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1 Outline

1.1 Outline of course taught in 2007

Part I:

1. Introduction. Why field theory and some intuition

2. Concrete example: Phonons in a crystal and the continuum limit

→Students should now have a physical picture of Quantum
Field Theory

3. Relativistic Classical Field Theory, EOM, Noether charge etc

4. Other aspects: Green’s fn. two point correlators, relativistic normal-
ization of states etc

5. Causality, commutators

6. Complex scalar field

→ Students now know all about free relativistic scalar field
theory

Part II:

7. Mathematical digression: Lorentz Group and its reps.

8. Dirac Equation, gamma matrices, Weyl, Majorana etc.

9. Quantization of Dirac Field

10. C,P,T

Part III:

11. Maxwell action, Gauge Invariance and Quantization, propagator..

→Now students know all the usual free relativistiv QFT’s

Part IV:

12. Interactions - various kinds

13. Perturbation theory, Interaction picture, Wick’s theorem
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14. Feynman Diagrams

15. S-Matrix, Cross Section

16. LSZ Reduction Formula, in states, out states etc.

→ At this point students can in principle calculate S-matrices
for all the usual QFT’s

Part V:

17. QED - some processes. tree level.

Part VI:

18. Functional formalism for free scalars, fermions and gauge theories,
gauge fixing

19. Fnl formalism for interacting theories. generating functional and Γ.

20. One loop ϕ4 theory.

21. Renormalization: bare vs ren flds and parameters.

Part VII:

22. One loop QED - explicit calculations

23. Ward Identities and BRS symmetry

→At this point the students knows how to do loop calculations
and renormalize.

1.2 Course taught in 2009

The emphasis in 2009 was to teach a course that would be useful both for
the high energy physicist as well as the low energy physicist. Field theory as
used in particle physics is almost identical to what is used in for intance crit-
ical phenomena/ statistical physics. The functional integral (in D space +1
time dimensions) after a Euclideanization (Wick rotation, which is done for
calculational purposes anyway in particle physics) is the classical statistical
mechanics partition function in D+1 space dimensions. The only difference
is that in a particle physics courses the ostensible aim of calculating correla-
tion functions is to calculate the S-matrix, whereas in statistical mechanics
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a major aim is to calculate critical exponents. Thus the entire package of
field theory techniques is common to both disciplines. This however requires
that we use the functional formalism. That was what was done in 2009. Two
sections, one on S-matrix and one on critical phenomena, explains briefly the
applications of the formalism to both disciplines.

Note that Wick contractions and the usual operator method of perturba-
tion theory in the interaction formalism was not done. If the Dirac theory
and rep of Lorentz group are done away with, a couple of lectures on this
can be included.

1. Part 1

Thus in 2009 the first two (out of three) parts of the course dealt with
scalar field theory. The free theory was motivated by the crystal lat-
tice example and the continuum limit taken. Canonical quantization
was done. Green’s functions defined. Subsequently path integrals were
introduced since the students had not done that. The functional for-
malism for field theories was developed. The connection to the usual
Heisenberg and Schroedinger picture was made. The generating func-
tional and the technique of Feynman diagrams for a perturbative eval-
uation was derived. The actual evaluation of integrals is done later.

2. Part II

A calculation of the scattering cross section is then given as an appli-
cation to particle physics and as an application to critical pheneomena
Landau theory for ferromagnetism with a scalar field (magnetization)
as an order parameter is introduced. Critical exponents are defined
and the role of ”mass” parameter in fld theory as the inverse correla-
tion length in stat mech is explained.

Loop integrals are evaluated and renormalization is described. The beta
function and running coupling constant is explained. Wilson’s picture
is given and the understanding of bare coupling and renormalized cou-
pling as parameters defined at two widely different scales is explained.
This gives an RG explanation for the process of renormalizing infini-
ties by adding counterterms that the particle physicist is familiar with.
Wilson’s idea of integrating out momentum shells to obtain a theory
with a lower cutoff and a modified coupling constant is described. An
explicit example of the free scalar field is given in some detail and the
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concept of relevant, irrelevant and marginal operators is explained in
the context of this free scalar theory. The non trivial fixed point of ϕ4

theory in less than 4 dimensions is shown. (4-5 lectures were spent of
these aspects of RG) Universality in critical phenomena is explained.

3. Part III

Electrodynamics. Gauge invariance and the Fadeev Popov procedure
for gauge fixing is described. Photon propagator is derived. Canonical
quantization in Coulomb gauge is done. Ward identities are introduced
- using functional methods.

One lecture on rep of Lorentz roup was given. Dirac theory. Green’s
functions are defined. Quantization with anticommutators is intro-
duced. Functional formalism form with Grassmann variables is defined
and the generating functional is set up.

Tree level processes in QED are calculated. One loop renormalization.
beta function. Ward-Takahashi identitites.

2 Introduction

1. Introduction

� Why field theory? ANS: Start with the example of electromag-
netic phenomena. Classical electromagnetic phenomena is well
described by the introduction of the concept of an electromag-
netic field. E⃗(x, y, z, t), B⃗(x, y, z, t). There the introduction of
the field allows you to do away with “action at a distance”. i.e.
a charge acts on another charge through the medium of an elec-
tric field that it creates everywhere. Very useful. Makes it local.
The existence of electromagnetic waves - prediction of Maxwell-
makes the idea of a field more ’real’. It is hard to describe wave
phenomena without the idea of a field pervading space.

Other examples: whenever there is a continuous medium that has
dynamical properties eg water, air, it is useful to introduce the
idea of a field to describe properties of the material as a function
of space and time. eg. pressure p(x, y, z, t), density ρ(x, y, z, t)
..etc.
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The idea of a field in electromagnetism is a little different from
the idea of a field in fluid mechanics. In the former we believe it
to be an exact description. In the latter it is an approximation.
But the techniques of classical field theory are applicable to both.

But what about quantum field theory?

It is now a fundamental idea and all fundamental entities in par-
ticle physics are described as fields. The application of quantum
mechanics to particle physics requires quantum field theory.

� Connection with Statistical Mechanics- If we Wick rotate
t → −it we get a Euclidean theory that can be related to
stat mech where ℏ becomes kT . This remarkable fact allows
all the techniques and concepts of QFT to be used in understand-
ing Critical Phenomena in Condensed matter systems. This con-
nection is easiest to see in the ”feynman path integral” approach
to field theory, (which is definitely the most flexible approach).
Thus we can use the computational techniques of Quantum field
theory to calculate correlation functions. In practice even in par-
ticle physics these calculations are done in Euclidean space (this is
just the mathematical trick of analytic continuation). At the end
of the day we rotate back to Minkowski space and interpret these
in terms of scattering amplitudes. The same calculation can be
done in studying critical phenomena where statistical fluctuations
replace quantum fluctuations and the field is an order parameter
- an effective object rather than something fundamental.

� Importance of space time continuum: Not really fundamen-
tal. can be thought of as a mathematical idealization. Useful
because differential equations are understood better than differ-
ence equations. Thus even though we know that water is made
up of discrete entitities - water molecules - we introduce the no-
tion of ρ(x, y, z, t) (density) as if it is a continuous function. This
is useful because in practice things are reasonably continuous in
some approximation.

We used to believe that space time is really a continuum - but
nowadays it is not taken as sacroscanct - esp in theories of quan-
tum gravity.

� quantum versus classical: we believe that everything is quan-
tum mecahnical. Therefore all dynamical variables should be
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treated as quantum mechanical - including the fundamental fields.
These need not be true for effective fields - which may be de-
scribed by classical mechanics. This means that after the problem
has been treated quantum mecahnically the resultant theory is de-
scribed by some convenient dynamical variables that obey some
differential equations. These can be treated as classical. In prac-
tice we may write down these final equations directly by observing
nature at macroscopic scales. we just assume that there is a fun-
damental quantum mechanical description from which these can
be derived. Thus the elctromagnetic field is quantum mechanical.
The density waves in air are classical.

� particles versus fields: when a field is quantized we get discrete
excitations of the field. These are photons. Thus field becomes
an operator that creates photons out of the vacuum. The formal-
ism thus allows particle production and destruction. Whenever
these process are important - as in relativistic particle physics -
field theory is useful. Ordinary quantum mechanics formalism is
clumsy.

� inasmuch as they are extremely useful to describe nature we can
say that they are real (in the ontological sense) entities.

2. Electromagnetic Field:

� As a motivation for the formalism let us start with the familiar
example of em - photons. Consider an em wave moving in the +z
direction. ω = kc. Assume the el fld is in the x-direction.

Ex(z, t) = aei(kz−ωt) + a∗e−i(kz−ωt)

Intensity ∝ |a|2.It is an exptl fact that the number of photons ∝
intensity.So treat a as a harmonic oscillator (annihilation) opera-
tor and then a∗a becomes the number operator on quantization.
So interpretaion of a† is - creation operator - creates a photon. In
this case this photon has wave number k. Thus if |0⟩ is the ground
state of the harmonic oscillator - which means no photons, then
|1⟩ = a†|0⟩ is the state with one photon and |2⟩ = a†a†|0⟩ becomes
a state with two photons. Thus the formalism allows you to deal
with varying number of particles.
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� Relativistic quantum field theory is the way to do QM relativisti-
cally.Otherwise there are at least suerficially clashes between QM
and causality.

� The notion of an em field has implicit in it the notion of a space
time continuum. Thus E(x, t) - here x, t are real numbers.This
creates problems because it suggests that an em wave can have ar-
bitrarily small wavelength and therefore arbitrarily high wavenum-
ber. The photon then has arbitrarily high momentum and energy.
Also one can fit an infinite number of standing waves in a cavity.
All these “infinities” cause problems. So we tend to assume in the
intermediate stages of the calculation that things are discrete and
later take the “continuum limit”. This is subtle.

� In order to illustrate the issues involved in the continuum approx-
imation to a discrete system we will start with a discrete system
and derive a continuum description. A crystal where the atoms
vibrate about their mean position. These vibrational waves are
the pressure waves and the corresponding particles obtained on
quantizing them are called phonons. Just like photons from em
waves.

3 Continuum Limit of a Discrete System: Phonons

3.1 A Crystal

We start by studying a model of a crystal. Impose periodic boundary
conditions for simplicity. q1 = qN+1.

1

L =
1

2

N∑
i=1

q̇2i −
1

2
ΣN
i=1ν

2(qi+1 − qi)
2 (1)

ν is a constant that has dimensions of frequency. Eqn of Motion (EOM)

∂L(t)

∂qi(t)
− d

dt

∂L(t)

∂q̇i(t)
= 0 (2)

1Some redefinitions of variables have been done that are illustrated by the single har-
monic oscillator Lagrangian. If we start with L = 1

2mẊ2 − 1
2kX

2 and define
√
mX = q,

we get 1
2 (q̇

2 − k
mX2) = 1

2 (q̇
2 − ν2q2)
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−ν2(qi+1 − qi) + ν2(qi − qi−1) + q̈i (3)

q̈i = −ν2(2qi − qi+1 − qi−1) (4)

Try: qm(t) = QK(t)e
imK - Plane wave

Q̈K(t)e
imK = −2ν2QK(t)e

imK(2sin2K

2
) (5)

Q̈K(t) = −4ν2sin2K

2
QK(t) (6)

The solution is:
QK(t) = QK(0)e

−iωKt ; (7)

ωK = ±2νsin
K

2

Our normal mode solutions are qm(t) = QK(0)e
−iωKteimK

(8)

Allowed values of K will be fixed by boundary condns (bc).
Let N be total no.Since qN+1 = q1, we must have eiNK = 1. So

K = ±2πn

N

. with n = 0, 1, ..N −1. Step size is 2π
N
. As N → ∞, K becomes continuous.

If a is the lattice spacing between atoms and L is the length of the crystal,
then N = L

a
.

K =
2πna

L
= ka =

2π

λ
a

Since ma denotes a position, we can let ma = x.
The normal mode solutions look like:

qm(t) = QK(0)e
i( 2πn

L
)(ma)e−iωkt = eikxe−iωkt

We can then write:
q(x, t) = Q(k)ei(kx−ωkt)
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These are sound waves in the solid crystal. ωk = 2νsinka
2

Finally, by linearity the final solution is a superposition:

q(x, t) =
∑
k

Qke
i(kx−ωkt) + cc (9)

Since q(x, t) is real, we must add cc.

3.2 Continuum Approximation

� From a distance we don’t see the graininess of a crystalline solid.

If a is very small , i.e. a << λ then ka << 1 and sinka
2

≈ ka
2

So
ωk = νa︸︷︷︸

c

k = kc. Here c is the velocity of the wave.

qm(t) = q(x, t) where x = ma. But if take a → 0 (spacing between
atoms) keeping L fixed, then for a finite distance x, m will have to be
infinity. So it is not convenient to use m. So use continuous label x.
(IMP. In fld theory, x is a label, not a dynamical variable - unlike in
the usual single particle QM). So write everything in terms of x.

�

qi+1 − qi = q(x+ a)− q(x) ≈ a
∂q

∂x

Let us adopt the following convention for interpolating between two
lattice points: any function F (x) that has the value F (ma) at x = ma
and F ((m + 1)a) at x = (m + 1)a, keeps the value F (ma) for ma ≤
x < (m+ 1)a. (Step approximation). Then

lim
a→0

1

a

∫ x+a

x

dxF (x) = F (ma)

⇒
N∑
m=1

F (ma) =
1

a

∫ L

0

dxF (x)

Thus we see that
∫
dx = a

∑
i. Also∑

i

∂

∂qi
(qj) =

∑
i

δij = 1 (10)
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Letting ia = x and ja = y, so that qi = q(x) and qj = q(y) and also
δ(x− y) = 1

a
δij

because ∫
dx δ(x− y) = a

∑
i

1

a
δij = 1

we see that

a
∑
i

1

a

∂

∂qi
(qj) =

∫
dx

δ

δq(x)
q(y) =

∫
dx δ(x− y) = 1

from which we also get the relation between the functional derivative
and ordinary derivative. Now write action in terms of q(x).

1

2a
[

∫ L

0

dx (q̇(x)2 − ν2a2(
∂q

∂x
)2)]

=
1

2a
[

∫ L

0

dx (q̇(x)2 − c2(
∂q

∂x
)2)]

� The last step is to redefine the dynamical variable q to get rid of the
negative power of a in front. Let ϕ(x) = 1√

a
q(x). We get

=
1

2
[

∫ L

0

dx (ϕ̇(x)2 − c2(
∂ϕ

∂x
)2)]

This last step involving defining a rescaled field variable is called in
technical jargon “wave function renormalization” or ”field renor-
malization”.

� EOM: δS
δϕ

= ∂2ϕ
∂t2

− c2 ∂
2ϕ
∂x2

= 0

� There can be many discrete versions for the same continuum version.
Try adding (2qi− (qi+1 + qi−1))

2to the crystal action. Does the contin-
uum limit change? This is the issue of “universality” in the theory of
critical phenomena. More on this later.
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3.3 Quantization

� Step 1: Write as a sum of decoupled HO

� Step 2 “Quantize” each mode

� Step 3: Superpose “quantum” normal modes to get “quantum” field.

� Step 4: take a→ 0 and L→ ∞ limits.

