), Theorem (Duke-Lefmann-Rédl 1995)

Same conclusion holds as long as H is simple.
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Theorem (Komlés-Pintz-Szemerédi k = 3,
Ajtai-Komlés-Pintz-Spencer-Szemerédi k > 3 1982)

Let kK > 3 be fixed. Let H be a k-uniform hypergraph with girth at
least 5 and (average) maximum degree A. Then

n 1/(k—1
clogn
> T(n) > P

» |S| > c(nlogn)'/3 (Improved by Ruzsa)
>  M(n k,r)> cnz(*rkil)aog n)ﬁ'
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Graph Coloring

A = A(G) = max degree of G
Greedy Algorithm:  x(G) < A+1
Brook's Theorem:  x(G) < A unless G = Katq or G = Corp1
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Graph Coloring

A = A(G) = max degree of G
Greedy Algorithm:  x(G) < A+1
Brook's Theorem:  x(G) < A unless G = Katq or G = Corp1

What if G is triangle-free?
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Graph Coloring

A = A(G) = max degree of G
Greedy Algorithm:  x(G) < A+1
Brook's Theorem:  x(G) < A unless G = Katq or G = Corp1

What if G is triangle-free?

Borodin-Kostochka: x(G) <

wIlN

(A+2)
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Graph Coloring

A = A(G) = max degree of G
Greedy Algorithm:  x(G) < A+1
Brook's Theorem:  x(G) < A unless G = Katq or G = Corp1

What if G is triangle-free?

2
Borodin-Kostochka: x(G) < §(A +2)

What about independence number?
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Graph Coloring

A = A(G) = max degree of G
Greedy Algorithm:  x(G) < A+1
Brook's Theorem:  x(G) < A unless G = Katq or G = Corp1

What if G is triangle-free?

2
Borodin-Kostochka: x(G) < §(A +2)

What about independence number?

Ajtai-Komlés-Szemerédi, Shearer:  a(G) > c% log A
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Question (Vizing 1968): What is the best possible bound on the
chromatic number of a triangle-free graph G in terms of its
maximum degree?
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Question (Vizing 1968): What is the best possible bound on the
chromatic number of a triangle-free graph G in terms of its
maximum degree?

Random graphs show that there exist triangle-free graphs G with

x(G) > c

log A
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Question (Vizing 1968): What is the best possible bound on the
chromatic number of a triangle-free graph G in terms of its
maximum degree?

Random graphs show that there exist triangle-free graphs G with

><(G)>CIOgA

Kim (1995): If girth(G) > 5, then x(G) <

“log A
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Question (Vizing 1968): What is the best possible bound on the
chromatic number of a triangle-free graph G in terms of its
maximum degree?

Random graphs show that there exist triangle-free graphs G with

(€)= cioeR
Kim (1995): If girth(G) > 5, then x(G) < CIogA
Johansson (1997): If G is triangle-free, then
A
x(G) < “logh
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New Result

Theorem (Frieze-M) Let k > 3 be fixed. Then there exists ¢ = ¢
such that every k-uniform simple H with maximum degree A has

Y(H) < ¢ (IOgAA)kll.
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New Result

Theorem (Frieze-M) Let k > 3 be fixed. Then there exists ¢ = ¢
such that every k-uniform simple H with maximum degree A has

Y(H) < ¢ (IOgAA)kll.

» The proof is independent of K-P-S and A-K-P-S-S (and
D-L-R) so it gives a new proof of those results
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New Result

Theorem (Frieze-M) Let k > 3 be fixed. Then there exists ¢ = ¢
such that every k-uniform simple H with maximum degree A has

Y(H) < ¢ (IOgAA)kll.

» The proof is independent of K-P-S and A-K-P-S-S (and
D-L-R) so it gives a new proof of those results

» The result is sharp apart from the constant ¢
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Semi-Random or “Nibble” Method
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Semi-Random or “Nibble” Method

» A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach
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Semi-Random or “Nibble” Method

» A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach

» Radl's proof (1985) of the Erdés-Hanani conjecture on
asymptotically good designs
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Semi-Random or “Nibble” Method

» A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach

» Radl's proof (1985) of the Erdés-Hanani conjecture on
asymptotically good designs

» Frankl-Rddl (1985) result on hypergraph matchings
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Semi-Random or “Nibble” Method

» A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach

» Radl's proof (1985) of the Erdés-Hanani conjecture on
asymptotically good designs

» Frankl-Rddl (1985) result on hypergraph matchings
» Pippenger-Spencer (1989) result of hypergraph edge-coloring
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Semi-Random or “Nibble” Method

