$bb\bar{u}\bar{d}$ and $bs\bar{u}\bar{d}$ tetraquarks from Lattice QCD using two-meson and diquark-antidiquark variational basis

Bhabani Sankar Tripathy

The Institute of Mathematical Sciences, Chennai Homi Bhaba National Institute, Mumbai

bhabanist@imsc.res.in

16 May 2025

TIFR HEP JC TALK

Based on arXiv:2503.09760

Accepted in PRD

Volume 8, number 3 PHYSICS LETTERS 1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN
California Institute of Technology, Pasadena, California

Received 4 January 1964

Baryons can now be constructed from quarks by using the combinations $(q\,q\,q)$, $(q\,q\,q\,\bar{q})$, etc., while mesons are made out of $(q\,\bar{q})$, $(q\,q\,q\,\bar{q})$, etc.

PHYSICAL REVIEW D

VOLUME 15, NUMBER 1

1 JANUARY 1977

Multiquark hadrons. I. Phenomenology of $Q^2\bar{Q}^2$ mesons*

R. J. Jaffe[†]

PHYSICAL REVIEW D

VOLUME 15, NUMBER 1

1 JANUARY 1977

Multiquark hadrons. I. Phenomenology of $Q^2\bar{Q}^2$ mesons*

R. J. Jaffe[†]

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 and Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 15 July 1976)

• Murray Gellmann indicated the possibility of multiquark systems.

PHYSICAL REVIEW D

VOLUME 15, NUMBER 1

1 JANUARY 1977

Multiquark hadrons. I. Phenomenology of $Q^2\bar{Q}^2$ mesons*

R. J. Jaffe[†]

- Murray Gellmann indicated the possibility of multiquark systems.
- Jaffe described it as color neutral states of diquark and antidiquark.

PHYSICAL REVIEW D

VOLUME 15, NUMBER 1

1 JANUARY 1977

Multiquark hadrons. I. Phenomenology of $Q^2\bar{Q}^2$ mesons*

R. J. Jaffe[†]

- Murray Gellmann indicated the possibility of multiquark systems.
- Jaffe described it as color neutral states of diquark and antidiquark.
- Currently known as exotic hadrons or XYZ states.

PHYSICAL REVIEW D

VOLUME 15, NUMBER 1

1 JANUARY 1977

Multiquark hadrons. I. Phenomenology of $Q^2\bar{Q}^2$ mesons*

R. J. Jaffe[†]

- Murray Gellmann indicated the possibility of multiquark systems.
- Jaffe described it as color neutral states of diquark and antidiquark.
- Currently known as exotic hadrons or XYZ states.

Experimental Results in LHC

Particles discovered in the last decade including conventional heavy hadrons, open flavor mesons, exotic particles

Experimental Results in LHC

Other research facilities like Belle, BES-III etc. have active spectroscopy programs.

Particles discovered in the last decade including conventional heavy hadrons, open flavor mesons, exotic particles

HEPJC Talk TIFR

Experimental Results in LHC

HEP JC Talk TIFR

https://qwg.ph.nat.tum.de/exoticshub/

Nature phys: https://rdcu.be/dNMRV
Arxiv:2109.01038

HEP JC Talk TIFR

$$\delta M = M_{T_{cc^{+}}} - (M_{D^{*+}} + M_{D^{0}})$$

$$\delta M_{pole} = -360 \pm 40 \binom{+4}{-0} keV/c^{2}$$

$$\Gamma_{pole} = 48 \pm 2 \binom{+00}{-14} KeV$$

• In 2021, LHCb made headlines by discovering the longest-lived exotic state ever, observed close to X(3872).