Preliminary Simple Harmonic Oscillator:

L =
1

2
ẋ2 − 1

2
ω2x2

H =
1

2
p2 +

1

2
ω2x2

Classical:
x(t) = Asin ωt+Bcos ωt

x(0) = B ; ẋ(0) = ωA.
So x(t) = p(0)

ω
sin ωt+ x(0)cos ωt

This can be written as:

1√
2ω

{ [√ωx(0)− ip(0)√
ω√

2
]︸ ︷︷ ︸

a∗

eiωt +
[√ωx(0) + ip(0)√

ω√
2

]︸ ︷︷ ︸
a

e−iωt
}

Thus x(t) =
1√
2ω

[
a∗(0)eiωt + ae−iωt

]
≡ 1√

2ω
[a∗(t) + a(t)]

Also p = ẋ and H = ωa∗a

Quantum HO: Quantize [x, p] = iℏ ⇒ [a, a†] = ℏ Rescale a, a† →√
ℏa,

√
ℏa† to get [a, a†] = 1.

Also H = 1
2
ℏω(aa† + a†a) = ℏωa†a + 1

2
ℏω ≡ (N + 1

2
)ℏω. N is called the

number operator.

14



————————————————————————–

Digression: Schroedinger Formalism and Heisenberg Formalism
In S.. formalism time dependence is in the wave function. In H.. formal-

ism it is in the operator.
Schroedinger Picture
x, p satisfy the usual comm. relns. there is no reference to time. If we

work in the x basis, we have wave functions ψ(x, t) on which p acts as −i ∂
∂x
.

ψ evolves in time as |ψ, t⟩ = e−iHt|ψ, 0⟩.
Heisenberg Picture The time dependence is in the operator.
Time evolution:

iℏ
∂O

∂t
= [O,H]

- heisenberg eqns.
Thus a†(t) = eiωta(0) follows from this. In general O(t) = eiHtO(0)e−iHt.

Thus the “equal time commutation relations” hold, if they hold at t = 0. i.e
[x(t), p(t)] = iℏ, [a(t), a†(t)] = 1

Connection between the two:

|ψ, t⟩S = e−iHt|ψ, 0⟩S = e−iHt|ψ⟩H
Thus at t = 0 the Heisenberg and Schroedinger states are the same. Also

S⟨ψ, t|OS|ψ, t⟩S = S⟨ψ, 0|eiHtOSe
−iHt|ψ, 0⟩S = H⟨ψ|eiHtOH(0)e

−iHt|ψ⟩H = H⟨ψ|OH(t)|ψ⟩H

OH(t) = eiHtOSe
−iHt.

End of digression
————————————————————————-

Now we can perform the four steps of quantization.

� Step 1: Normal mode decomposition:

qm(t) =
2π∑
K=0

QK(0)e
−iωKteimK + c.c

K = 2πn
N

.Kmax = 2π (when n = N).

15



One finds that (Using
∑

m e
im(K+K′) = δK,−K′)

∑
m

q2m(t) = N

n=+ 1
2
N∑

n=− 1
2
N

{
− ω2

K [QKQ−K +Q∗
KQ

∗
−K ] + ω2

K [QKQ
∗
K + c.c]

}

The factor N comes from the number of sites.

Similarly one finds that

ν2
∑
m

(qm+1−qm)2 = Nν2
n=+ 1

2
N∑

n=− 1
2
N

{
(eiK−1)(e−iK−1)[QKQ−K+Q

∗
KQ

∗
−K ]

+(eiK − 1)(e−iK − 1)[QKQ
∗
K + c.c]

}
Using (eiK − 1)(e−iK − 1) = 4sin2K

2
,

ν2
∑
m

(qm+1−qm)2 = N

n=+ 1
2
N∑

n=− 1
2
N

ω2
K

{
[QKQ−K+Q

∗
KQ

∗
−K ]+[QKQ

∗
K+c.c]

}

Adding we get:

1

2

∑
m

qm(t)
2 +

1

2
ν2
∑
m

(qm+1 − qm)
2 = N

∑
K

ω2
K [QKQ

∗
K + c.c]

Finally rescaling : aK =
√
N2ωKQK

we get

H =
1

2

∑
K

ωK [aKa
∗
K + c.c.]

qM(t) =
1√
N

n=+ 1
2
N∑

n=− 1
2
N

1√
2ωK

[aK(t)e
imK+cc] ; pm(t) = q̇m(t) (11)

END OF STEP 1.
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� Step 2: Quantize each mode:

aK(0) →
√
ℏaK a∗K(0) →

√
ℏa†K

. [aK , a
†
K ] = δK,K′ ; H = ℏ

∑
K

ωK(aKa
†
K + a†KaK)

(IMP: Zero point energy = ∞ (as N → ∞)!!!)

END of STEP 2

� Step 3: Superpose:

Calculate [qm(0), pm′(0)] using the com relns of a, a† and eqn (11) and

also using
∑

K e
i(m−m′)K = Nδm,m′ we get [qm, pm′ ] = iδm,m′ℏ

and other commutators [q, q]; [p, p] = 0.

Using time evolution one gets [qm(t), pm′(t)] = iδm,m′ℏ

Equal Time Commutator (ETC) of QFT.

END of STEP 3.

Summary of what has been done so far: We start off with qm which
is the displacement of an individual atom of the crystal. There are
N of these. We could just demand that qm, pm have the usual comm
reln. But instead we preferred to first separate into normal modes.
The amplitude of a normal mode (travelling wave with a definite
wave number) is our new position coordinate. There are N such modes
and thus N of these coordinates. (So either way we have N dynamical
variables and their conjugate momenta.) It has the advantage that it
has the dynamics of a harmonic oscillator, which we can easily quantize.
We prefer to work with creation and annihilation operators for this
harmonic oscillator rather than its position and momentum. These are

17



aK , a
†
K . This is then quantized. When we work our way back to qm, pm

we find that they also obey the standard comm relns.

Interpretation of qm is easy. Interpretation of a†K - creates an excitation
corresponding to a wave with definite wave number. Collective mode.
The wave is the sound wave and these discrete excitations ae phonons.
This is the usual particle - wave duality of QM. Analog of this for EM
is a photon.

All that is left is to take the continuum limit, a→ 0

Exercise:1. Understand why ωK → 0 as K → 0 2. What would
happen if we add a term 1

2
µ
∑

m q
2
m to H of the crystal? What would

this represent physically?

� Step 4: Continuum Limit:

Let a→ 0 and L→ ∞.

We defined ϕ(x, t) = 1√
a
q(x, t) = 1√

a
qm(t) with x = ma. Define

Π(x, t) = 1√
a
p(x, t) = 1√

a
pm(t) =

1√
a
q̇m(t) = ϕ̇(x, t) = δL

δϕ̇(x,t)

Then

[ϕ(x, t),Π(x′, t)] =
1

a
[qm(t), pm′(t)] =

1

a
ℏδm,m′

What is lima→0
1
a
ℏδm,m′?

lim
a→0

1

a
ℏδm,m′ = 0, m ̸= m′

= ∞, m = m′

= ℏδ(x− x′)

Check: Using
∫
dx δ(x− x′) = a

∑
m

δm,m′

a
= 1 We see thus that

[ϕ(x, t),Π(x′, t)] = ℏδ(x− x′)

Now go to momentum space:

ϕ(x, t) =
1√
a
qm(t) =

1√
Na

∑
K

1√
2ωK

[aKe
imK + a†Ke

−imK ]
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Use K=2πn
N

, k = K
a
= 2πn

L
and also ∆k = 2π

L
⇒
∑

K =
∑

k = L
∫ π

a
−π
a

dk
2π

ϕ(x, t) =
1√
L
L

1√
2ωK

∫ π
a

−π
a

dk

2π
[aKe

imK + a†Ke
−imK ]

Finally let aK
√
L = a(k) , a†K

√
L = a†(k)

We get [a(k), a†(k′)] = LδK,K′ . limL→∞ LδK,K′ = cδ(k − k′) . For some
c.
∫
dk cδ(k − k′) = 2π

L

∑
k Lδk,k′ = 2π So ⇒ c = 2π. Thus

we get [a(k), a†(k′)] = 2πδ(k − k′)

ϕ(x, t) =
1√
2ωk

∫ π
a

−π
a

dk

2π
(a(k, t)eikx + a†(k, t)e−ikx)

=
1√
2ωk

∫ π
a

−π
a

dk

2π
(a(k)e−iωt+ikx + a†(k)eiωt−ikx) (12)

End of Step 4

3.4 Interpretation

� We have a quantum theory of a crystal. We also have the continuuum
limit of this. This gives us a “Quantum Field Theory”.

� The physical interpretation for the various objects was also given.
ϕ(x, t) is a field whose value gives the displacement of the atom. a(k)†

is the creation operator for the harmonic oscillator labelled by the wave
number k. These are normal modes of the original system. Because it
is quantized we have discrete amounts of excitations in each mode. We
call these particles.
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� Thus let |0⟩p be the ground state of the harmonic oscillator asssociated
with wave number p. Then a†(p)|0⟩p ≡ |1⟩p is a state with one “parti-
cle” with wave number p (or momentum ℏp). a†(p)a†(p)|0⟩p is a state
with two particles. The HO is in it’s second excited state.

� The state |1⟩p is what in ordinary QM we call |p⟩ - a momentum
eigenstate for the given particle. It’s wave function is proportional
to eikx−iωkt. What about |2⟩p? It describes two particles. In ordinary
QM we would introduce two coordinates and two momenta and label
the wave functions as ψ(x1, x2) or the kets as |p1, p2⟩ or |x1, x2⟩ etc. In
this notation the state |2⟩p is |p, p⟩. Note that both momenta are the
same.

� If we want particles with different momenta, we have to consider two
different normal modes and thus two different HO’s. Thus we con-
sider the state |0, 0⟩p1,p2 ≡ |0⟩p1 ⊗ |0⟩p2 in the direct product Hilbert
Space - which is the ground state of the combined system. Then
a†(p1)a

†(p2)|0, 0⟩p1,p2 ≡ a†(p1)|0⟩p1 ⊗ a†(p2)|0⟩p2 = |1, 1⟩p1,p2

� Note an important difference with ordinary QM. The state a†(p)a†(p) =√
2|2⟩p is a two particle state. In field theory it is in the Hilbert space

of one HO. Whereas |1, 1⟩p1,p2 (also a two particle state) is in a direct
product Hilbert space of two HO’s. In ordinary QM both these states
belong to the direct product Hilbert space (of two particles).

� Thus in field theory the state |n⟩p is in the Hilbert space of one HO
labelled by the wave number p, whereas in ordinary QM it would be in
the direct product Hilbert space of n particles: |p⟩ ⊗ |p⟩ ⊗ |p⟩ ⊗ ...|p⟩︸ ︷︷ ︸

n times

.

Direct product space enters in field theory when we consider different
wavenumbers, because there is one HO for each wave number. Thus if
all n particles have different momenta, then we would be in the direct
product space: |1⟩p1 ⊗|1⟩p2 ⊗ .....|1⟩pn would be the state |p1, p2, ...., pn⟩
in ordinary QM.

� Consider the discrete space where there are N possible wavenumbers
and hence N oscillators. The ground state of this system is

|0⟩ ≡ |0⟩−N
2

⊗ |0⟩−N−1
2

⊗ ......|0⟩N−1
2

⊗ |0⟩N
2
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This state is annihilated by all the operators aK ,∀K i.e. aK |0⟩ = 0.

Then

a†K |0⟩ = |0⟩−N
2

⊗ |0⟩−N−1
2

⊗ ...|1⟩K ⊗ ...|0⟩N−1
2

⊗ |0⟩N
2

we can use the label |K⟩ for this state. It describes a phonon with wave
number K.

All the excitations of the system (with arbitrarily large number of par-
ticles) belong to the direct product Hilbert space of these N HO’s. This
is called the Fock Space.

� Now we can go back and see what ϕ(x, t) is precisely. It satisfies (using
the mode expansion for ϕ and the properties of a’s:

⟨0|ϕ(x, t)|p⟩ = ⟨0|ϕ(x, t)a†(p)|0⟩ = 1√
2ωp

e−iωt+ikx

Thus we can say that ϕ(x, t) is an operator that annihilates a particle at
time t and position x. Thus ϕ†(x, t) creates a particle at x, t. ϕ(x, t)†|0⟩
is a state with a particle at x, t. It undergoes the usual time evolution
given by the Schroedinger equation. In the Heisenberg formalism how-
ever the time dependence is in the operator. Thus the Schroedinger
state of a particle at x is denoted by |x, t⟩. In the Heisenberg picture
we just take the state at time t = 0 and stay with that.

Note that if ϕ is a real field then ϕ = ϕ† so ϕ can both create and
annihilate particles at a point.

� In the example of the crystal the field had a geometric interpretaion as
a displacement of an atom. And the waves were thus sound waves and
the particles are phonons. In particle physics for every particle that is
observed in nature, we introduce a field. It usually does not have such
a geometric interpretation. The only thing we care about is that the
field operators create and destroy a particle.

4 Relativistic Classical Field Theory

4.1 Action and EOM

� Action: S =
∫
dt L =

∫
d4x L (L is Lagrangian, L is Lagrangian
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density)

�

δS =

∫
d4x { ∂L

∂ϕ(x, t)
δϕ+

∂L
∂(∂µϕ)

δ(∂µϕ)} = 0

=

∫
d4x { ∂L

∂ϕ(x, t)
δϕ− ∂µ

∂L
∂(∂µϕ)

δϕ+ ∂µ[
∂L

∂(∂µϕ)
δϕ]︸ ︷︷ ︸

Surface term

}

⇒ ∂L
∂ϕ(x, t)

− ∂µ
∂L

∂(∂µϕ)
= 0

if δϕ|B = 0.

These are the Lagrangian EOM. In “scalar field theory” L = −1
2
∂µϕ∂µϕ

then EOM is ∂µ∂µϕ = 0 or ∂2t ϕ−c2 ∂2i ϕ = 0. Relativistic wave equation.

� Hamiltonian:

H =
∑
m

pmq̇m − L(qm, q̇m) =
∑
m

1

2
p2m(t) +

1

2
ν2(qm+1(t)− qm(t))

2

� Continuum limit:

H = [
1

2

∫
dx

a
[p(x, t)2 + ν2a2︸︷︷︸

c2

(
∂q(x, t)

∂x
)2]

Using p =
√
aΠ, q =

√
aϕ we get

=
1

2

∫
dx[Π2(x, t) + c2(

∂ϕ(x, t)

∂x
)2

In 3-space dim H =
∫
d3x [Π2(x, t) + |∇ϕ(x, t)|2].

H =

∫
d3x [Π(x, t)ϕ̇(x, t)− L(ϕ, ∂µϕ)]

where Π(x, t) = ∂L
∂ϕ̇(x,t)

� Heisenberg formalism operators are time dependent: O(t) = eiHtO(0)e−iHt.
Thus formally the Hamiltonian is too but H(t) = H in the time inde-
pendent case.
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� If L = −1
2
∂µϕ∂µϕ − 1

2
m2ϕ2 then H will have an additional term :

+1
2
m2ϕ2. m can be shown to correspond to the mass of the particle.

Study dispersion relation: find that E2 = p⃗.p⃗+m2c4.

� Pts to emphasize: 1. Functional derivatives versus ordinary derivatives

∑
m

∂qm
∂qm′

=
∑
m

δmm′ = 1 (13)

∫
dx

1

a

∂qm
∂qn

=

∫
dx

1

a

∂q(x)

∂q(x′)
=

∫
dx

δq(x)

δq(x′)︸ ︷︷ ︸
change of notation

=

∫
dx δ(x− x′) = 1

(14)
Thus

δ

δq(x′)

∫
dx q(x) = 1 (15)

This can be obviously generalized:

δ

δq(x′)

∫
dx L(q(x)) =

∂L(x′)

∂q(x′)
(16)

2. H in Schr. form has no t. 3. Surface terms. 4. metric convention.
5. ℏ = c = 1 convention.

4.2 Noether’s Theorem and Symmetries

Sometimes the action is invariant under global symmetries. In that case the
equation of motion is left unchanged. Sometimes the Lagrangian is invariant,
sometimes the Lagrangian density itself is invariant.

