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Experimental Results in LHC
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1 Cc(ccﬁcf) discovery at LHC
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(ccud) discovery at LHC

® In 2021, LHCb made headlines by
discovering the longest-lived exotic
state ever, observed close to X(3872).

~J]
-
]

I | T I T I T I T
B
o r | 7 —
| ]

. LHCbH =3

| ~= 30F
| —1 2

- 91b S 25
— C
= 20F
2

>~ 15
10

)
-
T

)
-
N

Yield /(500 keV/c?)

N
-
III‘III
o

20 ;]3111? - theecbold -
105— J( } + Jl + + * —
M b

N
-
|
—
l
>
J
3

|
T

O fettatt =

|
[ | | ] | | | | | | |
3.87 3 58 3.89 3.9 _‘
mDODO,n+ [GLV/C ]

" oM = MTCC+ _ (M D+ T M Do)
M, = — 360 = 40(*HkeV/c? |

"] oo = 48 £2(0)KeV |

HEP JC Talk TIFR | L pole = 4



https://rdcu.be/dNMRV

(ccud) discovery at LHC

® In 2021, LHCb made headlines by
discovering the longest-lived exotic
state ever, observed close to X(3872).

~J
-
]

~ - | ]
! LHCb %35_ 3]
: —1 é‘30_— i 3 -
- 91b R 25 ]
~ C
= 20F
e
=~ 15
10

)
-
T

)
-
N

Yield /(500 keV/c?)

N
-
III‘III
o

L
=)

=

\J

>,

-

A

® It was observed in the channel / = 0, ; — B —

J¥ =17 below D’D"" threshold(in , 201~ “ fum— 5 + + { E
070 -

DD7"). | i i tuﬂf m&* il H HH H%& i

O++__ ~l

|
[ | | | l J | J | | | —
3.87 3. 88 3.89 3.9

M H0p0,+ GeV/c?]

" oM = MTCC+ _ (M D+ T M Do)
M, = — 360 + 40(*keV/c? |

| Do = 48 £ 2(0DKeV. |

HEP JC Talk TIFR | L pole = 4



https://rdcu.be/dNMRV

(ccud) discovery at LHC

® In 2021, LHCb made headlines by
discovering the longest-lived exotic

~J
-
]

LHCb 2% -
_1 030—_ : _; :
91b R 25 _

—
= 20
>

)
-
T

)
-
N

state ever, observed close to X(3872). g

5

Yield /(500 keV/c?)

N
-
[ 11 ‘ [ 11

|

|

: . data
[ T - DODORt

e It was observed in the channel / = 0, ; 0 = _

J¥ =17 below D’D"" threshold(in , 201~ “ - 3“ i + } { E
070 :

DD7"). | o i tuﬂf % il H HH H%& i

O++__ 'l

(] | | -
® Many more exotic tetraquark e am '3g9' 39

discovered recently e.g. /., /o5 2 I .. N

and so on. Scope for 1, ., 1, in near
future.

'; oM = MTCC+ _ (M D+ T M Do)
M, = — 360 + 40(*keV/c? |

| Tpote = 48 £ 2(HDKeV |

HEP JC Talk TIFR | Tpole =14



https://rdcu.be/dNMRV

Long History of Tbb(bblicf)

HEP JC Talk TIFR

Bicudo et al.(2012) -

Bicudo et al.(2015) -

Francis et al.(2017) -

Junnarker et al.(2019) -

Leskovec et al.(2019) -

Mohanta et al.(2020) -

Hudspith et al.(2023) -

Aoki et al.(2023) -

Alexandrou et al.(2024) -

Colquhoun et al.(2024) -

. E—

—200

—150 —100

AE (MeV)

—50




Long History of Tbb(bblic?)

e Phenomenological calculation of I1(J*) = 0(1") T,
can be trace back to the early 805.
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Long History of T, , (bbiid)

e Phenomenological calculation of I1(J*) = 0(1") T,
can be trace back to the early 805.

® Prediction of deeply bound state in the heavy
quark limit.

Nucl.Phys.B 399 (1993

® Results from various phenomenological studies
suggest possibility of deeply bound state.