Nature phys: https://rdcu.be/dNMRV

Arxiv:2109.01038

$$\delta M = M_{T_{cc^{+}}} - (M_{D^{*+}} + M_{D^{0}})$$

$$\delta M_{pole} = -360 \pm 40 \binom{+4}{-0} keV/c^{2}$$

$$\Gamma_{pole} = 48 \pm 2 \binom{+00}{-14} KeV$$

HEP JC Talk TIFR

- In 2021, LHCb made headlines by discovering the longest-lived exotic state ever, observed close to X(3872).
- It was observed in the channel I=0, $J^P=1^+ \text{ below } D^0D^{*+} \text{ threshold(in } D^0D^0\pi^+).$

Nature phys: https://rdcu.be/dNMRV
Arxiv:2109.01038

HEP JC Talk TIFR

$$\delta M = M_{T_{cc^{+}}} - (M_{D^{*+}} + M_{D^{0}})$$

$$\delta M_{pole} = -360 \pm 40 \binom{+4}{-0} keV/c^{2}$$

$$\Gamma_{pole} = 48 \pm 2 \binom{+00}{-14} keV$$

- In 2021, LHCb made headlines by discovering the longest-lived exotic state ever, observed close to X(3872).
- It was observed in the channel I=0, $J^P=1^+$ below D^0D^{*+} threshold(in $D^0D^0\pi^+$).
- Many more exotic tetraquark discovered recently e.g. T_{cs} , $T_{c\bar{s}}$, Z_c and so on. Scope for T_{bc} , T_{bs} in near future.

Nature phys: https://rdcu.be/dNMRV
Arxiv:2109.01038

$$\delta M = M_{T_{cc^{+}}} - (M_{D^{*+}} + M_{D^{0}})$$

$$\delta M_{pole} = -360 \pm 40 \binom{+4}{-0} keV/c^{2}$$

$$\Gamma_{pole} = 48 \pm 2 \binom{+00}{-14} KeV$$

Long History of $T_{bb}(bb\bar{u}\bar{d})$

 \bullet Phenomenological calculation of $\mathit{I}(J^P) = 0(1^+)\ T_{bb}$ can be trace back to the early 80's.

- \bullet Phenomenological calculation of $I(J^P)=0(1^+)\ T_{bb}$ can be trace back to the early 80's.
- Prediction of deeply bound state in the heavy quark limit.

- \bullet Phenomenological calculation of $I(J^P)=0(1^+)\ T_{bb}$ can be trace back to the early 80's.
- Prediction of deeply bound state in the heavy quark limit.

Nucl.Phys.B 399 (1993)

- \bullet Phenomenological calculation of $\mathit{I}(J^P) = 0(1^+)\ T_{bb}$ can be trace back to the early 80's.
- Prediction of deeply bound state in the heavy quark limit.

Nucl.Phys.B 399 (1993)

• Results from various phenomenological studies suggest possibility of deeply bound state.

- Phenomenological calculation of $I(J^P)=0(1^+)\ T_{bb}$ can be trace back to the early 80's.
- Prediction of deeply bound state in the heavy quark limit.

Nucl.Phys.B 399 (1993)

- Results from various phenomenological studies suggest possibility of deeply bound state.
- ullet Previous lattice calculations on $bb\bar{u}\bar{d}\ I=0$ shows deep bound state upto systematics.

- Phenomenological calculation of $I(J^P)=0(1^+)\ T_{bb}$ can be trace back to the early 80's.
- Prediction of deeply bound state in the heavy quark limit.

Nucl.Phys.B 399 (1993)

- Results from various phenomenological studies suggest possibility of deeply bound state.
- ullet Previous lattice calculations on $bb\bar{u}d\ I=0$ shows deep bound state upto systematics.
- Long way to go for experimental verification.

Lattice Validations

Science 322 (2008) 1224-1227

Phys. Rev. Lett. 129, 032002 Padmanath, Prelovsek

Yan Lyu et al. Phys Rev Lett.131.161901

Lattice Validations

Yan Lyu et al. Phys Rev Lett.131.161901

Early Lattice calculations accurately validates masses of known hadrons.