� Infinitesimal symmetry transf: ϕ(x) → ϕ′(x) = ϕ(x) + δϕ(x). e.g.:

1. ϕ→ ϕ+ w. So δϕ = w.

2. If ϕ is complex, ϕ→ eiωϕ ϕ∗ → e−iωϕ∗. δϕ = iωϕ

3. xµ → xµ − aµ = x′µ and ϕ(x) → ϕ(x + a) = ϕ + aµ∂µϕ. Then
δaϕ = aµ∂µϕ. Note: We take ϕ to be a scalar so that ϕ(x) =
ϕ′(x′) = ϕ′(x−a) or ϕ(x+a) = ϕ′(x). In this case the Lagrangian
density is not invariant L → L+ aµ∂µL but the action is.
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� Noether’s theorem: for each such symmetry there is a conserved current
and a conserved charge. To find the current a simple method is to
consider a local variation :δvϕ where v(x) is some parameter. Thus

δvL =
∂L
∂ϕ

δvϕ+
∂L

∂(∂µϕ)
∂µ(δvϕ)

Note that δv∂µϕ ≡ ∂µδvϕ. Integrating by parts

= [
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
]︸ ︷︷ ︸

= 0 by EOM

δvϕ+ ∂µ[
∂L

∂(∂µϕ)
δvϕ]

= ∂µ[vj
µ] = v∂µj

µ + ∂µvj
µ

The action is invariant for constant v, then the total change in the
Lagrangian density must be of the form ∂µ[vN

µ]. Thus we find for
constant v

v∂µj
µ = v∂µN

µ

So
∂µJ

µ = 0]

where Jµ = jµ −Nµ.

This also defines jµ as the coefficient of ∂µv when we evaluate ∂µ[
∂L

∂(∂µϕ)
δvϕ]

. Note that the conservation of Jµ is only after using EOM. Also note
that if the Lagrangian density L is invariant then Nµ is zero and in
that case jµ is the conserved Noether current. If we define Q =

∫
d3xj0

then dQ
dt

= 0 is easy to see. This is the conserved Noether charge. In
the examples above:

1. jµ = ∂µϕ

2. jµ = i[ϕ∂µϕ
† − ϕ†∂µϕ]

N is zero for the usual scalar Lagrangians.

3. If scale invariant then δL = ∂µ(ϵx
µL) = ∂µ(a

µL) with aµ = ϵxµ.

Dilatation Current in more detail: We are considering: x′µ =
1
λ
xµ We let λ = 1 + ϵ with ϵ << 1. Thus δDx

µ = −ϵxµ.
(Note: When λ > 1, this means the new coordinates are smaller.
This means the unit of length is bigger. System has shrunk. Mo-
menta are stretched.)
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Let δDϕ(0) = dϕ(0) - the field has a scaling dimension d. (If
d > 0 it is like momentum.) Define RX = 1

λ
X the finite abstract

transformation. ϕ′(X ′) = ϕ′(RX) = Rϕ(X) = λdϕ(x). Thus ϕ is
not a scalar under this transf.

ϕ′(x) = Rϕ(R−1x)

ϕ′(x)− ϕ(x) = δDϕ = λdϕ(λx)− ϕ(x)

δDϕ(x) = ϵ(d+ x.
∂

∂x
)ϕ(x) (17)

Now consider a Lagrangian density L. If
∫
d4x L is to be invariant:

4. In this case δL = aµ∂µL = aν∂µ[g
µ
νL]. Thus The curren t Nµ

ν ≡
gµνL corresponds to the transformation aν . jµν = ∂L

∂(∂µϕ)
∂νϕ and

thus

Jµν =
∂L

∂(∂µϕ)
∂νϕ− gµνL

Note that the role of the index ν is to label the transformation (aν)
and µ is the usual vector index associated with the current. For
internal symmetries ν will be replaced by some internal index. The
current defined above is in fact the energy momentum tensor
T µν .

Note that the charge associated with a0 (time translation) is
∫
d3x T 0

0 =∫
d3x [Π∂tϕ−L] =

∫
d3x H - Hamiltonian - as one would expect.

4.3 Green’s Functions

�

L = −1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + Jϕ

We have added a source - external force for a harmonic oscillator.

EOM
−∂µ∂µϕ+m2ϕ = J

Green’s fn G(x, x′)

[−∂µ∂µ +m2]G(x, x′) = δ4(x− x′)
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� Soln: Then

ϕ(x) = ϕ0(x) +

∫
d4x′ G(x− x′)J(x′)

where ϕ0(x) is a soln of the hom eqn and satisfies the bc and then G
goes to zero at the boundary. Eg. If bc is the value of ϕ(x, 0) then set
ϕ0(x, 0) = ϕ(x, 0). Then G(x, x′) should vanish at t = 0.

� Momentum space:

G(x, x′) =

∫
d4p

(2π)4
eip(x−x

′)G(p)

δ4(x− x′) =

∫
d4p

(2π)4
eip(x−x

′)

⇒ [pµp
µ +m2]G(p) = [−p20 + p2i +m2]G(p) = 1

G(p) =
1

p2 +m2

So

G(x− x′) =

∫
d4p

(2π)4
eip(x−x

′)

p2 +m2
= −

∫
c

dp0
2π

∫
d3p

(2π)3
e−ip0(x−x

′)0+ipi(x−x′)i

(p0 − Ep)(p0 + Ep)

Here Ep =
√

(pi)2 +m2 .

The contour c needs to be specified and will decide bc obeyed by G.

1. C1 Contour goes beneath both poles. If x0 > x′0 then convergence
requires closing below so no poles are included. So G(x− x′) = 0
if x0 > x′0. Propagates backwards in time. Hence Gadvanced.

Gadv(x−x′) = iθ(x′0−x0)
∫

d3p

(2π)3
(eiEp(x−x′)0 − e−iEp(x−x′)0)eip

i(x−x′)i

2Ep

2. C2 Contour goes over both poles. Thus G is non zero only when
x0 > x′0. Thus we get Gretarded.

Gret(x−x′) = iθ(x0−x′0)
∫

d3p

(2π)3
(e−iEp(x−x′)0 − eiEp(x−x′)0)eip

i(x−x′)i

2Ep
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Note that Gret and Gadv are both real. Gr is what is used in class
mech. It is causal. Ga answers the question of what should the
fields be now in order to reach such and such state in the future.
This is an unusual question in CM. We usually ask what is the
state in the future given it is such and such now.

3. C3 Contour goes below −Ep and above Ep. This gives: x
0 > x′0

i

∫
d3p

(2π)3
1

2Ep
e

−iEp (x− x′)0︸ ︷︷ ︸
+ve

+ipi(x−x′)i

and when x′0 > x0 we get

i

∫
d3p

(2π)3
1

2Ep
e

iEp (x− x′)0︸ ︷︷ ︸
−ve

+ipi(x−x′)i

Thus positive energy modes go forward in time and negative en-
ergy modes go backward in time. It can be written as:

GFeynman = i

∫
d3p

(2π)3
1

2Ep
e−iEp|(x−x′)0|+ipi(x−x′)i

This contour prescription is equivalent to m2 → m2 − iϵ.

This is the Green’s fn that one uses in QM.

4.4 Two point functions

� These Green functions of the classical theory can be related to “two
point correlators” of QFT. (Expand on the idea of correlation functions
- also Stat Mech connection.)

Thus consider
⟨0|ϕ(x, t)ϕ(x′, t′)|0⟩

.

ϕ(x, t) =

∫
d3p

(2π)3
1√
2Ep

[ape
−iEpt+ip.x + a†pe

+iEpt−ip.x]

ϕ(x′, t′) =

∫
d3q

(2π)3
1√
2Eq

[aqe
−iEqt′+iq.x′ + a†qe

+iEqt′−iq.x′ ]
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We get∫
d3p

(2π)3

∫
d3q

(2π)3
⟨0| 1√

2Ep
ape

−iEpt+ip.x
1√
2Eq

a†qe
+iEqt′−iq.x′|0⟩

⟨0|ϕ(x, t)ϕ(x′, t′)|0⟩ =
∫

d3p

(2π)3
1

2Ep
e−iEp(t−t′)+ip.(x−x′) ≡ D(x− x′)

Note that in this notation

Gret(x−x′) = iθ(t−t′)[D(x−x′)−D(x′−x)] = iθ(t−t′)⟨0|[ϕ(x, t), ϕ(x′, t′)]|0⟩

� Similarly

GFeynman(x− x′) = i[θ(t− t′)D(x− x′) + θ(t′ − t)D(x′ − x)]

= i⟨0|T (ϕ(x, t)ϕ(x′, t′))|0⟩

where ”T” stands for time ordering, i.e. the operator at the earlier
time is to the right.

� Finally consider ⟨0|[ϕ(x, t), ϕ(x′, t′)]|0⟩ when x, x′ are spacelaike sepa-
rated. In that case we can choose a frame where t = t′ - D is Lorentz
invariant. Therefore D(x− x′) = D(x′ − x) because one can perform a
rotation, and D is only a fn of the distance. Therefore the commutatot
vanishes for spacelike separation. ( If not spacelike one cannot relate
x− x′ and x′ − x by a rotation/boost). This means ϕ(x) and ϕ(x′) as
operators can be simultaneously diagonalized. Measuring one doesn’t
affect the other. This is required by causality. One can think of the
influence going from x to x′ - by particle propagation and anti parti-
cle (=particle going from x′ to x), which cancel each other. Fields at
spacelike separation are uncorrelated.

� D(r) for spacelike r is
∫

d3p
(2π)3

1
2Ep

eip.(x−x
′)

This can be evaluated:∫
p2dpd(cos θ)

(2π)3
1

2Ep
eiprcos θ =

∫
p2dp

(2π)2
1

2Ep

eipr − e−ipr

ipr
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= − i

4π2

∫ ∞

−∞
dp

p

r
√
p2 +m2

eipr ≈ 1

2π2r

∫ ∞

m

dp
p√

p2 −m2
e−pr

Using ∫ ∞

u

xe−µx√
x2 − u2

dx = uK1(uµ) ≈ u
1

√
uµ
e−uµ u→ ∞

we get

≈ 1

r

√
m

r
e−mr

for large r.

4.5 Interpretation of Green’s Functions - Harmonic
Oscillator

Consider the following equations for a HO

d2y

dt2
+ ω2y = j(t) y(0) = y(T ) = 0 (18)

This is the kind of bc that path integral requires. Consider different kinds
off Green’s fns:

� GRet(t, t
′) : GRet(t, t

′) = 0 ∀t < t′

� GAdv(t, t
′) : GAdv(t, t

′) = 0 ∀t > t′

� GFey(t, t
′) : GFey(0, t

′) = G(T, t′) = 0 ∀t, t′

Let us construct these:

Gret(t, t
′) = Asin ωt+Bcos ωt t > t′

GRet(t, t
′) = 0 t < t′ (19)

Continuity requires that G(t′, t′) = 0. Thus B = 0. A is fixed by ĠRet|t
′+ϵ
t′−ϵ =

1. So Aω = 1. A = 1
ω
. Thus

GRet =
1

ω
sinω(t− t′)θ(t− t′) (20)
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.
GAdv can be obtained similarly. The continuity condn is GAdv(t

′, t′) = 0
and ĠAdv(t, t

′)|t′+ϵt′−ϵ = 1. This gives

GAdv = − 1

ω
sin ω(t− t′)θ(t′ − t)

Let us work out GFey:

GFey = A1sin ωt+B1cos ωt t > t′

= A2sin ωt+B2cos ωt t < t′ (21)

A1sin ωT + B1cos ωT = 0 and also B2 = 0 are the bc’s. Continuity at
t = t′ gives:

A1sin ωt
′ +B1cos ωt

′ = A2sin ωt
′

and the remaining condition on derivatives is

ωA1cos ωt
′ − ωB1sin ωt

′ − ωA2cos ωt
′ = 1

We have three equations for three unknowns. Solve. Get

GF =
1

sin ωT
sin ω(t− T )sin ωt′ t > t′

=
1

sin ωT
sin ω(t′ − T )sin ωt t < t′ (22)

This result will be useful later when we do path integrals.
These Green’s function can be seen to be 0+1 dimensional versions of the

field theory Green’s functions constructed earlier.

4.6 Relativistic Normalization

� δ4(p − q) is Lorentz scalar. δ3(p − q) is not but 2Epδ
3(p − q) is where

Ep = +
√
p⃗.p⃗+m2.

p′z = γ(pz + βE), E ′ = γ(E + βpz).

dpzδ(pz − qz) = dp′zδ(p
′
z − q′z)

δ(pz − qz) =
dp′z
dpz

δ(p′z − q′z)

Use dp′z
dpz

= γ(1 + β dE
dpz

) = γ(1 + β pz
E
) = E′

E
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� ⟨q|p⟩ = (2π)3δ3(p−q) in N.Rel QM. Define Rel⟨q|p⟩Rel = (2π)32Epδ
3(p−

q)

Thus |p⟩Rel =
√

2Ep|p⟩NonRel =
√

2Epa
†
p|0⟩

�

∫
d4p is rel inv but not

∫
d3p.

∫
d3p
2Ep

is.

Thus

1 =

∫
d3p

(2π)3
|p⟩⟨p| =

∫
d3p

(2π)3
1

2Ep
|p⟩rel rel⟨p|

Finally

�

∫
d3p

(2π)32Ep
=
∫

d4p
(2π)4

2πδ(p2 −m2)|p0>0 (Using 2xδ(x2 − y2) = δ(x− y))

4.7 Charged Scalar Field

� Here ϕ = ϕ1 + iϕ2 is complex, so one can just treat it as two real fields
and be done. But typically the Lagrangian is invariant under ϕ→ eiΛϕ
and there is a conserved charge and current. Thus

L =
1

2
∂µϕ

∗∂µϕ− 1

2
m2ϕ∗ϕ

.

� The Noether current: Jµ = i[ϕ∂µϕ
∗ − ϕ∗∂µϕ]. Noether charge

Q =

∫
d3x i[ϕ∂tϕ

∗ − ϕ∗∂tϕ]

=

∫
d3x [Πϕ− Π∗ϕ∗]

� Mode expand:

ϕ(x, t) =

∫
d3p

(2π)3
1√
2ωp

[a(p)e−iωpt+ip.x + b†(p)eiωpt−ip.x]

Note that coeff of +ve freq part is the annihilation operator. Since
field is complex there is no reason for b = a. Thus ϕ destroys a type
particles and creates b type particles.
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� One can check that

Q =

∫
d3p

(2π)3
[a†(p)a(p)− b†(p)b(p)] = Na −Nb

Thus the two particles are of opposite charge, and same mass. Since
they are part of the same field we can call them particles and antipar-
ticles.

�

[ϕ(x), ϕ†(y)] = D(x− y)−D(y − x) = 0

for spacelike separataion. One of the D’s is from a and the other is
from b. One can think of it as a cancellation between particles going
from y to x and anti particles from x to y. The mass thus has to be
the same. In local cft particle is always accompanied by same mass
antiparticle. If the fld is real, then particle = antiparticle.