HEP JC Talk TIFR

Bicudo et al.(2012) -

Bicudo et al.(2015) -

Francis et al.(2017) -

Junnarker et al.(2019) -

Leskovec et al.(2019) -

Mohanta et al.(2020) -

Hudspith et al.(2023) -

Aoki et al.(2023) -

Alexandrou et al.(2024) -

Colquhoun et al.(2024) -

—200

—150 —100

AE (MeV)

50

0




Long History of T, , (bbiid)

e Phenomenological calculation of I1(J*) = 0(1") T,
can be trace back to the early 805.

® Prediction of deeply bound state in the heavy
quark limit.

Nucl.Phys.B 399 (1993

® Results from various phenomenological studies
suggest possibility of deeply bound state.

® Previous lattice calculations on bbiid I = 0 shows
deep bound state upto systematics.
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Bicudo et al.(2012) -

e Phenomenological calculation of I(J") =0(1") T b Bicudo et alG015)
can be trace back to the early 805.

Francis et al.(2017) -

® Prediction of deeply bound state in the heavy
quark limit.

Junnarker et al.(2019) -

Leskovec et al.(2019) -

Nucl.Phys.B 399 (1993

Mohanta et al.(2020) -

® Results from various phenomenological studies
suggest possibility of deeply bound state. Hudspith et a.2023)-

® Previous lattice calculations on bbiid I = 0 shows Aokt et 212023
deep bound state upto systematics.
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® Long way to go for experimental verification.
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Lattice Validations

BMW collaboartion
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Lattice Validations

BMW collaboartion

—— experiment

—— width
¢ QCD

Science 322 (2008) 1224-1227
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Phys. Rev. Lett. 129, 032002 Padmanath, ?
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0.12 0.18
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Yan Lyu et al. Phys Rev Lett.131.161901

® Early Lattice calculations accurately validates masses of known hadrons.
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Lattice Validations Phys Rev Lett. 129, 032002 Padmanath, ?
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BMW collaboartion

—— experiment
m, =146 MeV : m, =348 MeV m,=411 MeV

——= width I L=8;1fm . . 2. | L.=2'4fm. L=2'9.fm 1
¢ QCD . 0.06 0.12 0.18
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Science 322 (2008) 1224-1227 Yan Lyu et al. Phys Rev Lett.131.161901

® Early Lattice calculations accurately validates masses of known hadrons.

® / . lattice results matches with that of the experimental results as pion mass decreases.
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How Lattice QCD Works

® To understand low energy physics from first principles.
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How Lattice QCD Works

® To understand low energy physics from first principles.

e Fermions (') at lattice point, gluon field (Aﬂ) on links.

U, = e'8%

® UV reqularized with lattice spacing a, IR regularised with
Lattice extent L.

® Define Action of the theory.

® Sample phase space using Markov chain Monte Carlo
Method.
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How Lattice QCD Works

® To understand low energy physics from first principles.

e Fermions (') at lattice point, gluon field (Aﬂ) on links.

U, = e'8%

® UV reqularized with lattice spacing a, IR regularised with
Lattice extent L.

® Define Action of the theory.

® Sample phase space using Markov chain Monte Carlo
Method.

<0>= [ng@[(p]e—ﬂf/ﬂ
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Hadron Spectroscopy in a Nutshell

Ensemble Finite Volume Scattering Continuum

Generation Spectra Amplitude Extrapolation
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Lattice Setup
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Lattice Setup

® We are interested in doubly bottom tetra quarks bbiid with I(J") = 0(1") and bsiid

with 1(J") = 0(1") and 0(0™).
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Lattice Setup

® We are interested in doubly bottom tetra quarks bbiid with I(J") = 0(1") and bsiid

with 1(J") = 0(1") and 0(0™).

e Worked with 4 MILC ensembles with N, =2 + 1 + 1 using HISQ action.
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Lattice Setup

® We are interested in doubly bottom tetra quarks bbiid with I(J") = 0(1") and bsiid
with 1(J") = 0(1") and 0(0™).

e Worked with 4 MILC ensembles with N, =2 + 1 + 1 using HISQ action.

® Ensembles were generated at unphysical light quarks and physical charm and strange
quarks.

® Light quark propagators were constructed using Overlap action. For heavy(bottom)
quark, we used NRQCD action.

® Wall-source smearing setup.

® Used multiple volumes, box-sink correlators
to reduce systematic effects.
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Lattice Setup

® We are interested in doubly bottom tetra quarks bbiid with I(J") = 0(1") and bsiid
with 1(J") = 0(1") and 0(0™).

e Worked with 4 MILC ensembles with N, =2 + 1 + 1 using HISQ action.