Lattice Validations

Yan Lyu et al. Phys Rev Lett.131.161901

- Early Lattice calculations accurately validates masses of known hadrons.
- ullet T_{cc} lattice results matches with that of the experimental results as pion mass decreases.

How Lattice QCD Works

• To understand low energy physics from first principles.

- To understand low energy physics from first principles.
- ullet Fermions (Ψ) at lattice point, gluon field (A_{μ}) on links.

- To understand low energy physics from first principles.
- ullet Fermions (Ψ) at lattice point, gluon field (A_{μ}) on links.

$$U_{\mu}=e^{igA_{\mu}}$$

How Lattice QCD Works

- To understand low energy physics from first principles.
- ullet Fermions (Ψ) at lattice point, gluon field (A_{μ}) on links.

$$U_{\mu}=e^{igA_{\mu}}$$

 UV regularized with lattice spacing a, IR regularised with Lattice extent L.

- To understand low energy physics from first principles.
- ullet Fermions (Ψ) at lattice point, gluon field (A_u) on links.

$$U_{\mu}=e^{igA_{\mu}}$$

- UV regularized with lattice spacing a, IR regularised with Lattice extent L.
- Define Action of the theory.

- To understand low energy physics from first principles.
- ullet Fermions (Ψ) at lattice point, gluon field (A_{μ}) on links.

$$U_{\mu}=e^{igA_{\mu}}$$

- UV regularized with lattice spacing a, IR regularised with Lattice extent L.
- Define Action of the theory.
- Sample phase space using Markov chain Monte Carlo Method.

- To understand low energy physics from first principles.
- ullet Fermions (Ψ) at lattice point, gluon field (A_{μ}) on links.

$$U_{\mu}=e^{igA_{\mu}}$$

- UV regularized with lattice spacing a, IR regularised with Lattice extent L.
- Define Action of the theory.
- Sample phase space using Markov chain Monte Carlo Method.

$$\langle \mathcal{O} \rangle = \int D\phi \mathcal{O}[\phi] e^{-S[\phi]}$$

Hadron Spectroscopy in a Nutshell

• We are interested in doubly bottom tetra quarks $bb\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $bs\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $0(0^+)$.

- We are interested in doubly bottom tetra quarks $bb\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $bs\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $0(0^+)$.
- ullet Worked with 4 MILC ensembles with $N_{\!f}=2+1+1$ using HISQ action.

- We are interested in doubly bottom tetra quarks $bb\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $bs\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $0(0^+)$.
- ullet Worked with 4 MILC ensembles with $N_{\!f}=2+1+1$ using HISQ action.
- Ensembles were generated at unphysical light quarks and physical charm and strange quarks.

- We are interested in doubly bottom tetra quarks $bb\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $bs\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $0(0^+)$.
- ullet Worked with 4 MILC ensembles with $N_{\!f}=2+1+1$ using HISQ action.
- Ensembles were generated at unphysical light quarks and physical charm and strange quarks.

• Light quark propagators were constructed using Overlap action. For heavy(bottom) quark, we used NRQCD action.

- We are interested in doubly bottom tetra quarks $bb\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $bs\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $0(0^+)$.
- ullet Worked with 4 MILC ensembles with $N_{\!f}=2+1+1$ using HISQ action.
- Ensembles were generated at unphysical light quarks and physical charm and strange quarks.

• Light quark propagators were constructed using Overlap action. For heavy(bottom) quark, we used NRQCD action.

• Wall-source smearing setup.

- We are interested in doubly bottom tetra quarks $bb\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $bs\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $0(0^+)$.
- ullet Worked with 4 MILC ensembles with $N_{\!f}=2+1+1$ using HISQ action.
- Ensembles were generated at unphysical light quarks and physical charm and strange quarks.

• Light quark propagators were constructed using Overlap action. For heavy(bottom) quark, we used NRQCD action.