5 Functional Formalism

This is a generalization of Feynman’s Path Integral formulation of quan-
tum mechanics. Much more intuitive and conceptually simpler. Also more
flexible. We will use the functional formalism for field theories. Begin with
some mathematical preliminaries and then path integral formulation of QM.

5.1 Mathematical Digression

Gaussian Integrals

1. ∫ ∞

−∞
dx e−

(x−x0)
2

2σ2 =
√
2πσ2

∫ ∞

−∞
dx (x− x0)

2e−
(x−x0)

2

2σ2 =
√
2πσ2σ2

σ2 is the standard deviation and x0 is the mean.

From now on range of integration is assumed to (−∞,∞) unless oth-
erwise indicated.
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2. ∫
dxe−

1
2
ax2+jx =

√
2π

a
e

1
2
j 1
a
j

Trick: extremize the exponent wrt x: Get −ax + j = 0. x = j
a
.

Plug this back into the exponent and get the answer. ”Semiclassical”
approximation is the same as this.

3. ∫
dx1

∫
dx2 e

− 1
2
(a1x21+a2x

2
2)+j1x1+j2x2 =

√
2π

a1

√
2π

a2
e

1
2
(j1

1
a1
j1+j2

1
a2
j2)

4. If A is a diagonal N ×N matrix:

A =


a1 0

.
.

0 aN

 (23)

∫
dx1 ....

∫
dxNe

− 1
2
xTAx+jT x =

(
√
2π)N

√
a1a2...aN

e
1
2
jT (A−1)j

5. If A is a general real symmetric N ×N matrix. Then let A = OTADO
be a diagonalization by an orthogonal matrix. Then xTAx = yTDDy
where y = Ox. The Jacobian of the tranformation of the integration
measure [dyi] = || ∂yi

∂xj
||[dxj] is just Det O = 1. Thus we can use the

previous formula and write:

∫
dx1 ....

∫
dxNe

− 1
2
xTAx+jT x =

(
√
2π)N

Det
1
2A

e
1
2
jT (A−1)j

6. Continuum Integrals

I =

∫
Dx(t)e−

1
2

∫
dt

∫
dt′ x(t)A(t,t′)x(t′)+

∫
dt j(t)x(t)

To make sense of this - discretize: t = jϵ and t′ = kϵ.
∫
dt → ϵΣj

x(t) = x(j) = xj and A(t, t
′) = A(j, k) = Aj,k. x(t) becomes a column
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vector and A(t, t′) becomes a matrix - very large N ×N matrix. Take
N → ∞ in the end as ϵ→ 0.

I =

∫
Πjdxj e

− 1
2
ϵ2Σj,kxjAj,kxk+ϵΣkJkxk

= e
1
2
Σj,kJk(A

−1)j,kJk

√
Det(

2π

A
)

where ΣkA
−1
j,kAk,l = δj,l.

= e
1
2

1
ϵ2

∫
dt

∫
dt′ J(t)(A−1)

j= t
ϵ ,k=

t′
ϵ
J(t′)

Define a A−1(t, t′) ≡ 1
ϵ2
A−1
j,k where t = jϵ and t′ = kϵ.

I = e
1
2

∫
dt

∫
dt′ J(t)A−1(t,t′)J(t′)

√
Det(

2π

A
)

Note also that
ΣkA

−1
j,kAk,l = δj,l

⇒ ϵ2
∫
dt′

ϵ
A−1(t, t′)A(t′, t”) = δj,l

where: jϵ = t, kϵ = t′, lϵ = t”. Thus∫
dt′A−1(t, t′)A(t′, t”) =

δj,l
ϵ

≡ δ(t− t”)

7. Example: A(t, t′) = A(t)δ(t− t′)

So Aj,k =
Ajδj,k
ϵ

. A−1
j,k = ϵ

Aj
δj,k. A−1(t, t′) = 1

Aj
δj,kϵ = δ(t−t′)

A(t)
. Verify

that
∫
A(t, t′)A−1(t′, t”)dt = δ(t− t”) Thus∫

De−
1
2

∫
dt x2(t)A(t)+

∫
dt J(t)x(t) = e

1
2

∫
dt

J(t)2

A(t)

√
Det(

2π

A
)
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5.2 Path Integrals

1. Instead of starting with a wave function one defines directly a proba-
bility amplitude for a particle to go from a point Xiat time ti to a point
Xf at time tf . Call it K(Xf , tf ;Xi, ti). Feynman defined the following
formula for it: Motivation: double slit experiment.

K(Xf , tf ;Xi, ti) =

∫ x(tf )=Xf

x(ti)=Xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(+
i

ℏ

∫ tf

ti

dtL(x(t), ˙x(t))

(24)

Note that this is not the probability amplitude of a measurement, it is
the probability amplitude of an event.

2. Draw pictures and show classical limit. Principle of stationary phase.
Derive Lagrange’s eqn.

3. How do you actually calculate: What does Dx(t) mean? Divide tf − ti
into N intervals ϵ = tj+1 − tj with t0 = tiand tf = tN . Let xj = x(tj).
Then Dx(t) ≈ dx1dx2....dxj...dxN−1 There will in general a constant of
proportionality (possibly infinite). Thus

K(f, i) = K(Xf , tf ;Xi, ti) = N
∫ xN=Xf

x0=Xi

[dx1dx2...dxN−1]e
i
ℏS(f,i)

Where S is the action and N is a normalization constant.

4. The composition law K(a, b) =
∫
dxcK(b, c)K(c, a) : Draw figure. K

is called Kernel. This can be iterated.

5. Get

K(Xf , tf ;Xi, ti) =

∫
dx1

∫
dx2...

∫
dxN−1K(f,N−1)K(N−1, N−2)...K(j+1, j)...K(1, i)

(25)

6. Do the integral
∫
dXiK(j + 1, j)K(j, j − 1)

e
i
ℏ (

mϵ
2
[
xj+1−xj

ϵ
]2+mϵ

2
[
xj−xj−1

ϵ
]2)
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=
e

im
ℏϵ [(xj−

xj+1+xj−1
2

)2+(
xj+1−xj−1

2
)2]

= √
iℏϵ2π
2m

e
i2ϵm
ℏ2 (

xj+1−xj−1
2ϵ

)2

This is clearly proportional to K(j + 1, j − 1). The factor in square
root is the normalization factor.

Suppose the initial wave function corresponds to a particle with zero
momentum. So ψ(Xi, ti) =

1√
V

where V is the volume of space. After

evolution the wave function is ψ(Xf , tf ) =
∫
dXi K(Xf , tf ;Xi, ti)

1√
V

(see point 5 below). We know on physical grounds that ψ(Xf , tf ) =
1√
V
. Thus

∫
dXi K(Xf , tf ;Xi, ti) = 1. Thus if we use the Gaussian

normalization factor for each of the unit K’s , i.e.
√

m
2πϵℏi , we get the

final result √
m

2π2ϵℏi
e

i2ϵm
ℏ2 (

xj+1−xj−1
2ϵ

)2

which has the correct normalization.

Clearly this process can be iterated to replace 2ϵ by Nϵ = tf − ti. Thus

K(Xf , tf ;Xi, ti) =

√
m

2π(tf − ti)ℏi
e

i(tf−ti)m

ℏ2 (
(xf−xi)

(tf−ti)
)2

(26)

7. Relation to wave functions - evolution operator.

ψ(Xf , tf ) = e−i
∫ tf
ti

Hdtψ(Xi, ti) =

∫
K(Xf , tf ;Xi, ti)ψ(Xi, ti)dXi (27)

8. Expansion of K(Xf , tf ;Xi, ti) in terms of wave functions

K(Xf , tf ;Xi, ti) =
∑
n

ψn(Xf )ψ
∗
n(Xi)e

−i
En(tf−ti)

ℏ

9. Derivation of Schroedinger’s eqn.
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Consider infinitesimal evolution from t to t+ ϵ. The evolution operator
is

K(Xf , tf ;Xi, ti) =
∫ x(tf )=Xf

x(ti)=Xi
Dx(t)︸ ︷︷ ︸

sumover paths

exp(+ i
ℏ

∫ tf
ti
dtL(x(t), ˙x(t))

We set tf = ti + ϵ to get

ψ(Xf , ti+ϵ) =

∫ x(ti+ϵ)=Xf

x(ti)=Xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(
i

ℏ

∫ ti+ϵ

ti

dtL(x(t), ˙x(t))ψ(Xi, ti)dXi

For infinitesimal evolution

ψ(Xf , ti + ϵ) = N
∫
e

i
ℏ

m
2
ϵ[

Xf−Xi
ϵ

]2ψ(Xi, ti)dXi

N is chosen so that the gaussian integral gives 1. bLHS is ψ(Xf , ti) +

ϵ ∂ψ
∂ti

. Letting Xf −Xi = y and ψ(Xf , ti) = ψ(Xi, ti) + y ∂ψ
∂y

+ y2

2
∂2ψ
∂y2

(we

get (linear term vanishes by symmetry)

iℏ
∂ψ

∂ti
= − ℏ2

2m

∂2ψ

∂y2

(After multiplying by ℏ on both sides.) This is SE. QED.

Note thatK(Xf , tf ;Xi, ti) satisfies SE. Also the bc limtf→ti K(Xf , tf ;Xi, ti) =
δ(Xf −Xi).

10. getting semi classical energy, momentum. Using
√

m
2π(tf−ti)ℏi

e
i(tf−ti)m

ℏ2 (
(Xf−Xi)

(tf−ti)
)2

we can understand semi classical limit : Change in phase wrt change in
Xf gives momentum and change wrt tf gives energy. UseK(Xf , tf ;Xi, ti)
and study variation wrt Xf . Prove that ∂

∂x
Scl = p.

a)

S + δS =

∫ tb

ta

L(x+ δx, ẋ+ δẋ)dt

δS =

∫ tb

ta

d

dt
[δx

∂L

∂ẋ
]dt+

∫
dt[eqn of motion]

δS = δx
∂L

∂ẋ
|tbtb
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∂S

∂xb
=
∂L

∂ẋ
|tbtb= Pb

b)Same thing for energy:

S + δS =

∫ tb+δtb

ta

dtL(t, x′cl, ẋ
′
cl)

x′ is the modified classical solution. x′cl(tb + δtb) = xcl(tb) = xb.

S + δS =

∫ tb+δtb

ta

L(x′cl, ẋ
′
cl)dt

=

∫ tb

ta

L(x′cl, ẋ
′
cl) + δtbL(x

′
cl, ẋ

′
cl)

δS = δtbL(x
′
cl, ẋ

′
cl) +

∫ tb

ta

[L(x′cl, ẋ
′
cl)− L(xcl, ẋcl)]dt

The term in square brackets is after integrating by parts and using
equations of motion δxcl

δL
δẋ
.

Using bc we get x′cl(tb) + ẋ′clδtb = xcl. So x
′
cl − xcl = −ẋ′clδtb. All this

gives:

δS = Lδtb +

∫ tb

dt[L(t, x′cl, ẋ
′
cl)− L(t, xcl, ẋcl)

= Lδtb +
∂L

∂ẋ
(x′cl − xcl) = Lδtb − pẋclδtb = −Eδtb.

c) Understand normalization: m
2πℏT dx = P (b)dx.

mb

T
< p <

m(b+ dx)

T

Range of momentum dp = mdx
T

. Thus the probability is of the form
P (p)dp = const dp where const is 1

2πℏ .

11. Do the Gaussian slit - Feynman - and repeat results of wave packet
spreading etc. - Perhaps as HW.
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12. Include potential term V (x). Harmonic oscillator approx. Add
−V (x(t)) to L. Then calculate PI all over again. Stationary phase
gives the usual classical equations of motion. In general cannot

be done exactly. Expand V (x) in power series near minimum. Quadratic
term gives harmonic oscillator. Can be done exactly.

The kernel for the harmonic oscillator can be found exactly:∫ X(T )=Xf

X(0)=Xi

DX(t)e
im
2ℏ

∫ T
0 (ẋ2−ω2x2)dt (28)

Expand X(t) = Xclassical(t) + y(t), where xcl(t) is the classical solution
that satisfies the boundary conditions. Expand. Purely classical piece
give the classical action. This is

exp{ imω

2ℏsinωT
[(X2

f +X2
i )cosωT − 2XfXi]}

What remains is a Gaussian integral over y(t)∫ Y (T )=0

Y (0)=0

DY (t)e
im
2ℏ

∫ T
0 (Ẏ 2−ω2Y 2)dt

Expand y(t) =
∑

n ansin(
nπt
T
)

KE = T
∑
n

a2n
1

2
(
nπ

T
)2

PE = T
∑
n

1

2
a2nω

2

Do integral over an (Jacobian is a constant) : the integral is of the form
econsta

2
n((

nπ
T

)2−ω2). The constant is independent of ω and has the same
value when ω = 0. This integral is const′ × (1− ω2T 2

n2π2 )
− 1

2 .Product over
all n gives ( sinωT

ωT
)−1/2. Comparing with free particle gives const′ =

( m
2πiℏT )

1/2.

The final result:

(
mω

2πiℏsinωT
)1/2exp{ imω

2ℏsinωT
[(X2

f +X2
i )cosωT − 2XfXi]}
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13. Do with forcing function. Only classical action will be different. The
equation of motion is

m
d2x

dt2
+mω2

0x = j(t) (29)

Here j(t) is the time dependent force. Thus we need to solve for the
Green’s function satisfying

d2G(t, t′)

dt2
+ ω2

0G(t, t
′) = δ(t− t′) (30)

For QM we need the Green’s function that satisfies G(T, t′) = G(0, t′) =
0,i.e. it vanishes at some initial and some final time. This was derived
earlier.