» A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach

» Radl's proof (1985) of the Erdés-Hanani conjecture on
asymptotically good designs

» Frankl-Rddl (1985) result on hypergraph matchings
» Pippenger-Spencer (1989) result of hypergraph edge-coloring

» Kahn (1990s) proved many results, list coloring using different
approach to P-S
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Semi-Random or “Nibble” Method

» A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach

» Radl's proof (1985) of the Erdés-Hanani conjecture on
asymptotically good designs

» Frankl-Rddl (1985) result on hypergraph matchings
» Pippenger-Spencer (1989) result of hypergraph edge-coloring

» Kahn (1990s) proved many results, list coloring using different
approach to P-S

» Kim (1995) graphs of girth five
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Semi-Random or “Nibble” Method

» A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach

» Radl's proof (1985) of the Erdés-Hanani conjecture on
asymptotically good designs

» Frankl-Rddl (1985) result on hypergraph matchings
» Pippenger-Spencer (1989) result of hypergraph edge-coloring

» Kahn (1990s) proved many results, list coloring using different
approach to P-S

» Kim (1995) graphs of girth five
» Johansson (1997) additional new ideas for triangle-free graphs
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Semi-Random or “Nibble” Method

» A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach

» Radl's proof (1985) of the Erdés-Hanani conjecture on
asymptotically good designs

» Frankl-Rddl (1985) result on hypergraph matchings
» Pippenger-Spencer (1989) result of hypergraph edge-coloring

» Kahn (1990s) proved many results, list coloring using different
approach to P-S

» Kim (1995) graphs of girth five
» Johansson (1997) additional new ideas for triangle-free graphs

» Vu (2000+) extended Johansson's ideas to more general
situations
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More Tools

Concentration Inequalities

» Hoeffding/Chernoff
» Talagrand
» Local Lemma

» Kim-Vu polynomial concentration takes care of dependencies
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More Tools

Concentration Inequalities

» Hoeffding/Chernoff

» Talagrand

» Local Lemma

» Kim-Vu polynomial concentration takes care of dependencies

Example of Kim-Vu: Let G = G(n,p), p = %

Fix a vertex x in G

T(x) is the number of triangles containing x

Then 1 = E(T(x)) = (",*)p® but triangle are not independent.
Still

P(IT(x) = pl > 6p) < e
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The Algorithm (k = 3)

» C = [q] — set of colors
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The Algorithm (k = 3)

» C = [q] — set of colors

» U! — set of currently uncolored vertices

Dhruv Mubayi Coloring Simple Hypergraphs



The Algorithm (k = 3)

» C = [q] — set of colors
» U! — set of currently uncolored vertices

» H' = H[U'] — subgraph of H induced by U*
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The Algorithm (k = 3)

C = [q] — set of colors

v

» U! — set of currently uncolored vertices

v

H = H[U!] - subgraph of H induced by U!

v

Wt =V \ U' - set of currently colored vertices
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The Algorithm (k = 3)

C = [q] — set of colors

v

» U! — set of currently uncolored vertices

v

H = H[U!] - subgraph of H induced by U!

v

Wt =V \ U' - set of currently colored vertices

v

H3 — colored graph
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The Algorithm (k = 3)

C = [q] — set of colors

v

» U! — set of currently uncolored vertices

v

H = H[U!] - subgraph of H induced by U!

v

Wt =V \ U' - set of currently colored vertices

v

H3 — colored graph

v

pt €[0,1], u € Ut - vector of probabilities of colors
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The Algorithm (k = 3)

C = [q] — set of colors

v

» U! — set of currently uncolored vertices

v

H = H[U!] - subgraph of H induced by U!

v

Wt =V \ U' - set of currently colored vertices

v

H3 — colored graph

v

pt €[0,1], u € Ut - vector of probabilities of colors

v

pl=(1/q,...,1/q) — initial color vector
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O
X

colored

uncolored

W t

U t
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For u € U, c € [q], tentatively activate ¢ at u with probability

© - pu(c).
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For u € U, c € [q], tentatively activate ¢ at u with probability
© - pu(c).

A color is lost at u if either

» there is an edge uujuy such that ¢ is tentatively activated at
u1 and u», or
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For u € U, c € [q], tentatively activate ¢ at u with probability

© - pu(c).
A color is lost at u if either

» there is an edge uujuy such that ¢ is tentatively activated at
u1 and uo, or

» x has been colored with ¢ and ¢ has been tentatively
activated at v
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For u € U, c € [q], tentatively activate ¢ at u with probability
© - pu(c).

