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Collection of exotic 
particles

HEP JC Talk TIFR https://qwg.ph.nat.tum.de/exoticshub/



δM = MTcc+ − (MD*+ + MD0)

( ) discovery at LHCTcc ccūd̄

Γpole = 48 ± 2(+00
−14)KeV

Nature phys: https://rdcu.be/dNMRV

Arxiv:2109.01038 δMpole = − 360 ± 40(+4

−0)keV/c2
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Arxiv:2109.01038

• In 2021, LHCb made headlines by 
discovering the longest-lived exotic 
state ever, observed close to X(3872).

• It was observed in the channel , 
 below  threshold(in 
).

I = 0
JP = 1+ D0D*+

D0D0π+

• Many more exotic tetraquark 
discovered recently e.g. , ,  
and so on. Scope for ,  in near 
future.

Tcs Tcs̄ Zc
Tbc Tbs

δMpole = − 360 ± 40(+4
−0)keV/c2
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can be trace back to the early 80’s.
I(JP) = 0(1+) Tbb

• Prediction of deeply bound state in the heavy 
quark limit.

                              Nucl.Phys.B 399 (1993)

• Results from various phenomenological studies 
suggest possibility of deeply bound state.

• Previous lattice calculations on  shows 
deep bound state upto systematics.

bbūd̄ I = 0

• Long way to go for experimental verification.
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Lattice Validations 7

Science 322 (2008) 1224-1227 Yan Lyu et al. Phys Rev Lett.131.161901

• Early Lattice calculations accurately validates masses of known hadrons.

•  lattice results matches with that of the experimental results as pion mass decreases.Tcc

Phys. Rev. Lett. 129, 032002 Padmanath, Prelovsek

HEP JC Talk TIFR



How Lattice QCD Works 8

!

Uµ

a

L

HEP JC Talk TIFR



How Lattice QCD Works 8

• To understand low energy physics from first principles.

!

Uµ

a

L

HEP JC Talk TIFR



How Lattice QCD Works 8

• To understand low energy physics from first principles.

• Fermions ( ) at lattice point, gluon field ( ) on links.Ψ Aμ

!

Uµ

a

L

HEP JC Talk TIFR



How Lattice QCD Works 8

• To understand low energy physics from first principles.

• Fermions ( ) at lattice point, gluon field ( ) on links.Ψ Aμ

Uμ = eigAμ

!

Uµ

a

L

HEP JC Talk TIFR



How Lattice QCD Works 8

• To understand low energy physics from first principles.

• Fermions ( ) at lattice point, gluon field ( ) on links.Ψ Aμ

Uμ = eigAμ

• UV regularized with lattice spacing a, IR regularised with 
Lattice extent L.

!

Uµ

a

L

HEP JC Talk TIFR



How Lattice QCD Works 8

• To understand low energy physics from first principles.

• Fermions ( ) at lattice point, gluon field ( ) on links.Ψ Aμ

Uμ = eigAμ

• UV regularized with lattice spacing a, IR regularised with 
Lattice extent L.

• Define Action of the theory.

!

Uµ

a

L

HEP JC Talk TIFR



How Lattice QCD Works 8

• To understand low energy physics from first principles.

• Fermions ( ) at lattice point, gluon field ( ) on links.Ψ Aμ

Uμ = eigAμ

• UV regularized with lattice spacing a, IR regularised with 
Lattice extent L.

• Define Action of the theory.

• Sample phase space using Markov chain Monte Carlo 
Method.

!

Uµ

a

L

HEP JC Talk TIFR



How Lattice QCD Works 8

• To understand low energy physics from first principles.

• Fermions ( ) at lattice point, gluon field ( ) on links.Ψ Aμ

Uμ = eigAμ

• UV regularized with lattice spacing a, IR regularised with 
Lattice extent L.

• Define Action of the theory.

• Sample phase space using Markov chain Monte Carlo 
Method.

< 𝒪 > = ∫ Dϕ𝒪[ϕ]e−S[ϕ]

!

Uµ

a

L
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E0

E1

Ensemble

Generation Finite Volume


Spectra
Scattering

Amplitude

Continuum

Extrapolation

Hadron Spectroscopy in a Nutshell










a → 0

L → ∞

Mps → Mphy
π
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bbūd̄ I(JP) = 0(1+) bsūd̄
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• We are interested in doubly bottom tetra quarks  with  and  
with   and .

bbūd̄ I(JP) = 0(1+) bsūd̄
I(JP) = 0(1+) 0(0+)

• Worked with 4 MILC ensembles with  using HISQ action.Nf = 2 + 1 + 1

• Ensembles were generated at unphysical light quarks and physical charm and strange 
quarks.