- Wall-source smearing setup.
- Used multiple volumes, box-sink correlators to reduce systematic effects.

- We are interested in doubly bottom tetra quarks $bb\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $bs\bar{u}\bar{d}$ with $I(J^P)=0(1^+)$ and $0(0^+)$.
- ullet Worked with 4 MILC ensembles with $N_{\!f}=2+1+1$ using HISQ action.
- Ensembles were generated at unphysical light quarks and physical charm and strange quarks.

• Light quark propagators were constructed using Overlap action. For heavy(bottom) quark, we used NRQCD action.

- Wall-source smearing setup.
- Used multiple volumes, box-sink correlators to reduce systematic effects.
- First lattice calculation for $bs\bar{u}d$ with finite volume analysis.

HEP JC Talk TIFR

ullet Relativistic propagator not possible as $am_b>>1$ in our setup. Require bigger lattice size.

- Relativistic propagator not possible as $am_b >> 1$ in our setup. Require bigger lattice size.
- NRQCD becomes most suitable candidate.

- ullet Relativistic propagator not possible as $am_b>>1$ in our setup. Require bigger lattice size.
- NRQCD becomes most suitable candidate.
- Energy scales here,

- ullet Relativistic propagator not possible as $am_b>>1$ in our setup. Require bigger lattice size.
- NRQCD becomes most suitable candidate.
- Energy scales here,

$$m_b > > m_b v > > m_b v^2$$

- ullet Relativistic propagator not possible as $am_b>>1$ in our setup. Require bigger lattice size.
- NRQCD becomes most suitable candidate.
- Energy scales here,

$$m_b >> m_b v >> m_b v^2$$

• We exclude rest mass term to make momentum as highest energy scale allow for calculation in larger lattice spacing.

- ullet Relativistic propagator not possible as $am_b>>1$ in our setup. Require bigger lattice size.
- NRQCD becomes most suitable candidate.
- Energy scales here,

$$m_b >> m_b v >> m_b v^2$$

- We exclude rest mass term to make momentum as highest energy scale allow for calculation in larger lattice spacing.
- Offset correction accounted at the time of Analysis.

• Goal is to construct interpolating fields coupled with ground state of desired quantum number.

- Goal is to construct interpolating fields coupled with ground state of desired quantum number.
- Properties:-

- Goal is to construct interpolating fields coupled with ground state of desired quantum number.
- Properties:-
 - 1. Flavor Sturture: Correct combination of quark fields.

- Goal is to construct interpolating fields coupled with ground state of desired quantum number.
- Properties:-
 - 1. Flavor Sturture: Correct combination of quark fields.
 - 2. Spin and Parity:- Appropriate Dirac bilinear Γ and quadrilinear(Tqs) to match desired spin and parity.

- Goal is to construct interpolating fields coupled with ground state of desired quantum number.
- Properties:-
 - 1. Flavor Sturture: Correct combination of quark fields.
 - 2. Spin and Parity:- Appropriate Dirac bilinear Γ and quadrilinear(Tqs) to match desired spin and parity.
- Lattice breaks O(3) symmetry, operators must transform according to irreps of the cubic group.

- Goal is to construct interpolating fields coupled with ground state of desired quantum number.
- Properties:-
 - 1. Flavor Sturture: Correct combination of quark fields.
 - 2. Spin and Parity:- Appropriate Dirac bilinear Γ and quadrilinear(Tqs) to match desired spin and parity.
- Lattice breaks O(3) symmetry, operators must transform according to irreps of the cubic group.
- e.g. Pion:- $\Phi_\pi = \bar{d}_c^\alpha(\gamma_5)_{\alpha\beta}u_c^\beta$, c -> color index

- Goal is to construct interpolating fields coupled with ground state of desired quantum number.
- Properties:-
 - 1. Flavor Sturture: Correct combination of quark fields.
 - 2. Spin and Parity:- Appropriate Dirac bilinear Γ and quadrilinear(Tqs) to match desired spin and parity.
- Lattice breaks O(3) symmetry, operators must transform according to irreps of the cubic group.
- e.g. Pion:- $\Phi_\pi = \bar{d}_c^\alpha (\gamma_5)_{\alpha\beta} u_c^\beta$, c -> color index

Extracting Finite Volume Spectrum

- To extract spectrum we need good interpolating operators.
- Here we are using two types of operators.