A color is lost at u if either

» there is an edge uujuy such that ¢ is tentatively activated at
u1 and uo, or

» x has been colored with ¢ and ¢ has been tentatively
activated at v

In this case p,(c) = 0 for all further iterations

Assign a permanent color to u if some color c is tentatively
activated at v and is not lost
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For u € U, c € [q], tentatively activate ¢ at u with probability
© - pu(c).

A color is lost at u if either

» there is an edge uujuy such that ¢ is tentatively activated at
u1 and uo, or

» x has been colored with ¢ and ¢ has been tentatively
activated at v

In this case p,(c) = 0 for all further iterations

Assign a permanent color to u if some color c is tentatively
activated at v and is not lost
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Parameters (k = 3)

During the process, we must choose update values to maintain the
values of certain parameters:

> D cpule) ~ 1
> epw = ZC pu(C)pv(C)pW(c) < IogAA
t
> deg(v) < (1 - @) A~ e t/lBAN

» Also, entropy is controlled; key new idea of Johansson; don't
need martingales, Hoeffding suffices

Continue till t = log A loglog A and then apply Local Lemma.
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What next?

Independence number of locally sparse Graphs

Let G contain no K,
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What next?

Independence number of locally sparse Graphs

Let G contain no K,
» Ajtai-Erdés-Komlés-Szemerédi (1981)

a(G) > c% log log A
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What next?

Independence number of locally sparse Graphs

Let G contain no K,
» Ajtai-Erdés-Komlés-Szemerédi (1981)
(G) > c 2 loglog A
« ¢4 loglog

» Shearer (1995)
n logA

a(6) > CZ log log A
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What next?

Independence number of locally sparse Graphs

Let G contain no K,
» Ajtai-Erdés-Komlés-Szemerédi (1981)
(G) > c 2 loglog A
« ¢4 loglog

» Shearer (1995)
n logA

a(6) > CZ log log A

» Major Open Conjecture (Erdds et. al.)

a(G) > c% log A
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Conjecture (Frieze-M)

Let F be a fixed k-uniform hypergraph. Then there exists ¢ = cr
such that every F-free k-uniform hypergraph H with maximum
degree A satisfies

1

x(H) <c (IogAA>H'
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Conjecture (Frieze-M)

Let F be a fixed k-uniform hypergraph. Then there exists ¢ = cr
such that every F-free k-uniform hypergraph H with maximum
degree A satisfies

x(H) <c (IogAA>ki1.

1

Weaker Conjecture: x(H) = o(A*-T1)
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Conjecture (Frieze-M)

Let F be a fixed k-uniform hypergraph. Then there exists ¢ = cr
such that every F-free k-uniform hypergraph H with maximum
degree A satisfies

x(H) <c (IogAA>ki1.

1

Weaker Conjecture: x(H) = o(A*-T1)

Algorithms??

Convert our proof to a deterministic polynomial time algorithm
that yields a coloring with c(A/log A)Y(*=1) colors

Moser-Tardos results yield a randomized algorithm
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Another Geometric Application

Problem (Erdés 1977)
Do n? points in the plane always contain 2n — 2 points which do
not determine a right angle?
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Another Geometric Application

Problem (Erdés 1977)
Do n? points in the plane always contain 2n — 2 points which do
not determine a right angle?

If true, then sharp (take [n] x [n] and use Problem at the
beginning)
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Another Geometric Application

Problem (Erdés 1977)
Do n? points in the plane always contain 2n — 2 points which do
not determine a right angle?

If true, then sharp (take [n] x [n] and use Problem at the
beginning)

Lower bounds on the number of points
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Another Geometric Application

Problem (Erdés 1977)
Do n? points in the plane always contain 2n — 2 points which do
not determine a right angle?

If true, then sharp (take [n] x [n] and use Problem at the
beginning)

Lower bounds on the number of points

» Erdés (1977)  Q(n?/3)
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Another Geometric Application

Problem (Erdés 1977)
Do n? points in the plane always contain 2n — 2 points which do
not determine a right angle?

If true, then sharp (take [n] x [n] and use Problem at the
beginning)

Lower bounds on the number of points
» Erdés (1977)  Q(n?/3)

n
» Elekes (2009 Q
ekes ( ) < ﬁogn)
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Another Geometric Application

Problem (Erdés 1977)
Do n? points in the plane always contain 2n — 2 points which do
not determine a right angle?

If true, then sharp (take [n] x [n] and use Problem at the
beginning)

Lower bounds on the number of points
» Erdés (1977)  Q(n?/3)
> Elekes (2009) Q < ! >

Vlog n
» Gyérfas-M  Q(n) if Frieze-M Conjecture holds for k = 3 and
F =K
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Thank You
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