• Light quark propagators were constructed using Overlap action. For heavy(bottom) 
quark, we used NRQCD action.

• Wall-source smearing setup.

• Used multiple volumes, box-sink  correlators 
to reduce systematic effects. 

• First lattice calculation for  with finite 
volume analysis.

bsūd̄
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NRQCD formalism 11

• Relativistic propagator not possible as  in our setup. Require 
bigger lattice size.

amb > > 1

• NRQCD becomes most suitable candidate.

• Energy scales here,

mb > > mbv > > mbv2

•  We exclude rest mass term to make momentum as highest energy scale 
allow for calculation in larger lattice spacing.

• Offset correction accounted at the time of Analysis.

HEP JC Talk TIFR
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• Goal is to construct interpolating fields coupled with ground state of 
desired quantum number.

• Properties:-

1. Flavor Sturture:- Correct combination of quark fields.

2. Spin and Parity:- Appropriate Dirac bilinear  and 
quadrilinear(Tqs) to match desired spin and parity.

Γ

• Lattice breaks O(3) symmetry, operators must transform according to 
irreps of the cubic group.

• e.g. Pion:-      , c -> color indexΦπ = d̄α
c(γ5)αβuβ

c
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Extracting Finite Volume Spectrum
• To extract spectrum we need good interpolating operators.


• Here we are using two types of operators.


Meson-Meson :  





Diquark-antidiquark:





• Finite volume spectrum can be calculated using Euclidean , between 


 

ΦℳBB*
(x) = [ū(x)γib(x)][d̄(x)γ5b(x)] − [ū(x)γ5b(x)][d̄(x)γib(x)]

Φ𝒟(x) = [((ū(x)TCγ5d̄(x)) − (d̄(x)TCγ5ū(x))) × (bT(x)Cγib(x))]

𝒞ij(t) Φ′ s

𝒞ij(t) = ∑
X

⟨Φi(x, t)Φ̃†
j (0)⟩

13
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• Finite volume spectrum can be calculated using Euclidean , between 


 

ΦℳBB*
(x) = [ū(x)γib(x)][d̄(x)γ5b(x)] − [ū(x)γ5b(x)][d̄(x)γib(x)]

Φ𝒟(x) = [((ū(x)TCγ5d̄(x)) − (d̄(x)TCγ5ū(x))) × (bT(x)Cγib(x))]

𝒞ij(t) Φ′ s

𝒞ij(t) = ∑
X

⟨Φi(x, t)Φ̃†
j (0)⟩ ∝ e−Ent

13
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14

Operators for Tbs
• For axial-vector , we use three operators,











• For scalar , we use two operators,





I(JP) = 0(1+)

ΦℳKB*
(x) = [ū(x)γib(x)] [d̄(x)γ5s(x)] − [ū(x)γ5s(x)] [d̄(x)γib(x)]

ΦℳBK*
(x) = [ū(x)γ5b(x)] [d̄(x)γis(x)] − [ū(x)γis(x)] [d̄(x)γ5b(x)]

Φ𝒟(x) = [(ū(x)TCγ5d̄(x) − d̄(x)TCγ5ū(x)) × (bT(x)Cγis(x))]
I(JP) = 0(0+)

ΦℳBK
(x) = [ū(x)γ5b(x)] [d̄(x)γ5s(x)] − [ū(x)γ5b(x)] [d̄(x)γ5s(x)]

Φ𝒟(x) = [(ū(x)TCγ5d̄(x) − d̄(x)TCγ5ū(x)) × (bT(x)Cγ5s(x))]
HEP JC Talk TIFR



Wall Sources Point Sink 15

• Instead of using a single point source, unique source is placed at every spatial 
point on the source time slice.


 


• ADVANTAGES:- Better signals in the ground state.


• DISADVANTAGE:-


1. Asymmetric Correlation Function, Non-Hermitian GEVP Needed.


2. False Plateau encounter, careful with fitting time window.


• Why not Wall source wall sink correlator? -> Very Noisy signal.

Q(x̄, t; t′ ) = ∑̄
x′ 

Q(x̄, t; x̄′ , t′ )

Image Credit:- S. Aoki

HEP JC Talk TIFR



Wall source- Box Sink Correlator 16

• Instead of wall-sink, we build box-sink 
correlator.





• As we increase box radius , it approaches 
to symmetric correlator.


• Used to make comparative study of the 
asymptotic signals.