Meson-Meson:

$$\Phi_{\mathcal{M}_{RR}^*}(x) = [\bar{u}(x)\gamma_i b(x)][\bar{d}(x)\gamma_5 b(x)] - [\bar{u}(x)\gamma_5 b(x)][\bar{d}(x)\gamma_i b(x)]$$

Diquark-antidiquark:

$$\Phi_{\mathcal{D}}(x) = \left[\left((\bar{u}(x)^T C \gamma_5 \bar{d}(x)) - (\bar{d}(x)^T C \gamma_5 \bar{u}(x)) \right) \times (b^T(x) C \gamma_i b(x)) \right]$$

ullet Finite volume spectrum can be calculated using Euclidean $\mathscr{C}_{ij}(t)$, between $\Phi's$

$$\mathscr{C}_{ij}(t) = \sum_{X} \left\langle \Phi_i(\mathbf{x}, t) \tilde{\Phi}_j^{\dagger}(0) \right\rangle$$

Extracting Finite Volume Spectrum

- To extract spectrum we need good interpolating operators.
- Here we are using two types of operators.

Meson-Meson:

$$\Phi_{\mathcal{M}_{RR}^*}(x) = [\bar{u}(x)\gamma_i b(x)][\bar{d}(x)\gamma_5 b(x)] - [\bar{u}(x)\gamma_5 b(x)][\bar{d}(x)\gamma_i b(x)]$$

$$\Phi_{\mathcal{D}}(x) = \left[\left((\bar{u}(x)^T C \gamma_5 \bar{d}(x)) - (\bar{d}(x)^T C \gamma_5 \bar{u}(x)) \right) \times (b^T(x) C \gamma_i b(x)) \right]$$

ullet Finite volume spectrum can be calculated using Euclidean $\mathscr{C}_{ij}(t)$, between $\Phi's$

$$\mathscr{C}_{ij}(t) = \sum_{X} \left\langle \Phi_i(\mathbf{x}, t) \tilde{\Phi}_j^{\dagger}(0) \right\rangle \propto e^{-E_n t}$$

Operators for T_{bs}

• For axial-vector $I(J^P) = O(1^+)$, we use three operators,

$$\Phi_{\mathcal{M}_{KB}^*}(x) = \left[\bar{u}(x)\gamma_i b(x)\right] \left[\bar{d}(x)\gamma_5 s(x)\right] - \left[\bar{u}(x)\gamma_5 s(x)\right] \left[\bar{d}(x)\gamma_i b(x)\right]
\Phi_{\mathcal{M}_{BK}^*}(x) = \left[\bar{u}(x)\gamma_5 b(x)\right] \left[\bar{d}(x)\gamma_i s(x)\right] - \left[\bar{u}(x)\gamma_i s(x)\right] \left[\bar{d}(x)\gamma_5 b(x)\right]
\Phi_{\mathcal{O}}(x) = \left[\left(\bar{u}(x)^T C \gamma_5 \bar{d}(x) - \bar{d}(x)^T C \gamma_5 \bar{u}(x)\right) \times \left(b^T (x) C \gamma_i s(x)\right)\right]$$

ullet For scalar $I(J^P)=0(0^+)$, we use two operators,

$$\Phi_{\mathcal{M}_{BK}}(x) = \left[\bar{u}(x)\gamma_5 b(x)\right] \left[\bar{d}(x)\gamma_5 s(x)\right] - \left[\bar{u}(x)\gamma_5 b(x)\right] \left[\bar{d}(x)\gamma_5 s(x)\right]$$

$$\Phi_{\mathcal{D}}(x) = \left[\left(\bar{u}(x)^T C \gamma_5 \bar{d}(x) - \bar{d}(x)^T C \gamma_5 \bar{u}(x)\right) \times (b^T(x) C \gamma_5 s(x))\right]$$