GF =
1

sin ωT
sin ω(t− T )sin ωt′ t > t′

=
1

sin ωT
sin ω(t′ − T )sin ωt t < t′ (31)

The HO with forcing function has as kernel :∫ X(T )=Xf

X(0)=Xi

DX(t)e
im
2ℏ

∫ T
0 (ẋ2−ω2x2)e+

i
ℏ
∫ T
0 dt j(t)x (32)

This is the same as eqn (28) except for the addition of the source,
and can be done with the same techniques. Write x(t) = Xcl(t) + y(t)
where Xcl now satisfies the classical equation with source, and satisfies
the required boundary conditions on x. Thus

d2Xcl

dt2
+ ω2Xcl +

d2y

dt2
+ ω2y =

j(t)

m

Solution without source:

Xcl =
Xfsinωt−Xisinω(t− T )

sinωT
(33)

Solution for y with source (and satisfying y(0) = y(T ) = 0):

y(t) =
1

m

∫ T

0

GF (t, t
′)j(t′) (34)
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We will set m = 1 from now on for convenience. Thus we get

K(Xf , tf ;Xi, ti) =

∫ y(T )=0

y(0)=0

Dy e
i
ℏ [ ω

2sinωT
[(X2

f+X
2
i )cosωT−2XiXf ]

e
i
ℏ [

Xf
sinωT

∫ T
0 dt j(t)sinωt− Xi

sinωT

∫ T
0 dt j(t)sinω(t−T )]

e
i
ℏ
∫ T
0 dt 1

2
[ẏ2−ω2y2]+j(t)y (35)

The integral over y remains to be done. This is the same integral that
was done earlier except for the term linear in y. This gives the same
prefactor as before (as in any Gaussian integral):

(
mω

2πiℏsinωT
)1/2

The exponent is modified due to j. This contribution is obtained by
solving for y(t) using the Green function and plugging the solution into
the action. The solution is

y(t) =

∫ T

0

dt GF (t, t
′)j(t′) (36)

The action can be written after an integration by parts (and using the
bc) as ∫ T

0

dt − 1

2
y[
d2y

dt2
− ω2y] + jy

Using the EOM and (36) we get

1

2

∫ T

0

dt

∫ T

0

dt′ j(t)GF (t, t
′)j(t′) (37)

Thus putting all these ingredients together we get

K(Xf , tf ;Xi, ti) = (
mω

2πiℏsinωT
)1/2e

i
ℏ [ ω

2sinωT
[(X2

f+X
2
i )cosωT−2XiXf ]

e
i
ℏ [

Xf
sinωT

∫ T
0 dt j(t)sinωt− Xi

sinωT

∫ T
0 dt j(t)sinω(t−T )]

e
i
2ℏ

∫ T
0 dt

∫ T
0 dt′ j(t)GF (t,t′)j(t′) (38)
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Ground state-Ground state amplitude: We can use this result
to calculate the amplitude for the Forced HO to start at t = 0 in the
ground state and end in the ground state at t = T (ℏ has been set to
1 in some places):∫

dXi

∫
dXfe

− 1
2
ωX2

i e−
1
2
ωX2

fK(Xf , tf ;Xi, ti)

This is a Gaussian integral of the form:

e

− 1
2
(XfXi)︸ ︷︷ ︸

X

[
A

] Xf

Xi

+(XfXi)
1

sin ωT

(
i
∫ T
0
j(t)sin ωt

−i
∫ T
0
j(t)sin ω(t− T ))

)
︸ ︷︷ ︸

J(t)

with

A =

(
−ω

2
+ iωcos ωT

2sin ωT
− ω

2sinωT

− ω
2sin ωT

−ω
2
+ iωcos ωT

2sin ωT

)
(39)

This is a Gaussian integral of the form∫
dXe−

1
2
XTAX+XT J = e

1
2
JTA−1JDet−

1
2 A

DetA = ω2

2
− iω

2cos ωT
2sin ωT

= ω2

2
[ eiωT

sin ωT
]. We are primarily interested in the

j-dependence so the prefactors do not matter. (They can be obtained

by some normalization requirements. But the phase factor e−
iωT
2 is

noteworthy as it gives the ground state energy).The answer is:

e−i
ωT
ℏ e−

1
2ωℏ

∫ T
0 dt

∫ t
0 ds j(t)e

−iω(t−s)j(s)

= e−i
ωT
ℏ e−

1
4ωℏ

∫ T
0 dt

∫ T
0 ds j(t)e−iω|t−s|j(s) (40)

Note that the exponentials in the jj term are of the form e−i|ωt|. This is
what was encountered in the field theory Feynman Green function. It
was interpreted as propagating +ve energy forward in time or negative
energy backward in time. The HO is a ”zero (space) dimensional” field
theory.

14. Repeat the above in fourier space to mimic the field theory calculation:
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We evaluated:∫
dXf

∫
dXi ψ0(Xf )ψ0(Xi)K(Xf , tf ;Xi, ti)e

i
ℏ
∫ tf
ti

dt j(t)x(t) (41)

Let us take ti → −∞ and tf → +∞. Thus we are calculating

⟨ψ0|U(+∞,−∞)|ψ0⟩j

≡ ⟨ψ0,∞|ψ0,−∞⟩j ≡ Z[j] (42)

This is the ”gnd state to gnd state” amplitude in the presence of a
source. In a fld theory this would be called the ”vac to vac amplitude”
in the presence of a source. The physically interesting thing in fld
theory is actually Z[j]

Z[0]
- the normalized quantity.

*Explain why this is physically interesting/useful*

The following can be used to recast Z[j]:

ψ0(Xi)ψ0(Xf ) = e−
1
2
(ω0X2

i +ω0X2
f ) = limϵ−→0e

− 1
2
ϵ
∫∞
−∞ dt ω0x2(t)e−ϵ|t|

(Assume x(−T ) = Xiand x(+T ) = Xf for T large and that ẋ = 0 for
|t| > T . Then split the integral from 0, T and T,∞ after integrating by
parts. Choose ϵT << 1. Eventually let T → ∞ and ϵ→ 0. In detail:

ϵ

∫ +∞

−∞
dt x2e−ϵ|t| =

∫ +∞

−∞
dt x2

d

dt
[−sgn(t)e−ϵ|t|]

=

∫ +∞

−∞
dt

d

dt
[x2(−sgn(t))e−ϵ|t|] +

∫ +∞

−∞
dt

dx2

dt
[sgn(t)e−ϵ|t|]

Now break up the regions into (−∞,−T ), (−T, 0), (0, T ), (T,+∞), where
ϵT << 1. But T is large enough that
dx2

dt
= 0, t > T, t < −T .∫ T

0

dt
d

dt
[x2(−sgn(t))e−ϵ|t|] +

∫ ∞

T

dt
d

dt
[x2(−sgn(t))e−ϵ|t|]+

∫ +T

0

dt
dx2

dt
[sgn(t)e−ϵ|t|] +

∫ +∞

T

dt
dx2

dt
[sgn(t)e−ϵ|t|]
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+

∫ −T

−∞
dt

d

dt
[x2(−sgn(t))e−ϵ|t|] +

∫ 0

−T
dt

d

dt
[x2(−sgn(t))e−ϵ|t|]+∫ −T

−∞
dt

dx2

dt
[sgn(t)e−ϵ|t|] +

∫ 0

−T
dt

dx2

dt
[sgn(t)e−ϵ|t|]

Between 0, T we can set e−ϵ|t| = 1. So the first and third terms cancel.
The fourth term is zero because dx2

dt
= 0. The second term is a boundary

term. At t = ∞, e−ϵ|t| = 0 so we are left with

x2(T ) (43)

The same arguments give for the sum of the last four terms

x2(−T ) (44)

Thus, putting back the factor −1
2
ω0 we get

−1

2
ω0x

2(T )− 1

2
ω0x

2(−T ) = −1

2
ω0X

2
f −

1

2
ω0X

2
i

)

Then

Z[j] =

∫
Dx(t)e

i
ℏ
∫∞
−∞ dt [ 1

2
(ẋ2−ω0x2+i ϵ

′ω0︸︷︷︸
=ϵ

x2)+j(t)x(t)]

(45)

Thus the effect of the ground state wave fn is to replace ω2
0 → ω2

0 − iϵ.
Introduce x(t) =

∫
dω
2π
X̃(ω)e−iωt.

Z[j] =

∫
Dx(ω)e

i
ℏ
∫∞
−∞

dω
2π

{ 1
2
[ω2−ω2

0+iϵ]|X̃(ω)|2+j(ω)X(−ω)}

Using our formula for Gaussian integrals (A(ω) = i
4πℏ [−ω

2 + ω2
0 − iϵ]

and J(ω) = i j(ω)
2πℏ . So

Z[j] = e
− i

2ℏ
∫

dω
2π

j(ω)j(−ω)

ω2−ω2
0+iϵ

√
Det

2π

A︸ ︷︷ ︸
Z[0]

(46)
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Reintroducing j(t) we get

Z[j] = Z[0]e

− 1
2ℏ

∫
dt j(t)

∫
dt′ j(t′)

[θ(t− t′)e−iω0(t−t′) + θ(t′ − t)e−iω0(t′−t)]

2ω︸ ︷︷ ︸
⟨0|T [x(t)x(t′)]|0⟩

(47)

We recognize in the exponent the Feynman two point function intro-
duce in our fld theory discussion. It is also the same expression we
found when we discussed the HO with forcing function above - working
entirely in the time domain and with the interval being 0, T rather than
−∞,+∞.

15. What is the point of calculation Z[j]? It describes the amplitude to go
from a specific state to a specific state (gnd state) but in the presence
of an arbitrary disturbance. That means we can start at t = −∞ in the
ground state and excite the oscillator to any particular state by means
of special forcing function and then let it evolve and later at large time
we can dexcite it by means of some other specific forcing function to the
ground state. In this way we can recover the amplitude to go from any
state at early times to any other state at late times. Mathematically if
we differentiate wrt j we bring down powers of x. x contains creation
and annihilation operators that can act on the gnd state and create an
excited state at some early time. Similarly one can bring down powers
of x at late times to introduce the appropriate number of annihilation
operators.

While this may seem contrived in QM this is precisely what is done in
QFT. Note:

δ2Z[j]

δj(t1)δ(t2)
|j=0 =

∫
Dx(t) x(t1)x(t2) e

i
ℏ
∫
dt L(x,ẋ)

=H ⟨0,+∞|T [xH(t1)xH(t2)]|0,−∞⟩H (48)

The subscript H indicates Heisenberg picture. (More on this below.)
Thus |0,−∞⟩H corresponds to the history that has the property that
at t = −∞ it is the grnd state. The time ordered product emerges
naturally because in the path integral we do the integrals in the correct
time order so whichever x occurs earlier is first integrated over.These
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time ordered correlation functions are the basic entities that one needs
in a QFT because all physical quantities can be evaluated using these.
This is also true in the statistical mechanics applications described in
the next section.

16. Schroedinger/Heisenberg formalisms: The PI evaluates the fol-
lowing:

K(Xf , tf ;Xi, ti) = ⟨Xf |e−iH(tf−ti)|Xi⟩

We need to distinguish between various kinds of objects and explain
notation:

(a) |X1⟩ is the eigenstate of the usual X operator of QM with ev X1.
(X is also the Scroedinger operator XS.) i.e. X|X1⟩ = X1|X1⟩.

(b) The Heisenberg operatorXH(t) = eiHtXH(0)e
−iHt whereXH(0) =

XS.

(c) The Heisenberg state denoted by |X1, t⟩H is defined to be the
eigenstate of XH(t) i,e, XH(t)|X1, t⟩H = X1|X1, t⟩. Note that by
H- state we mean a history. This history is labelled by describing
it at some time (usually zero)- here - at time t this state is the
eigenstate of XH(t) with ev X1 which means at time t it is the ket
|X1⟩ in the usual sense.

Thus we can say that |X⟩H = |X, 0⟩H = |X⟩S = |X⟩ at t = 0,
whereas |X, t⟩H = |X⟩S = |X⟩ at t = t.

(d) The dependence on t of |X1, t⟩ = eiHt|X1, 0⟩ (not e−iHt|X1, 0⟩H .
It is not the time evolved state of |X1, 0⟩ Check:

XH(t)|X1, t⟩H = eiHtXH(0)e
−iHteiHt|X1, 0⟩H =

eiHtXH(0)|X1, 0⟩H = eiHtX1|X1, 0⟩H = X1|X1, t⟩H
Thus it is not a real time evolution.( In any case it is a Heisenberg
state.) It is just a statement of how different states labelled by
the time parameters t, t′ are related.

In pictures: look at the history of some state A, which can be
called |A, 0⟩, because at t = 0 it is the state A: Time progresses
towards the left: t = −2T at the far right and t = +2T at the far
left:
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e−iH2TA e−iHTA A eiHTA eiH2TA

Compare with the history |A, T ⟩.

e−iHTA A eiHTA ei2HTA ei3HTA

which is in state A at time T . Clearly |A, T ⟩ = eiHT |A, 0⟩.
(e) Thus one needs to distinguish between two statements: One is

that eiHti |X⟩H = |X, ti⟩ is the history that looks like |X⟩ at time
t = ti and the other is that e−iHti |X⟩H is what the history |X⟩H
looks like to an observer at our time t = ti (and his clock reads
zero).

Thus for instance e−iHti |X, ti⟩H is what it (i.e. history |X, ti⟩H)
looks like to an observer at t = ti. Check: e−iHti |X, ti⟩H =
e−iHtieiHti |X⟩H = |X⟩H . In other words the observer whose clock
reads zero at our time t = ti, will see this history as |X⟩H . Equiv-
alently the Schroedinger state at time t = ti is |X⟩. This is indeed
what it should be.

(f) Thus we have the following different notations all standing for the
same object:

K(Xf , tf ;Xi, ti) = ⟨Xf |e−iH(tf−ti)|Xi⟩ =S ⟨Xf |e−iH(tf−ti)|Xi⟩S

=H ⟨Xf , 0|e−iHtf eiHti |Xi, 0⟩H
=H ⟨Xf , tf |Xi, ti⟩H

Now let us understand different notations for the following∫ x(tf )=Xf

x(ti)=Xi

Dx(t) x(t1)x(t2)e
i
ℏS

⟨Xf |e−iH(tf−t1) x e−iH(t1−t2) x eiH(t2−ti)|Xi⟩ t1 > t2

=S ⟨Xf |e−iH(tf−t1) xS e
−iH(t1−t2) xS e

−iH(t2−ti)|Xi⟩S
=H ⟨Xf , 0|e−iH(tf−t1) xH(0) e

−iH(t1−t2) xH(0) e
−iH(t2−ti)|Xi, 0⟩H

=H ⟨Xf , tf | xH(t1) xH(t2) |Xi, ti⟩H
In general as explained earlier we get the time ordered product

=H ⟨Xi, tf | T [xH(t1)xH(t2)] |Xf , ti⟩H
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17. Consider

H⟨0,+∞|T [xH(t1)xH(t2)]|0,−∞⟩H (49)

Since |0, t⟩ is the vacuum state of the full theory, it evolves by a phase
factor. Thus |0,−∞⟩ and |0, 0⟩ differ by a phase |0,−∞⟩ = eiE0∞|0, 0⟩.
Thus if we calculate

H⟨0,+∞|T [xH(t1)xH(t2)]|0,−∞⟩H
H⟨0,+∞|0,−∞⟩H

=
H⟨0, 0|T [xH(t1)xH(t2)]|0, 0⟩H

H⟨0, 0|0, 0⟩H
(50)

Assuming the states are correctly normalized:

=H ⟨0, 0|T [xH(t1)xH(t2)]|0, 0⟩H

which is what we normally write as:

=H ⟨0|T [xH(t1)xH(t2)]|0⟩H (51)

Thus dividing by the gnd state to gnd state amplitude is a good thing
to do - it provides the correct normalization.

18. Perturbation Theory

K(Xf , tf ;Xi, ti) =

∫
Dx(t)e

i
ℏ
∫ tb
ta
dt [m

2
ẋ2−V (x(t),t)]

=
∫ x(tf )=Xf

x(ti)=Xi
Dx(t)︸ ︷︷ ︸

sumover paths

exp(+ i
ℏ

∫ tf
ti
dtL(x(t), ˙x(t))[1− i

ℏ

∫ tb

ta

ds [V (x(s), s)]+

1

2
(
−i
ℏ
)

∫ tb

ta

ds [V (x(s), s)](
−i
ℏ
)

∫ tb

ta

ds′ [V (x(s′), s′)] (52)

Consider the second term. Rewrite as:

− i

ℏ

∫ tb

ta

ds

∫
Dx(t)e

i
ℏ
∫ tb
ta
dt [m

2
ẋ2][V (x(s), s)] (53)

The integrand of
∫
ds is an ordinary free path integral, except at the

time t = s when V (x(s), s) multiplies the whole thing. Let us call this
time t = s = tc and x(s) = xc. So we have free propagation from
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ta to tc. Then multiply by V (xc, tc) then propgagate to tb. xc has to
be integrated. Finally the whole thing is a fn of tc and this has to be
integrated. Thus we get

− i

ℏ

∫
dtc

∫
dxc K0(b, c)V (xc, tc)K0(c, a) (54)

Give diagram and illustrate higher order terms and Feynman rules.