• Validates our energy plateau identification.

Q(x̄, t; t′ ) = ∑
|ȳ−x̄|<R

Q(ȳ, t; , t′ )

R

Phys. Rev. D 102, 114506

arXiv:2503.09760 BST, Mathur, PadmanathHEP JC Talk TIFR
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Non-Hermitian GEVP 18

• Modification of GEVP to account non-hermiticity.


• Solving asymmetric correlation matrix with left and right Eigenvector 
with same Eigenvalue.








• Solve it for other time slices with  and  using


             


• Found  for all correlators used.

𝒞(td)v(n)
r (td) = λ̃(n)(td)𝒞(t0)v(n)

r (td)

v(n)†
l (td)𝒞(td) = λ̃(n)(td)v(n)†

l (td)𝒞(t0)

vl(td) vr(td)

λ̃(n)(t) = v(n)†
l (td)𝒞(t)v(n)

r (td)

Im(λ̃(n)(t))
| (λ̃(n)(t)) |

< 0.01

 -> diagonalization 
time slice

td
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Finite Volume Spectrum cont.
• Spectrum extraction 

repeated for every  
and every ensemble.

Mps

19

A  decreasing trend 
can be observed

We need continuum extrapolation 
to have results in physical limit

Spectrum were 
calculated in units of 
nearest Two body decay 
threshold .BB*

NRQCD Offset 
corrected
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Amplitude Analysis 
Lüscher based quantization condition(1991) 

Finite volume

Two particle spectrum Scattering Amplitude

det [1 + i𝒢(E) ℳ(E)] = 0

20
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• Considering only s-wave, the simplified quantisation condition becomes,

p cot δ0(p) =
2

πL
𝒵00(1; q2)

  Here  and ,  q =
L
2π

p 4sp2 = (s − (M1 + M2)2)(s − (M1 − M2)2) s = E2
cm

•  is known as Lüscher zeta function -> known mathematical function𝒵

• Following the quantisation conditions energy dependence of amplitude is 
being extracted.

• Search for poles of amplitude near threshold representing bound states.
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Amplitude Analysis 22

E δ

E
• Energy is discrete.
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Amplitude Analysis 22

E δ

E
• Energy is discrete.

• Parametrisation of phase shift is required.
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Amplitude Analysis 23

• Considering only s-wave, the simplified quantisation condition becomes,

p cot δ0(p) =
2

πL
𝒵00(1; q2)

• We use zero range approximation for amplitude with lattice spacing 
dependence.

a

,      pcotδ0 = A[0] + a . A[1] A[0] = −
1
a0

• The parameters  and  is determined by minimising A[0] A[1] χ2

χ2 = [E(L) − Esol(L, A[0], A[1])] C−1 [E(L) − Esol(L, A[0], A[1])]
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Continuum Extrapolation 
• Scattering Amplitude is given as





• Phase shift parametrised as


T ∝ (pcot δ − ip)−1

pcot δ0 = −
1
a0

+ A[1] ⋅ a

• Same repeated for other (0.6, 
0.7, 3.0 GeV).


• Consistent Negative values for 
other  as well as real bound 
state.

Mps

Mps

 GeVMps = 0.5

Real Bound 
State

24
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Chiral Extrapolation 

Result:


Scattering length at physical limit





Corresponds to binding energy  MeV.

aphy
0 = 0.25(4

3) fm

ΔE = − 116(+30
−36)

25

HEP JC Talk TIFR



Summary  Tbb
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Results of Tbs
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Axial 
vector Tbs

Scalar Tbs
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Results of Tbs
27

Axial 
vector Tbs

Scalar Tbs

• Results are consistent with 
threshold in both the cases for 
larger volume.


• Need low  datas for better 
results.

Mps
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Results of Tbs
28

Axial 
vector Tbs

Scalar Tbs

arXiv:2503.09760 BST, Mathur, Padmanath

Summary Tbs
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Summary and Outlook
• We worked with isoscalar axial vector  and both scalar and axial-vector 


• Various work widely predicted deep binding in isoscalar axial-vector . 


• Rigorous spectrum analysis were done for  and  tetraquark.


• We worked with multiple lattice spacing, two volumes to control systematics.


• Finite volume spectrum indicates negative energy shift with respect to  
threshold.


• Found a possible deeply bound state for  not such exciting results in .

Tbb Tbs

Tbb

Tbb Tbs

BB*

Tbb Tbs
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THANK YOU 
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Slides will be available  at my website https://www.imsc.res.in/~bhabanist/
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