Image Credit: - S. Aoki

Wall Sources Point Sink

• Instead of using a single point source, unique source is placed at every spatial point on the source time slice.

$$Q(\bar{x},t;t') = \sum_{\bar{x}'} Q(\bar{x},t;\bar{x}',t')$$

- ADVANTAGES:- Better signals in the ground state.
- DISADVANTAGE:
 - l. Asymmetric Correlation Function, Non-Hermitian GEVP Needed.
 - 2. False Plateau encounter, careful with fitting time window.
- Why not Wall source wall sink correlator? -> Very Noisy signal.

Wall source- Box Sink Correlator

• Instead of wall-sink, we build box-sink correlator.

Phys. Rev. D 102, 114506

$$Q(\bar{x}, t; t') = \sum_{|\bar{y} - \bar{x}| < R} Q(\bar{y}, t; t')$$

- ullet As we increase box radius R, it approaches to symmetric correlator.
- Used to make comparative study of the asymptotic signals.
- Validates our energy plateau identification.

arXiv:2503.09760 BST, Mathur, Padmanath

 We use GEVP to extract finite volume spectrum from correlation-matrix variationaly.

 We use GEVP to extract finite volume spectrum from correlation-matrix variationaly.

$$\mathscr{C}(t)v^{(n)}(t) = \lambda^{(n)}(t, t_0)\mathscr{C}(t_0)v^{(n)}(t)$$

 We use GEVP to extract finite volume spectrum from correlation-matrix variationaly.

$$\mathscr{C}(t)v^{(n)}(t) = \lambda^{(n)}(t, t_0)\mathscr{C}(t_0)v^{(n)}(t)$$

 We use GEVP to extract finite volume spectrum from correlation-matrix variationaly.

$$\mathscr{C}(t)v^{(n)}(t) = \lambda^{(n)}(t, t_0)\mathscr{C}(t_0)v^{(n)}(t)$$

$$\lambda^{n}(t, t_{0}) = |A_{n}|^{2} e^{-E_{n}(t-t_{0})} [1 + \mathcal{O}(e^{-\Delta_{n}(t-t_{0})})]$$

 We use GEVP to extract finite volume spectrum from correlation-matrix variationaly.

$$\mathscr{C}(t)v^{(n)}(t) = \lambda^{(n)}(t, t_0)\mathscr{C}(t_0)v^{(n)}(t)$$

$$\lambda^{n}(t, t_{0}) = |A_{n}|^{2} e^{-E_{n}(t-t_{0})} [1 + \mathcal{O}(e^{-\Delta_{n}(t-t_{0})})]$$

 We use GEVP to extract finite volume spectrum from correlation-matrix variationaly.

$$\mathscr{C}(t)v^{(n)}(t) = \lambda^{(n)}(t, t_0)\mathscr{C}(t_0)v^{(n)}(t)$$

ullet Fitting the leading exponential of $\lambda^n(t)$, yields the energy Eigen states E_n .

$$\lambda^{n}(t, t_{0}) = |A_{n}|^{2} e^{-E_{n}(t-t_{0})} [1 + \mathcal{O}(e^{-\Delta_{n}(t-t_{0})})]$$

• Excited states can be determined with this method.

 We use GEVP to extract finite volume spectrum from correlation-matrix variationaly.

$$\mathscr{C}(t)v^{(n)}(t) = \lambda^{(n)}(t, t_0)\mathscr{C}(t_0)v^{(n)}(t)$$

$$\lambda^{n}(t, t_{0}) = |A_{n}|^{2} e^{-E_{n}(t-t_{0})} [1 + \mathcal{O}(e^{-\Delta_{n}(t-t_{0})})]$$

- Excited states can be determined with this method.
- ullet Repeated for B and B^{*} mesons.