® Ensembles were generated at unphysical light quarks and physical charm and strange
quarks.

® Light quark propagators were constructed using Overlap action. For heavy(bottom)
quark, we used NRQCD action.

® Wall-source smearing setup.

® Used multiple volumes, box-sink correlators
to reduce systematic effects.

® First lattice calculation for bsiid with finite
volume analysis.
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NRQCD formalism

® Relativistic propagator not possible as am, > > 1 in our setup. Require
bigger lattice size.
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NRQCD formalism

® Relativistic propagator not possible as am, > > 1 in our setup. Require
bigger lattice size.

® NRQCD becomes most suitable candidate.

® Energy scales here,

m, > > my > > my*

® We exclude rest mass term to make momentum as highest energy scale
allow for calculation in larger lattice spacing.
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NRQCD formalism

® Relativistic propagator not possible as am, > > 1 in our setup. Require
bigger lattice size.

® NRQCD becomes most suitable candidate.

® Energy scales here,

m, > > my > > my*

® We exclude rest mass term to make momentum as highest energy scale
allow for calculation in larger lattice spacing.

® Offset correction accounted at the time of Analysis.

HEP JC Talk TIFR



Building Hadrons

HEP JC Talk TIFR



Building Hadrons

® Goal is to construct interpolating fields coupled with ground state of
desired quantum number.

HEP JC Talk TIFR



Building Hadrons

® Goal is to construct interpolating fields coupled with ground state of
desired quantum number.

® Properties:-

HEP JC Talk TIFR



Building Hadrons

® Goal is to construct interpolating fields coupled with ground state of
desired quantum number.

® Properties:-

1. Flavor Sturture:- Correct combination of quark fields.

HEP JC Talk TIFR



Building Hadrons

® Goal is to construct interpolating fields coupled with ground state of
desired quantum number.

® Properties:-

1. Flavor Sturture:- Correct combination of quark fields.

2. Spin and Parity:- Appropriate Dirac bilinear | and
quadrilinear(Tqs) to match desired spin and parity.

HEP JC Talk TIFR



Building Hadrons

® Goal is to construct interpolating fields coupled with ground state of
desired quantum number.

® Properties:-

1. Flavor Sturture:- Correct combination of quark fields.

2. Spin and Parity:- Appropriate Dirac bilinear | and
quadrilinear(Tqs) to match desired spin and parity.

® Lattice breaks O(3) symmetry, operators must transform according to
irreps of the cubic group.

HEP JC Talk TIFR



Building Hadrons
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1. Flavor Sturture:- Correct combination of quark fields.
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Building Hadrons

® Goal is to construct interpolating fields coupled with ground state of
desired quantum number.

® Properties:-

1. Flavor Sturture:- Correct combination of quark fields.

2. Spin and Parity:- Appropriate Dirac bilinear | and
quadrilinear(Tqs) to match desired spin and parity.

® Lattice breaks O(3) symmetry, operators must transform according to
irreps of the cubic group.

@ e.g. Pion:- O = Jg‘(ys)aﬁuf , € => color index
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Extracting Finite Volume Spectrum

® To extract spectrum we need good interpolating operators.
® Here we are using two types of operators.

Meson-Meson :
® , (x) = [A@)7b)d@)ysb(x)] = [a(x)ysb()][d@)yb ()]
Diguark-antidiquark:
O, (x) = [((@) Crsd(x)) — (dx) Crsia(x))) X (b7 (0)Crb(x))]

e Finite volume spectrum can be calculated using Euclidean G (7), between @’s

0= (0,5 0P/(0))

X
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Extracting Finite Volume Spectrum

® To extract spectrum we need good interpolating operators.
® Here we are using two types of operators.