19. Several degrees of freedom. K(xf , Xf , tf ;xi, Xi, ti). The conve-
nience of the formalism. Separable systems. S(x,X) = S1(x) +S2(X).
The concept of “integrating out” degrees of freedom. When would
you want to do that: unobservables : eg ren group - effective actions,
thermodynamic heat bath or the rest of the universe,

5.3 Statistical Mechanics and the Path Integral

The path integral makes particularly clear two connections with Statistical
Mechanics.

I. Classical Statistical Mechanics
Take the Feynman Path Integral for a free particle and substitute t = −iτ .

We get ∫
Dx(τ)e−

1
ℏ
∫ iT
0 dτ 1

2
( dx
dτ

)2

We analyticllay continue t to pure imaginary so that τ is real and let T =
−iL. So we get ∫

Dx(τ)e−
1
ℏ
∫ L
0 dτ 1

2
( dx
dτ

)2 (55)

This is a partition function of a string or a polymer of length L. The
expenent is to be identified with − H

kT
= −βH (where here T is the temper-

ature). Thus the Hamiltonian is
∫ L
0
dτ 1

2
(dx
dτ
)2 and kT = ℏ. Thus quantum

fluctuations that are important when ℏ is large compared to the typical ac-
tion is replaced by thermal fluctuatuations which are important when kT is
larger than typical energies in the system.

Note that the time direction has become a space direction. In general if
we start with a D+1 dimensional quantum theory (1 time D space)
and rotate t = −iτ we get the (equilibrium) stat mech of theory in
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D+1 space dimenions. Note that we are dealing with a system in thermal
equilibrium so there is no need for a time variable.

II. Quantum Statistical Mechanics
1.Elementary Quantum Stat Mech: Expectation value of an operator in

equilibrium so that states are weighted with Boltzmann factor < A >=∑
i piAi where pi =

1
Z
e−βEi

Z The partition fn. Free energy.F (T, V,N)or E(S, V,N).
2.Other infmn P (x)? Need the unintegrated form of the partition fn i.e.

density matrix.
3. P (x) = 1

Z

∑
i ϕ

∗
i (x)ϕi(x)e

−βEi

Similarly

< A >=
1

Z

∑
i

Aie
−βEi

=
1

Z

∑
i

ϕ∗
i (x)Aϕi(x)e

−βEi =
1

Z

∑
i

< ϕi | A | ϕi > e−βEi

Define
ρ(x′, x) =

∑
i

ϕi(x
′)ϕ∗

i (x)e
−βEi

ρ =
∑
i

| ϕi >< ϕi | e−βEi

=
∑
i

| ϕi >< ϕi |︸ ︷︷ ︸
1

e−βH

= 1.e−βH

“Density Matrix”.

< A >=
1

Z
Tr[Aρ] =

∫
dxAρ(x′, x)δ(x− x′)

where Z = Tr[ρ] =
∫
dxρ(x, x)

4. Consider

K(Xf , tf ;Xi, ti) =
∑
n

ψn(Xf )ψ
∗
n(Xi)e

− i
ℏEn(tf−ti)

If we let i(tf − ti) = βℏ we have the density matrix!
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Thus can use path integral with itℏ replaced by u to evaluate ρ:

ρ(x′, x) = K(x′, βℏ;x, 0) =
∫
x(0)=x,x(βℏ)=x′

(exp{−1

ℏ

∫ β

0

ℏ[
m

2
ẋ2(u)+V (x)]du})Dx(u)

To calculate Z = Tr[ρ] set x′ = x and integrate over x, i.e. sum over all
periodic paths.

Thuswith the substitution i(tf−ti) = βℏ and t = −iℏu the quan-
tum mechanics of a D+1 (space-tme) dimensional system becomes
the equilibrium quantum stat mech of a D-(space) dimensional sys-
tem. If we keep periodic paths (effectively the Euclidean time is a circle)
then we get the partition function.

Free particle

K(Xf , T ;Xi, 0) = e
i
2ℏ

m(Xf−Xi)
2

T

√
m

2πTℏi
(56)

Replace T → −iβℏ to get

ρ(x′, x) = e
−m(X′−X)2

2βℏ2

√
m

2πβℏ2
(57)

Z =

∫
dx ρ(x, x) =

∫
dx

√
m

2πβℏ2
= L

√
mkT

2πℏ2
(58)

L being the size of the box and T here is the temperature.
5. Density operator in general:
a) Pure case : ρk =| ψk >< ψk |. Assume normalized. ρ2 = ρ. Trρ = 1.
In terms of some energy eigenstates (say):| ψk >=

∑
n cn | ϕn > with∑

n c
∗
ncn = 1. So

ρk =
∑
n,m

c∗ncm | ϕm >< ϕn |

Trρ = 1 clearly. Off diagonal elements are “coherences”.
Time evolution: ρk(t) =| ψk(t) >< ψk(t) | So dρ

dt
= 1

iℏ [H, ρ].
Note that only coherences have non zero time dependence.
b) Mixed case

ρ =
∑
k

pkρk
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pk is a probability :
∑

k pk = 1. Motivation for this can be from thermo or
from integrating out.

Trρ = 1 obviously. But ρ2 ≤ ρ. Equals sign only in pure case.
Time evolution: same as pure case. In the case of e−βH obviously time

dependence is not there.
6. Several variables and partial traces - that discussion can be carried

over to density matrices. Tensor product. In general the density matrix is
not a direct product of two density matrices. If the systems are physically
independent it will be a direct product.

i)Direct product:ρ = ρϕ ⊗ ρξ
ρϕ = p1 | ϕ1 >< ϕ1 | +p2 | ϕ2 >< ϕ2 |
ρξ = q1 | ξ1 >< ξ1 | +q2 | ξ2 >< ξ2 |
Partial trace over ϕ gives ρξ and vice versa.
ii) Consider
ρ = p1 | ϕ1 >| ξ1 >< ϕ1 |< ξ1 | +p2 | ϕ2 >| ξ2 >< ϕ2 |< ξ2 |.
Trϕρ = ρξ defined above, and vice versa but this ρ is not a direct product.
iii) Start with pure state dm: 1√

2
(| ϕ1 >| ξ1 > + | ϕ2 >| ξ2 >)(< ϕ1 |<

ξ1 | + < ϕ2 |< ξ2 |) 1√
2

This is a pure state. But Trϕρ =
1
2
(| ξ1 >< ξ1 | + | ξ2 >< ξ2 |)

which is not a pure state.

6 Mathematical Digression: Lorentz Group,

Poincare Group

Note: A good concise mathematical description of the Lorentz
Group and its representations is given in Ramond’s book - which
is followed here. Also Weinberg’s book has a very logically com-
plete description of the Little Group and the implementation of
symmetries in the context of QFT

The Lorentz group along with translations is the Poincare Group. These
are symmetries of (flat) space-time. Hence it is useful to consider fields
that have well defined transformation properties under these symmetries.
Generalization of the rotation group (or Galilean group) in non rel qm. In
general we take fields to transform as follows: Let x′ = Rx be the action of
a group element R on x.

Φ′(x′) = R̃Φ(x)
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HereR represents the way coordinates transform. Thus for the Lorentz group
they are 4-vectors and R represents the usual four by four matrices. R̃ on
the other hand are matrices that correspond to any of the infinite number of
representations of the Lorentz group. Thus

Φ′(x) = R̃Φ(R−1x)

If we want a scalar field ϕ we let

ϕ′(x) = ϕ(R−1x)

. For a vector field A we would have

A′(x) = RA(R−1x)

etc.

6.1 Poincare Group

� Generators: (Hermitian)

Pµ = −i ∂
∂xµ

Mµν = −i(xµ∂ν − xν∂µ)︸ ︷︷ ︸
Orbital

+ Sµν︸︷︷︸
Spin

= xµPν − xνPµ + Sµν

Commutation:

[Mµν , Pρ] = −igµρPν + igνρPµ, [Mµν ,Mρσ] = igµρMνσ − igµσMνρ + ...

We will use Mµν = iJµν where J is anti Hermitian.

� Casimirs: i) P 2

ii) Another manifest 4-vector is 1
2
ϵµνρσPνMρσ. This is the Pauli Luban-

ski vector. For a massive particle in the rest frame P 0 = m, P i = 0
and it reduces to 1

2
mϵijkMjk = mSi which is just proportional the ordi-

nary spin angular momentum. One can check that [Wµ, Pα] = 0. This
uses the antisymmetry of ϵ symbol. Since W is manifestly a four vec-
tor, W.W commutes with M . Thus W.W commutes with the Poincare
Group generators and is a Casimir.
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� If P 2 = m2, then W 2 = m2S.S = m2s(s+1). So it is the usual spin as
mentioned before. Thus one can go to rest frame and this configuration
is left invariant by Si and therefore the states are in reps of S. This is
called the ”little group” and is SO(3) in this case.

� If P 2 = m2 = 0, then taking the m → 0 limit of the previous case
we see that W 2 = 0. Also W.P = 0 (using antisymmetry of ϵ). Thus
W and P are proportional. eg let P 0 = P 3 = p. Then pW 0 = pW 3.
Thus W 0 = W 3. Since W 2 = 0 the other componenets of W are zero.
Also W 3 = −M12P0 = +M12P

0 = S3P
0. Thus W is proportional to

the spin in the direction of motion (z-axis in this example) and the
proportionality is the energy. This config is left invariant only by Sz
and states are simply reps of Sz which are one dimensional. Spin in
the direction of motion is called helicity. The little group is SO(2).

� The physical degrees of freedom of the particle are classified by the
little group. The other generators merely boost the particle etc. Thus
the Lor Gr is non unitary and its unitary reps are infinite dimensional.
They require all the x-dependence to form unitary a rep - a wave fn of a
particle. However the little group is compact and has finite dimensional
unitary reps - they classify the nature of the wave fn for physical states
at a point. The fields don’t have to be unitary reps of the Lorentz
group. Since we need to construct Actions from the fields we need to
study the reps of the Lor Group.

So we begin by classifying all the representations R̃ for the Lorentz gr

6.2 Lorentz Group

� The Lorentz group is the group of transformations that leave the proper
distance invariant:

s2 = xixi − t2 = x′ix′i − t′2

xµxνηµν = s2

η is the flat space metric tensor.

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (59)
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x′ = Λ x

- viewed as a matrix equation

(x′ = γ(x− βt), t′ = γ(t− βx)) in units where c = 1.

Thus
Λ ρ
µ ηρσΛ

σ
ν = ηµν

viewed as a tensor equation.

ΛηΛT = η

viewed as a matrix equation.

This also implies det Λ = ±1.

� Near the identity : Λ ν
µ = δ ν

µ + ϵ νµ .

Substitute to get

(δ ρ
µ + ϵ ρµ )ηρσ(δ

σ
ν + ϵ σν ) = ηµν

This gives
ϵµν + ϵνµ = 0.

Thus we get (i, j stand for space indices):

ϵ i0 = ϵ 0
i and ϵ ji = −ϵ ij

these six matrices parametrixe the Lie Algebra of SO(3,1).

� The three boost generators have the form

J 1
0 = J 0

1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (60)

J 2
0 = J 0

2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 (61)
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J 3
0 = J 0

3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 (62)

With this convention note the symmetry properties: −Ji0 = J 0
i =

J i
0 = J0i

� And the rotation generators have the form

J23 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 (63)

J12 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (64)

J13 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 (65)

� If we adopt the convention that Jµν = −Jνµ they obey the commutation
relations:

[Jµν , Jρσ] = ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ

� Note that the rotation group generators (compact) are anti Hermitian
whereas boost generators (non compact) are Hermitian. Thus eJij is
unitary whereas eJ0i is not. This is because the non compact generators
cannot be represented by finite dimensional unitary matrices. SO(3,1)
is a non compact form of SO(4) - rotations in 4 Euclidean dimensions.
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� Change notation: J0i = iKi (Ki is now anti Hermitian) s and 1
2
ϵijkJjk =

−iJi. Ji is Hermitian and obeys the same comm relns as 1
2
σi (Pauli

matrices):

[Ji, Jj] = iϵijkJk

Further
[Ji, Kj] = iϵijkKk

which shows that Ki are a vector under rotations. Finally,

[Ki, Kj] = −iϵijkJj

This shows that Ki are elements of SO(3,1)
SO(3)

. The negative sign in the
structure constant is achieved by multiplying by i- which makes K
antiHermitian. Thus eiK is not unitary and this is because K are non
compact generators of the Lorentz group - the boosts.

� One can make two mutually commuting sets of generators: Ni =
1
2
(Ji+

Ki) and N
†
i =

1
2
(Ji −Ki)

[Ni, Nj] = iϵijkNk

[N †
i , N

†
j ] = iϵijkN

†
k

[Ni, N
†
j ] = 0

N defines SU(2)L and N † defines SU(2)R. Thus SO(3, 1) = SU(2)L⊗
SU(2)R.

Complex conjugation interchanges left and right. (Note: If the group
had been SO(4) the two SU(2)’s would have been independent.)

6.3 Representations of the Lorentz Group

� Since we know the representations of SU(2) can be labelled by the
“spin” i.e. 0, 1/2, 1, 3/2... we can use these same labels for SU(2)L ⊗
SU(2)R i.e. they are labelled by two numbers (n,m) where 2n, 2m ∈
Z. Thus (0, 0) is the scalar - one dimensional trivial representation.
(0, 1/2) and (1/2, 0) are two (complex) dimensional representations.
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They are two dimensional spin half representations. They are left or
right handed spinors. (0, 1)+(1, 0) are six real (or three complex +c.c)
dimensional representation. The two index antisymmetric tensor Fµν =
−Fνµ is an example of this. (1/2, 1/2) has four real components and
corresponds to the four vector. The SU(2) properties can be made
manifest by combining the components of a four vector into a 2 X 2
matrix: Aµ(σµ)αβ̇. Here σ

µ = (1, σx, σy, σz). An SU(2)L group element
acts by multiplying on the left by a 2X2 matrix. It acts on the undotted
index. Similarly SU(2)R acts by right multiplication and acts on the
dotted index.

� The spinor representation. The group elements can be represented
by Pauli matrices. Thus Ji =

1
2
σi can act as the rotation group. Ki can

be represented by i
2
σi. Thus ΛL = e

i
2
σ⃗.(ω⃗+iν⃗) and ΛR = e

i
2
σ⃗.(ω⃗−iν⃗). Note

that ΛL and ΛR act on different spaces. Thus they should be thought
of as (

ΛL 0
0 ΛR

)
Also note that Λ−1

L = Λ†
R.

In Euclidean space SO(4) both J,K would be compact and represented

by 1
2
σi. In that case ΛL = e

i
2
σ⃗.(ω⃗+ν⃗) and ΛR = e

i
2
σ⃗.(ω⃗−ν⃗) would be

completely independent.

Some useful properties:

1.
(σ2)† = σ2

. Thus σ2 is unitary.

σ2σiσ2 = −(σi)∗

Therefore: σ2ΛLσ
2 = Λ∗

R

So L and R spinors can be related by complex conjugation:

2.
σ2ψ∗

L → σ2Λ∗
Lψ

∗
L = σ2ΛLσ

2σ2ψ∗
L = ΛRσ

2ψ∗
L

Thus χR = σ2ψ∗
L transforms like a right handed spinor (0, 1

2
)

whereas ψL is (1
2
, 0).
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3. σ2 is an invariant tensor:

σ2ΛTLσ
2 = (Λ∗

R)
T = Λ†

R = Λ−1
L

So ΛTLσ
2ΛL = σ2

4. Thus if χL and ψL are both (1
2
, 0) then,

χTLσ
2ψL → χTLΛ

T
Lσ

2ΛLψL = χTLσ
2ψL

Thus χTLσ
2ψL is invariant. We can also set χ = ψ and make the

invariant ψTLσ
2ψL .