 We use GEVP to extract finite volume spectrum from correlation-matrix variationaly.

$$\mathscr{C}(t)v^{(n)}(t) = \lambda^{(n)}(t, t_0)\mathscr{C}(t_0)v^{(n)}(t)$$

$$\lambda^{n}(t, t_{0}) = |A_{n}|^{2} e^{-E_{n}(t-t_{0})} [1 + \mathcal{O}(e^{-\Delta_{n}(t-t_{0})})]$$

- Excited states can be determined with this method.
- ullet Repeated for B and B^{*} mesons.

Non-Hermitian GEVP

- Modification of GEVP to account non-hermiticity.
- Solving asymmetric correlation matrix with left and right Eigenvector with same Eigenvalue.

$$\mathcal{C}(t_d)v_r^{(n)}(t_d) = \tilde{\lambda}^{(n)}(t_d)\mathcal{C}(t_0)v_r^{(n)}(t_d)$$
$$v_l^{(n)\dagger}(t_d)\mathcal{C}(t_d) = \tilde{\lambda}^{(n)}(t_d)v_l^{(n)\dagger}(t_d)\mathcal{C}(t_0)$$

 t_d -> diagonalization time slice

ullet Solve it for other time slices with $v_l(t_d)$ and $v_r(t_d)$ using

$$\tilde{\lambda}^{(n)}(t) = v_l^{(n)\dagger}(t_d)\mathcal{E}(t)v_r^{(n)}(t_d)$$

Found $\frac{Im(\tilde{\lambda}^{(n)}(t))}{|(\tilde{\lambda}^{(n)}(t))|} < 0.01$ for all correlators used. HEP JC Talk TIFR

ullet Spectrum extraction repeated for every M_{ps} and every ensemble.

ullet Spectrum extraction repeated for every M_{ps} and every ensemble.

NRQCD Offset corrected

HEPJC Talk TIFR

ullet Spectrum extraction repeated for every M_{ps} and every ensemble.

Spectrum were calculated in units of nearest Two body decay threshold BB^{st} .

NRQCD Offset corrected

HEP JC Talk TIFR

ullet Spectrum extraction repeated for every M_{ps} and every ensemble.

Spectrum were calculated in units of nearest Two body decay threshold BB^{st} .

NRQCD Offset corrected

HEP JC Talk TIFR

ullet Spectrum extraction repeated for every M_{ps} and every ensemble.

Spectrum were calculated in units of nearest Two body decay threshold BB^{st} .

NRQCD Offset corrected

A decreasing trend can be observed

HEPJC Talk TIFR

ullet Spectrum extraction repeated for every M_{ps} and every ensemble.

Spectrum were calculated in units of nearest Two body decay threshold BB^{st} .

NRQCD Offset corrected

A decreasing trend can be observed

We need continuum extrapolation to have results in physical limit

HEPJC Talk TIFR

Lüscher based quantization condition(1991)

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

Here
$$q = \frac{L}{2\pi}p$$
 and $4sp^2 = (s - (M_1 + M_2)^2)(s - (M_1 - M_2)^2)$, $s = E_{cm}^2$

• Considering only s-wave, the simplified quantisation condition becomes,

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

Here
$$q=\frac{L}{2\pi}p$$
 and $4sp^2=(s-(M_1+M_2)^2)(s-(M_1-M_2)^2)$, $s=E_{cm}^2$

ullet is known as Lüscher zeta function -> known mathematical function

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

Here
$$q=\frac{L}{2\pi}p$$
 and $4sp^2=(s-(M_1+M_2)^2)(s-(M_1-M_2)^2)$, $s=E_{cm}^2$

- ullet is known as Lüscher zeta function -> known mathematical function
- Following the quantisation conditions energy dependence of amplitude is being extracted.