Meson-Meson :
® , (x) = [A@)7b)d@)ysb(x)] = [a(x)ysb()][d@)yb ()]
Diguark-antidiquark:
O, (x) = [((@) Crsd(x)) — (dx) Crsia(x))) X (b7 (0)Crb(x))]

e Finite volume spectrum can be calculated using Euclidean G (7), between @’s

6(1) = Z <(Di(Xa f)&);(())> x et
X
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Operators for 1,

e For axial-vector /(J") = 0(1"), we use three operators,
D, (X)) = [A()yb(x)| |dx)yss(x)| = |@x)yss(x)]| |dx)yb(x),
@, &) = [@(X)ysb@)| [dx)ys(x)] = [@(x)ys(x)] |d@x)ysb(x)]
D, (x) = [(a(x)" Cysd(x) — d(x)" Cysii(x)) x (b (x)Cys(x))]
® For scalar /(J") = 0(0™), we use two operators,

(D/%BK(X) — [ﬁ(x)}/sb(x)] [CZ(X)%S(X)] — [ﬁ(x)ySb(x)] [CZ(X)VSS(X)]

Dy (x) = [(ﬁ(X)TCVSCZ(X) — J(x)TCySEt(x)) X (bT(X)Ci/sS(X))]
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Wall Sources Point Sink [

® Instead of using a single point source, unique source is placed at every spatial
point on the source time slice.

Ve

WaLL So :

O, 1;1) = ) OF 1:X,1) s
X/ )y

y

‘ % ? "o \ Yk
y % Z .
A »

AV .

® ADVANTAGES:- Better signals in the ground state.

® DISADVANTAGE:-

Image Credit:- S. Aoki

1. Asymmetric Correlation Function, Non-Hermitian GEVP Needed.

2. False Plateau encounter, careful with fitting time window.

® Why not Wall source wall sink correlator? -> Very Noisy signal.
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Wall source- Box Sink Correlator

® Instead of wall-sink, we build box-sink

correlator. Phys. Rev. D 102, 114506
O, t;1) = Z oy, t,,t)
|y—X| <R

® As we increase box radius R, it approaches
to symmetric correlator.

® Used to make comparative study of the
asymptotic signals.

® Validates our energy plateau identification.
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Finite Volume Spectrum cont.

® We use GEVP to extract finite volume spectrum from correlation-matrix
variationaly.
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Finite Volume Spectrum cont.

® We use GEVP to extract finite volume spectrum from correlation-matrix
variationaly.

G(v"(1) = 21, 1) B (1)v (1)
e Fitting the leading exponential of A"(¢), yields the energy Eigen states L, .

A1, 1g) = |A, |7 e B0 4 O(em 2 0))

® Excited states can be determined
with this method.

® Repeated for B and B* mesons.
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Non-Hermitian GEVP

® Modification of GEVP to account non-hermiticity.

® Solving asymmetric correlation matrix with left and right Eigenvector
with same Eigenvalue.

(n) ~(n) (n) t; -> diagonalization

Vl(nﬁ(td)%(td) — /f(n)(l‘d)vl(nﬁ(td)cg(t())

® Solve it for other time slices with v/(7,) and v.(7,) using

Aty = v (1) B (v (1)

Im(A" (1))
o Found —————— < 0.01 for all correlators used.
| (A0(7)) | ;
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® Spectrum extraction
repeated for every M,
and every ensemble.
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Finite Volume Spectrum cont.

1.01

NRQCD Offset
corrected

A decreasing trend
can be observed
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Finite Volume Spectrum cont.

® Spectrum extraction
repeated for every M,
and every ensemble.

1.01

Spectrum were
calculated in units of
nearest Two body decay

threshold BB*.

0.98 1

NRQCD Offset
corrected

We need continuum extrapolation
to have results in physical limit

A decreasing trend
can be observed
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Amplitude Analysis

Liischer based quantization condition(1991)

Finite volume
Two particle spectrum / Scattering Amplitude

' det
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Amplitude Analysis

® Considering only s-wave, the simplified quantisation condition becomes,
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p cot 8y(p) = Zoo(1; g%

\/ 7L
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Amplitude Analysis

® Considering only s-wave, the simplified quantisation condition becomes,

p cotoy(p) = Z oo(1; qz)

\/ 7L

L
Here g = 2—p and 4sp° = (s — (M, + Mz)z)(S — (M, — Mz)z), § = Efm
T
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Amplitude Analysis

® Considering only s-wave, the simplified quantisation condition becomes,

Zoo(hqz)

p cotoy(p) =
v 7L

L
Here g = 2—p and 4sp° = (s — (M, + Mz)z)(S — (M, — Mz)z), § = Efm
T

® 7 is known as Luscher zeta function -> known mathematical function
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being extracted.
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Amplitude Analysis

® Considering only s-wave, the simplified quantisation condition becomes,

p cotoy(p) = Z oo(1; qz)

\/ 7L

L
Here g = 2—p and 4sp° = (s — (M, + Mz)z)(S — (M, — Mz)z), § = Efm
T

® 7 is known as Luscher zeta function -> known mathematical function

® Following the quantisation conditions energy dependence of amplitude is
being extracted.