5. σ2 = −iϵαβ with ϵ12 = 1 = −ϵ21. Thus −iχα(ϵαβψβ is manifestly
invariant. The SU(2) group matrices are (ΛL)

β
α . Complex conju-

gation changes: (ψα)
∗ = (ψ∗)α̇. Then (ψ∗)β̇iϵα̇β̇ = (χ)α̇ converts

it into a (0, 1
2
). This is equivalent to the statement χR = σ2ψ∗

L

made earlier.

On the group matrices one finds similarly:

(Λ β
Lα )∗ = Λα̇

β̇

And now we need to raise and lower indices which can be done
using iϵ tensor:

iϵα̇γ̇Λβ̇γ̇iϵδ̇β̇ = (ΛR)
α̇
δ̇

(We can adopt the convention that the right index is used to raise
and lower: iϵαβAβ = Aα ,iϵβαA

α = Aβ. This is consistent with
ϵϵ = −I.)

This is equivalent to the earlier relation: (Use σ2 = −iϵ = −σT2 )
σ2ΛLσ

2 = Λ∗
R.

6. Note that ϵabϵ
bc = −δca. Thus ϵ12 = +1 = −ϵ21. This is also

consistent with ϵabϵ
bcϵcd = −ϵad. Similar relns hold for the dotted

indices.

7. ψLαϵ
αβψLβ is invariant and non zero because ψ is Grassmann.

8. Another invariant: Let χL = σ2ψ∗
R. The invariant χTLσ

2ψL be-
comes

(σ2ψ∗
R)

Tσ2ψL = ψ†
RψL

In terms of indices : (ψRα̇)
∗ψLα = (ψ∗

R)
αψLα.
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9. Note that ψL and ψR are two independent fields. Thus one can
form invariants with just one spinor or with two spinors.

10. ψL and ψR are called Weyl Spinors. They have two components.

One can make a four component Dirac spinor:

ψD =

(
ψL
ψR

)
This transforms as (0, 1

2
)⊕ (1

2
, 0).

11. 4-vectors out of spinors:

ψ†
Lσ̄

µψL = (ψ†
L,−ψ

†
Lσ

iψL) is a 4-vector.

Under boost:

ψ†
Lσ̄

µψL → ψ†
Le

− 1
2
σ⃗.ν⃗ σ̄µe−

1
2
σ⃗.ν⃗ψL

We can specialize to a boost in the y-direction and consider the
0, 2 components. We use e−

1
2
σ2ν2 = cosh ν

2
− sinh ν

2
σ2. So

ψ†
LψL → ψ†

L(cosh ν − sinh ν σ2)ψL

−ψ†
Lσ

2ψL → −ψ†
L(cosh ν σ

2 − sinh ν )ψL

This is the usual Lorentz boost

t→ γ(t+ βy) ; y → γ(y + βt)

where γ = cosh ν and β = tanh ν

On the other hand ΛR = eσ⃗.ν⃗ and transforms as

ψ†
RψR → ψ†

R(cosh ν + sinh ν σ2)ψR

ψ†
Rσ

2ψR → ψ†
R(cosh ν σ

2 + sinh ν )ψR

Therefore, in order to get the same transformation law, we identify
ψ†
Rσ

µψR = (ψ†
RψR, ψ

†
Rσ

iψR) as the 4-vector - without the minus
sign.
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12. Working with Dirac spinors: Since ψ†
RψL is Lorentz invariant the

Hermitian combination ψ†
LψR + ψ†

RψL is a legitimate scalar. This
is equal to ψ†

Dγ
0ψD where γ0 is the matrix

γ0 =

(
0 1
1 0

)
ψ†
Dγ

0ψD is commonly written as ψ̄DψD. Similarly if we let

γµ =

(
0 σµ

σ̄µ 0

)
the four vector can be written as ψ̄Dγ

µψD.

13. The four component Dirac spinor is built out of ψL and an inde-
pendent ψR. If we chose ψR to be σ2ψ∗

L - a legitimate choice -
we get a four component object with the same fild content as a
two component weyl spinor ψL. This is called a Majorana repre-
sentation. It can be made real by a unitary transformation. i.e 4
real components instead of two complex components as in a Weyl
spinor. Thus

ψM =

(
ψL

−σ2ψ∗
L

)
14. One can define a spinor

ψcD =

(
σ2ψ∗

R

−σ2ψ∗
L

)
which is called a charge conjugate of ψD. It has the opposite
electric charge (because of complex conjugation), is otherwise a
Dirac spinor, and also obeys (ψcD)

c = ψD. In the case of the
Majorana spinor - it obeys ψcM = ψM . The Majorana spinor is
self conjugate. It must necessarily have no electric charge.

15. The matrix iγ0γ1γ2γ3 is called γ5.

γ5 =

(
−1 0
0 1

)
It has the property that ψL has eigen value -1 and ψR has ev +1.
It measures “chirality” or handedness of a spinor.
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16. The gamma matrices satisfy:

{γµ, γν} = −2gµν

This is often used as the defn of gamma matrices. They are said
to form a “Clifford Algebra”.

17. Given that ψ̄Dγ
µψD is a four vector it is clear that ψ̄Dγ

µ∂µψD
and ∂µψ̄Dγ

µψD are scalars. Thus iψ̄Dγ
µ∂µψD is Hermitian upto

a total derivative. The combination iψ̄Dγ
µ∂µψD − i∂µψ̄Dγ

µψD
is Hermitian. Note that γ0 is not Hermitian but γi are. (Since
(γ0)2 = −1 it must have imaginary ev’s and hence cannot be
Hermitian.)

� The four vector (1
2
, 1
2
): Aµ and ∂µϕ(x) where ϕ is a scalar are exam-

ples of 4-vectors.

� Spin 3/2. This can be obtained by (1/2, 1/2) ⊗ ((0, 1/2) ⊕ (1/2, 0)).
We have made it parity invariant by including both (0,1/2) and (1/2,0).
(1/2, 1/2)⊗ (1/2, 0) = (1, 1/2)⊕ (0, 1/2). The (1,1/2) is the spin 3/2.
It is thus represented by ψµL which is a spinor with a four vector index,
provided we can get rid of the (0,1/2) extra spin 1/2 contamination.
This can be done by imposing σµψLµ = 0. In Dirac notation this
becomes ψµ with γµψµ = 0. This is also called the Rarita-Schwinger
field. It occurs in supergravity theories.

� Spin 2. This can be obtained as (1/2, 1/2) ⊗ (1/2, 1/2) = [(0, 0) ⊕
(1, 1)]S ⊕ [(1, 0) ⊕ (0, 1)]A. The antisymmetric part of two spin 1/2
gives a spin 0. Thus antisymmetrized on both spins gives an overall
symmetrized piece - this is the subscript S. Thus Aµν = A(µν) + A[µν].
The former gives the spin two part. The anti symmetric tensor is a spin
one piece. The symmetric part has ten components, which includes a
trace, which is actully a scalar. The graviton is an example of spin two.
The metric tensor gµν = ηµν + hµν . The fluctuation hµν represents a
spin two field and is called a graviton.

� String theories contain higher spin fields. But phenomenologically ob-
served fundamental fields are only spins 1/2,1 and 2. A spin 0 field is
required in the standard model but has not yet been observed.
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7 Dirac Field

7.1 Classical Dirac Equation and Solutions

� We have already seen that iψ̄Dγ
µ∂µψD is Lorentz invariant. So is

mψ̄DψD. Thus we can write an action∫
d4x ψ̄(iγµ∂µ −m)ψ

The subscript D is dropped from now on. Weyl spinors will have the
subscript L,R. {γµ, γν} = −2gµν .

γ0 =

(
0 1
1 0

)

γi =

(
0 σi

−σi 0

)
Thus γ0 is Hermitian and the others are anti-Hermitian. This is also
clear from the fact that (γ0)2 = 1 and so it’s ev’s are ±1 whereas the
rest have ev’s ±i.

� The Dirac eqn is

(iγ0
∂

∂x0
+ iγi

∂

∂xi
−m)ψ = 0

i ∂
∂x0

= −p0 = +p0 = E and i ∂
∂xi

= −pi = −pi. Thus the eqn becomes

(γ0E − γipi −m)ψ = 0

� Simple way is to solve in the rest frame and then boost to a moving
frame. Remember that pµ = γm(1, βi) Also γ = cosh η , |β| = tanh η
so (p0, pz) = m(cosh η, sinh η) for boosts in the z direction. This can
be obtained by the matrix eηJ03 = cosh η + J03sinh η. Thus

eηJ03


m
0
0
0

 =


E
0
0
pz
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The analogous boost on ψL is performed by the matrix ΛL = e−
1
2
σzη =√

e−σzη and for ψR, by ΛR = e
1
2
σzη =

√
eσzη.

√
e−σzη =

1√
m

√
m(cosh η − sinh ησz) =

1√
m

√
p0 − pzσz

Thus the general boost matrix for ψL is 1√
m

√
p0 − piσi = 1√

m

√−pµσµ
Similarly for ψR it is 1√

m

√−pµσ̄µ.

� In the rest frame E = m, pi = 0, so the equation becomes

(γ0m−m)ψ = m

(
−1 1
1 −1

)
ψ = 0

Clearly it is satisfied by any spinor of the form

us =

(
ξs

ξs

)
Here s = 1, 2. We can choose

ξ1 =

(
1
0

)
and

ξ2 =

(
0
1

)
Thus there are two independent positive energy solutions.

If we put the time dependence back in, and choose a convenient nor-
malization factor

√
m, the two solutions are:

ψs(t) = us(m)e−imt =
√
m

(
ξs

ξs

)
e−imt, s = 1, 2

� Interestingly there are also solutions with E = −m. The equation
becomes

(−γ0m−m)ψ = m

(
−1 −1
−1 −1

)
ψ = 0
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The solutions are correspondingly

ψs(t) = vs(m)e+imt =
√
m

 ηs

−ηs

 e+imt

with s = 1, 2. ηs can be chosen the same as ξs, but in fact we will make
a different choice for later convenience:

η1 =

(
0
1

)
and

η2 =

(
1
0

)
These are the famous negative energy solutions.

� Both solutions can be generalized to the moving frame by multiplying
the L component by 1√

m

√−pµσµ and R componenets by 1√
m

√−pµσ̄µ.
Thus the solutions are

ψs(x, t) = us(p)eipx =

( √−pµσµξs√−pµσ̄µξs
)
eipx, p0 > 0

ψs(x, t) = vs(p)eipx =

( √−pµσµηs
−√−pµσ̄µηs

)
eipx, p0 < 0

7.2 Various Properties of the solutions

�

ū(p)ru(p)s = u(p)r†γ0u(p)s = 2
√
−pµσµ

√
−pµσ̄µξrT ξs

= 2
√

(p0)2 − (pi)2δrs = 2mδrs

�

u(p)r†u(p)s =
√

−pµσµ
√

−pµσµξrT ξs +
√
−pµσ̄µ

√
−pµσ̄µξrT ξs = 2p0δrs = 2Epδ

rs
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�

v̄(p)rv(p)s = v(p)r†γ0v(p)s = −2
√
−pµσµ

√
−pµσ̄µηrTηs

= −2
√
(p0)2 − (pi)2δrs = −2mδrs

�

v(p)r†v(p)s =
√

−pµσµ
√
−pµσµηrTηs +

√
−pµσ̄µ

√
−pµσ̄µηrTηs = 2p0δrs = 2Epδ

rs

� Spin sums

∑
s=1,2

us(p)ūs(p) =

( √−pµσµ
√−pµσ̄µ

√−pµσµ
√−pµσµ√−pµσ̄µ

√−pµσ̄µ
√−pµσ̄µ

√−pµσµ

)

=

(
m −p.σ

−p.σ̄ m

)
= −γµpµ +m

Similarly ∑
s=1,2

vs(p)v̄s(p) = −γµpµ −m

7.3 Gamma Matrix Properties

� The matrices 1, γµ, γµν = 1
2
[γµ, γν ], γ[µγνγρ], γ[µγνγργσ] are irreps under

the Lorentz group. (i.e. the Lor Gr doesn’t mix them up.) The total
number of these is 1+4+6+4+1 =16. Thus any 4 × 4 real matrix Γ
can be written in terms of these. Thus ψ̄Γψ can be written in terms
of these and each is a well defined tesnor. Thus ψ̄γµψ is a 4-vector.
ψ̄γµνψ is an antisymmetric tensor ( 6 dim rep of Lor gr.).

1

6
γ[µγνγρ] = iϵµνρσγσγ

5

1

24
γ[µγνγργσ] = −iϵµνρσγ5

Thus the three index antisymmetric tensor ψ̄γ[µγνγρ]ψ can be written
in terms of ψ̄γσγ5ψ and the four index one in terms of ψ̄γ5ψ. These
are thus equivalent to a 4 -vector and a scalar respectively. However
because of the γ5 in them thay have the opposite parity properties so
they are called an axial vector and pseudo scalar respectively.
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� There is a “Majorana Representation” for gamma matrices. Since the
Majorana spinor is real (in some basis) there must exist a basis where
the Lorentz generators are all real. The Lor. generators are γµν upto
normalization. So either all the gamma’s are real or all imaginary. In
the present representation γ2 is imaginary and the rest ae real. Let
γ′0 = γ0γ2, γ′1 = γ2γ1, γ′2 = −γ2 and γ′3 = γ2γ3. Then γ′5 =
−γ5γ2. This is a Majorana rep. The gamma matrices are all imaginary
and the Lor gr generators are real.

� Lorentz Gr generators in terms of gamma matrices (i.e. spin represen-
tation)

Sµν =
i

4
[γµ, γν ]

Incidentally this works in any dimension. These are Hermitian.

{γµ, γν} = −2gµν

(eg. in 3 dimension {γi, γj} = −2δij is satisfied by γi = iσi. The Lor
Gen are − i

4
[σi, σj] = 1

2
ϵijkσk. This is as expected.)

Λ = e−
i
2
ωµνSµν

[γµ, Sρσ] =

Hermitian︷ ︸︸ ︷
(iJρσ)µν γ

ν

� Terms of the form
ψ̄(1 + γ5)γµψ

involve only the right handed part ψR and are called chiral currents.
ψ̄γµψ is called a vector current and ψ̄γµγ5ψ is called an axial current.

� Fierz Identities: Using (σµ)αβ(σ
µ)γδ = 2ϵαγϵβδ = −(σµ)αδ(σ

µ)γβ to
write

ψ1Lσµψ2Lχ1Lσ
µχ2L = −ψ1Lσµχ2Lχ1Lσ

µψ2L
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7.4 Quantization of the Dirac Field

�

L =

∫
d3x {ψ†i∂tψ + ψ†γii∂iψ −mψ̄ψ}

∂L
∂ψ

= iψ†

{ψ(x), iψ†(y)} = iδ3(x− y) x0 = y0

Check:

ψ(x) =

∫
d3p

(2π)3

∑
s=1,2

1√
2Ep

[ as(p)︸ ︷︷ ︸
annihilation

us(p)eipx︸ ︷︷ ︸
+ve energy

+ b†s(p)︸ ︷︷ ︸
creation

vs(p)e−ipx︸ ︷︷ ︸
−ve energy

]

ψ†(y) =

∫
d3q

(2π)3

∑
s=1,2

1√
2Eq

[a†s(q)u†s(q)e−iqy + bs(q)v†s(q)e+iqy]

Note that ψ is a 4-component spinor with index a which is being sup-
pressed. So the anticommutation relns that we expect is actually:

{ψa(x), iψ†
b(y)} = iδ3(x− y)δab

So assume {as(p), a†s(q)} = (2π)3δ(p− q)δrs = {bs(p), b†s(q)} we get∫
d3p

(2π)3

∑
s=1,2

1

2Ep
[us(p)u†seipi(x−y)

i

+ vs(p)v†s(p)e−ipi(x−y)
i

]

Using the spin sums∑
s=1,2

us(p)u†s(p) = (−γ.p+m)γ0
∑
s=1,2

vs(p)v†s(p) = (−γ.p−m)γ0

∴
∫

d3p

(2π)3
1

2Ep
[(−γ0p0−γipi+m)eipi(x−y)

i

+(−γ0p0−γipi−m)e−ipi(x−y)
i
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(γipi and m cancel.)