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

Here
$$q=\frac{L}{2\pi}p$$
 and $4sp^2=(s-(M_1+M_2)^2)(s-(M_1-M_2)^2)$, $s=E_{cm}^2$

- ullet is known as Lüscher zeta function -> known mathematical function
- Following the quantisation conditions energy dependence of amplitude is being extracted.
- Search for poles of amplitude near threshold representing bound states.

• Energy is discrete.

- Energy is discrete.
- Parametrisation of phase shift is required.

HEPJC Talk TIFR

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

• Considering only s-wave, the simplified quantisation condition becomes,

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

ullet We use zero range approximation for amplitude with lattice spacing a dependence.

• Considering only s-wave, the simplified quantisation condition becomes,

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

ullet We use zero range approximation for amplitude with lattice spacing a dependence.

$$pcot\delta_0 = A^{[0]} + a \cdot A^{[1]}, \qquad A^{[0]} = -\frac{1}{a_0}$$

• Considering only s-wave, the simplified quantisation condition becomes,

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

ullet We use zero range approximation for amplitude with lattice spacing a dependence.

$$pcot\delta_0 = A^{[0]} + a \cdot A^{[1]}, \qquad A^{[0]} = -\frac{1}{a_0}$$

ullet The parameters $A^{[0]}$ and $A^{[1]}$ is determined by minimising χ^2

• Considering only s-wave, the simplified quantisation condition becomes,

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} \mathcal{Z}_{00}(1; q^2)$$

ullet We use zero range approximation for amplitude with lattice spacing a dependence.

$$pcot\delta_0 = A^{[0]} + a \cdot A^{[1]}, \qquad A^{[0]} = -\frac{1}{a_0}$$

ullet The parameters $A^{[0]}$ and $A^{[1]}$ is determined by minimising χ^2

$$\chi^2 = \left[E(L) - E^{sol}(L, A^{[0]}, A^{[1]}) \right] C^{-1} \left[E(L) - E^{sol}(L, A^{[0]}, A^{[1]}) \right]$$

Continuum Extrapolation

• Scattering Amplitude is given as

$$T \propto (pcot \ \delta - ip)^{-1}$$

• Phase shift parametrised as

$$pcot \ \delta_0 = -\frac{1}{a_0} + A^{[1]} \cdot a$$

Real Bound State

- Same repeated for other $M_{ps}(0.6, 0.7, 3.0 \text{ GeV})$.
- ullet Consistent Negative values for other M_{ps} as well as real bound state.

Chiral Extrapolation

Result:

Scattering length at physical limit

$$a_0^{phy} = 0.25\binom{4}{3} fm$$

Corresponds to binding energy $\Delta E = -116(^{+30}_{-36})$ MeV.

HEPJC Talk TIFR

Summary T_{bb}

arXiv:2503.09760 BST, Mathur, Padmanath

Results of T_{bs}

Scalar T_{bs}

Results of T_{bs}

- Results are consistent with threshold in both the cases for larger volume.
- \bullet Need low M_{ps} datas for better results.

HEPJC Talk TIFR

Results of T_{bs}

Summary and Outlook

- ullet We worked with isoscalar axial vector T_{bb} and both scalar and axial-vector T_{bs}
- ullet Various work widely predicted deep binding in isoscalar axial-vector $T_{bb}.$
- ullet Rigorous spectrum analysis were done for T_{bb} and T_{bs} tetraquark.
- We worked with multiple lattice spacing, two volumes to control systematics.
- ullet Finite volume spectrum indicates negative energy shift with respect to BB^* threshold.
- ullet Found a possible deeply bound state for T_{bb} not such exciting results in T_{bs} .

Slides will be available at my website https://www.imsc.res.in/~bhabanist/

THANK YOU