® Search for poles of amplitude near threshold representing bound states.
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Amplitude Analysis

® Energy is discrete.
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Amplitude Analysis

® Energy is discrete.

® Parametrisation of phase shift is required.
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® Considering only s-wave, the simplified quantisation condition becomes,

p cotoy(p) = Z oo(1; qz)

\/ 7L

® We use zero range approximation for amplitude with lattice spacing a
dependence.
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Zoo(léqz)
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V7L

® We use zero range approximation for amplitude with lattice spacing a
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® Considering only s-wave, the simplified quantisation condition becomes,

Zoo(léqz)

p cotoy(p) =
V7L

® We use zero range approximation for amplitude with lattice spacing a
dependence.

1
pcotdy = AV +a. A, Al = — —
o

e The parameters A" and A!!! is determined by minimising ;-

HEP JC Talk TIFR



Amplitude Analysis

® Considering only s-wave, the simplified quantisation condition becomes,

p cotoy(p) = Z oo(1; qz)

\/ 7L

® We use zero range approximation for amplitude with lattice spacing a
dependence.

1
pcotdy = AV +a. A, Al = — —
o

e The parameters A" and A!!! is determined by minimising ;-

2 = [E(L) _ ESOZ(L,A[O]’A[I])] C-! [E(L) _ ESOZ(L,A[O]’A[I])]
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e Same repeated for other M (0.6,
0.7, 3.0 GeV).

® Consistent Negative values for
other M,  as well as real bound
state.
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pcot(60)/Epp*

® Scattering Amplitude is given as
T « (pcot 6 — ip)~!

® Phase shift parametrised as

: [1]
pcot op=——+ A" -a
4o

Real Bound
State




Chiral Extrapolation

Bicudo et al.(2012) -

Bicudo et al.(2015) -

Francis et al.(2017) -

Junnarker et al.(2019) -

—~
M
M
[
)
T

Leskovec et al.(2019) -

2 2
Mps/EBB*
0.001 0.002 0.003 0.004 0.005 0.006 0.007

Mohanta et al.(2020) -

Hudspith et al.(2023) -

Result:

Aoki et al.(2023) A

Scattering length at physical limit

Alexandrou et al.(2024) -

h 4
a(]; y = 0.25(3) fm Colquhoun et al.(2024) -

Corresponds to binding energy AE = — 116(_%2) MEV, ety This Worl o

—200 —150 —100 —50

AE (MeV)
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Summary /,,

: Static-b

NRQCD-b quark : quark CIM EFT EQCDSRE Quark Level Models

—400-

s Work 5352 oS0 s S S S A I OSSO A |

e

h

HEP JC Talk TIFR arXiv:2503.09760 BST, Mathur, Padma




Results of /

Axial

M,;~0.5 GeV 0.6 GeV 0.7 GeV vector Tbs
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Results of /

S —_— e =S — =

r' 1.010 -
|
’ 1.005 M,;~0.5 GeV 0.6 GeV 0.7 GeV
= 1 0004{— | +
25 ﬁ + | : !
. 0.995- +
0.990 - | | | | | L [fm]

® Results are consistent with
threshold in both the cases for
larger volume.

e Need low M,  datas for better
results.
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vector 1,

Axial




e

Results of 7, ST T ST N o

pcot(60)/Ekp*
pcot(00)/ Exp

vector 1

HEP JC Talk TIFR ~ 8 s Work 6] [59 [60] [22] This Work [61] [59] [60]




Summary and Outlook

® We worked with isoscalar axial vector 1, and both scalar and axial-vector 7,
® Various work widely predicted deep binding in isoscalar axial-vector /,,.

® Rigorous spectrum analysis were done for /,, and /, tetraquark.

® We worked with multiple lattice spacing, two volumes to control systematics.

® Finite volume spectrum indicates negative energy shift with respect to BB*
threshold.

® Found a possible deeply bound state for /,, not such exciting results in 7, .
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Slides will be available at my website https://www.imsc.res.in/~bhabanist/

THANK YOU
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