=

∫
d3p

(2π)3
eipi(x−y)

i

1 = δ3(x− y)δab

All other anti comm =0.

Finally:

H =

∫
d3p

(2π)3
[−iψ†γ0γ⃗.∇⃗ψ +mψ̄ψ]

=

∫
d3p

(2π)3

∑
s=1,2

Ep(a
†s(p)as(p) + b†s(p)bs(p))

The vacuum is defnd. by

a(p)|0⟩ = b(p)|0⟩ = 0

and so the energy is positive. a† creates particles of positive energy and
b† creates anti particles of positive energy.

7.5 Properties of spin 1
2 states

L = ψ̄(iγµ∂µ−m)ψ = ψ̄(iγ0
∂

∂t
+iγi

∂

∂xi
−m)ψ = ψ†(i

∂

∂t
+iγ0γi

∂

∂xi
−mγ0)ψ

∂µ[
∂L

∂(∂µϕ)
δωψ] = ∂µ(ωAJ

µA)

ωAJ
µA = iψ†δωψ

ψ → e−
1
2
ωµνSµν

ψ

δωψ = − i

2
ωAS

Aψ

This is only the spin part. (The full orbital part + spin part - HW)

Let ω12 = −ω21 = θ.
δθψ = −iθS12ψ

S12 =
1

2
ϵ123

(
σ3 0
0 σ3

)
=

1

2
Σ3

69



∴ δθψ = −iθ
2
Σ3ψ

J0
θ =

θ

2
ψ†Σ3ψ

Charge :
∫
d3xJ0

θ =
∫
d3x1

2
ψ†Σ3ψ = J3 - spin-angular momentum.

Mode expansion for ψ:

ψ(x) =

∫
d3p

(2π)3
1√
2Ep

2∑
s=1

[as(p)us(p)eipx + b†s(p)vs(p)e−ipx]

ψ†(x) =

∫
d3p

(2π)3
1√
2Ep

2∑
s=1

[a†s(p)u†s(p)e−ipx + bs(p)v†s(p)eipx]

Consider the state a†s
′
(0)|0⟩. We want J3a†s

′
(0)|0⟩. We can use the

fact that J3|0⟩ = 0|0⟩ to convert this to [J3, a†s(0)]|0⟩. Only terms in
J3 that involve as(0) will contribute.

∫
d3x

∫
d3p

(2π)3

∫
d3q

(2π)3
1√
2Ep

1√
2Eq

[a†s(p)ar(q), a†s
′
(0)]u†s(p)

Σ3

2
ur(q)e−ipxeiqx|0⟩

x integral gives delta fn in p − q and commutator gives delta fn in p.
So we get

1

2
δrs

′
a†s(0)|0⟩ 1

2m
u†s(0)Σ3ur(0)

Doing the spin sums over r:

=
1

2

∑
s

a†s(0)|0⟩(σ3)ss
′

This confirms the expected value of +1
2
for s = 1 and −1

2
for s = 2.

Finally if we had started with b†s
′
(0)|0⟩ the calculation would have

been exactly the same except for a minus sign: J3 has bs(0)b†r(0). On
anticommuting we get −br†(0)bs(0)+ infinite constant. The infinite
constant doesn’t contribute to the commutator with b†s

′
. Thus at the
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end of the day we get the same answer with an overall minus sign:
s = 1 has spin −1

2
and s = 2 has spin +1

2
.

This can be understood as follows: The state b†1|0⟩ can be thought of as
the result of removing an electron with negative energy (−m) and spin
+1

2
, and charge −e from the Dirac sea. Thus the state effectively has

positive energy m and spin −1
2
and charge +e (positron with opposite

spin and charge).

7.6 Green’s Function

� Dirac eqn is
(iγµ∂µ −m)ψ = 0

So the Green’s fn satisfies:

(iγµ∂µ −m)S(x, y) = Iδ4(x− y)

Define ∫
d4p

(2π)4
eip(x−y)S(p) = S(x− y)

⇒ (−γµpµ −m)S(p) = I

∴ S(p) = − 1

γµpµ +m
=
γµpµ −m

p2 +m2

As before one can get a retarded, advanced or Feynman propagator by
choosing the contour suitably. The Feynman propagator is obtained
also by changing m2 → m2 − iϵ.

Finally the two point function ⟨ψ(x)ψ̄(y)⟩ can be calculated exactly
as in the case of the scalar and one finds the same function D(x − y)
except for the factor of γµpµ −m:

⟨0|ψ(x)ψ̄(y)|0⟩ =
∫

d3p

(2π)3
γµpµ −m

2Ep
eip(x−y)

And again as in the scalar case the time ordered two point fn gives the
Feynman propagator.

⟨0|T (ψ(x)ψ̄(y))|0⟩ = iSF (x− y)
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with the importanat difference that there is a sign change when we
change the order of the field:

T (ψ(x)ψ̄(y)) = θ(x0 − y0)ψ(x)ψ̄(y)− θ(y0 − x0)ψ̄(y)ψ(x)

8 Discrete Symmetries:C,P,T

� Wigner’s Theorem says that if there is a symmetry one can think of
it as viewpoints of two different observers, O and O’. O sees states
R1, R2, ...Rn and O’ sees correspondinglyR′

1, R
′
2, R

′
3, ...R

′
n. Then P (Ri →

Rj) = P (R′
i → R′

j) i.e. the probabilities of transition must be equal.
This means the operator U : R → R′ must be either 1) Unitary and
Linear or 2) Anti-unitary and Anti-linear. Thus either

1.
⟨Uϕ|Uψ⟩ = ⟨ϕ|ψ⟩, U(ξϕ+ ηψ) = ξUϕ+ ηUψ

or

2.
⟨Uϕ|Uψ⟩ = ⟨ϕ|ψ⟩∗, U(ξϕ+ ηψ) = ξ∗Uϕ+ η∗Uψ

� If L is linear the adjoint is defined by:

⟨ϕ|L†ψ⟩ ≡ ⟨Lϕ|ψ⟩ = ⟨ψ|Lϕ⟩∗

Note that LHS and RHS are both anti linear in ϕ. If L were anti linear
then RHS would be linear in ϕ.

For anti-linear we must have the definition

⟨ϕ|A†ψ⟩ ≡ ⟨Aϕ|ψ⟩∗ = ⟨ψ|Aϕ⟩

�

⟨ϕ|A†ψ⟩ = ⟨ϕ|A†|ψ⟩ = ⟨Aϕ|AA†|ψ⟩∗ = ⟨Aϕ|ψ⟩∗

This means AA† = I. Thus both for unitary and antiunitary UU † = I.
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� P, T

Define

Pµ
ν =


1

−1
−1

−1


This is a discrete element of the Poincare group. so is T below.

T µ
ν


−1

1
1

1


� If this is a symmetry ∃P , a unitary operator, that commutes with H.
The generators iJµν and iP µ are mapped into themselves. Thus

PiJρσP−1 = Pρ
µPσ

νiJ
µν

and similary momentum and also for T .

Special cases: H = P 0.

PiHP−1 = iH, THT−1 − iH

If P is unitary then E → E. which is OK. If T is unitary then E → −E
which is not OK. ∴ T must be antiunitary. It changes i to −i.

� Let ψk,σ be a state with P⃗ = 0 spin σ.

Pψk,σ = ησψk,σ

. η is called intrinsic parity. Note J is an axial vector, so σ is not
reversed.

We can now act with a Lorentz boost: L(p⃗) . PL(P⃗ )P−1 = L(P p⃗).
Thus

ψp,σ = U(L(p⃗))ψk,σ

Pψp,σ = PUP−1Pψp,σ = U(L(P p⃗))ησψk,σ = ησψP p⃗,σ

Thus the intrinsic parity is a property of the particle.

73



� Similarly Tψk,σ = ξσψk,−σ - spin is reversed.

�

T (J1 + iJ2)T
−1 = −J1 + iJ2

T (J1 − iJ2)T
−1 = −J1 − iJ2

because of the i.

�

T (J1 + iJ2)ψk,σ = T
√
(j − σ)(j + σ + 1)ψk,σ+1 = T (J1 + iJ2)T

−1Tψk,σ

= (−J1 + iJ2)ξσψk,−σ = −ξσ
√

(j − σ)(j + σ + 1)ψk,−σ−1

Thus Tψk,σ+1 = ξσ+1ψk,−σ−1 Thus ξσ+1 = −ξσ.
Now σ ranges from +j to −j. Thus if we let ξj = ξ then ξ−j = ξ(−1)2j

and for general σ, ξσ = ξ(−1)j−σ.

� Unlike intrinsic parity ξ is not significant. Thus let eiθψk,σ be the state.
Then

Teiθψk,σ = e−iθTψk,σ = e−iθξψ−k,−σ

Choose θ so that e2iθ = ξ. Then Teiθψk,σ = eiθψ−k,−σ Thus we have
intrinsic phase is zero and ξ = 1.

� Note also that is 2j is odd integer then T 2ψk,σ = (−1)2jψk,σ = −ψk,σ.
In particular Tψ ̸= ψ because if Tψ = ξψ then T 2ψ = ξ∗ξψ = ψ
-contradiction. This is important: Even if background E⃗ is there so
there is no rotational inv, there cannot be a dipole moment prop to
spin. Because this would remove the degeneracy between +1

2
and −1

2
.

But these states have to be degenerate, if T is a good symmetry. This
is Kramer’s degeneracy.

8.1 P, T, C in QFT:

Pψp⃗,σ = ηψ−p⃗,σ
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� spin 0

ϕ(x) =

∫
d3p

(2π)3
1√
Ep

[a(p)eipx + b†(p)e−ipx]

ϕ†(x) =

∫
d3p

(2π)3
1√
Ep

[a†(p)e−ipx + b(p)eipx]

a†(p)|0⟩ = ψp⃗,0. Pa
†(p)|0⟩ = ηψ−p⃗,0

∴ Pa†(p)P−1P |0⟩ = ηa†(−p⃗)|0⟩

⇒ Pa†(p)P−1 = ηa†(−p⃗), Pa(p)P−1 = η∗a(−p⃗)

Similarly Pb†(p⃗)P−1 = ηbb
†(−p⃗). Plugging into mode expansion, (and

defining the integration ariable p′ = −p where required) if η∗ = ηb the
field ϕ has a well defined transformation : Pϕ(x⃗, t)P−1 = η∗ϕ(−x⃗, t).
η is the intrinsic parity of the state.

Note that requiring that the field ϕ have a well defined transformation
under P relates the phase of the particle and antiparticle. This is one
of the consequences of the field theory hypothesis.

� spin 1
2
Pψp⃗, 1

2
= ηψ−p⃗, 1

2
.

ψ(x) =

∫
d3p

(2π)3
1√
2Ep

2∑
s=1

[as(p)us(p)eipx + b†s(p)vs(p)e−ipx]

ψ†(x) =

∫
d3p

(2π)3
1√
2Ep

2∑
s=1

[a†s(p)u†s(p)e−ipx + bs(p)v†s(p)eipx]

a†sp |0⟩ is a fermion state. Pa†sp (p⃗)P
−1 = ηa†sp (−p⃗). We assume that the

phase for b is ηb:Pb
†s
p (p⃗)P

−1 = ηbb
†s
p (−p⃗).

Pψ(x)P−1 =

∫
d3p

(2π)3
1√
2Ep

2∑
s=1

[η∗as(−p⃗)us(p)eipx+ηbb†s(−p⃗)vs(p)e−ipx]
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us(−p⃗) =
( √

−p.σ̄ξs√
−p.σξs

)
= γ0us(p⃗)

Similary vs(−p⃗) = −γ0vs(p⃗). Let p⃗′ = −p⃗

Pψ(x)P−1 =

∫
d3p′

(2π)3
1√
2E ′

p

2∑
s=1

[η∗as(p⃗′)γ0us(p′)e−iEt−ip
′x+ηbb

†s(p⃗′)(−γ0)vs(p′)eiEt+ip′x]

So if we choose η∗ = −ηb we have the transf rule:

Pψ(x⃗, t)P−1 = γ0ψ(−x⃗, t)

The minus sign between η and ηb implies that a fermion and anti
fermion have opposite intrinsic parity. Thus a fermion anti fermion
bound state will have intrinsic negative parity (if they are in s-wave).
The parity due to orbital ang momentum is over and above this.

Note that ψ̄γ5ψ is a pseudo scalar etc...

9 Functional Formalism for Field Theo-

ries

For a point particle (one degree of freedom) we wrote down an expres-
sion for the amplitude of propagation:

K(Xf , tf ;Xi, ti) =
∫ x(tf )=Xf

x(ti)=Xi
Dx(t)︸ ︷︷ ︸

sumover paths

exp(+ i
ℏ

∫ tf
ti
dtL(x(t), ˙x(t))

(66)
There is also the more general case where there is an external force:

K(Xf , tf ;Xi, ti)j =
∫ x(tf )=Xf

x(ti)=Xi
Dx(t)︸ ︷︷ ︸

sumover paths

exp(+ i
ℏ

∫ tf
ti
dt[L(x(t), ˙x(t)) + j(t)x(t)]

(67)
This was explicitly worked out in the case of the HO. As explained
there this contains all the information about correlation functions.

We calculate the amplitude that the field at t = ti in some specific
configuration ϕi(x, y, z) evolves to another configuration ϕf (x, y, z) at
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a later time tf . Note that the initial and final configuration in the case
of a field is a function of x, y, z. In the point particle case it was a
number (or a set of numbers) giving the coordinates of the particle.
Thus the integral is one over all possible paths in configuration space.
This is called a functional integral. Thus instead of

∫
Dx(t) we have∫

Dϕ(x, y, z, t).
Thus

K(ϕf (x, y, z), tf ;ϕi(x, y, z), ti) =

∫ ϕ(x,y,z,tf )=ϕf (x,y,z)

ϕ(x,y,z,ti)=ϕi(x,y,z)

Dϕ(x, y, z, t)ei
∫ tf
ti

∫
d3xL[ϕ,∂µϕ]

As in the point particle case we can construct the vacuum to vacuum
amplitude - where the gnd state is the gnd state of the free theory -
and get

⟨0|U(+∞,−∞)|0⟩J ≡ H⟨0,+∞|0,−∞⟩HJ

=

∫
Dϕ(x, y, z, t)ei

∫
dt

∫
d3x[− 1

2
∂µϕ∂µϕ− 1

2
(m2−iϵ)ϕ2+Jϕ]

= Z[0]e
i
2ℏ

∫ d4p

(2π)4
J(p)J(−p)

p2+m2−iϵ

= Z[0]e
i
2ℏ

∫
d4x1

∫
d4x2 J(x1)J(x2)GF (x1,x2)

= Z[J ] (68)

Also from (44) Z(0) =
√
Det 2π

−(p2+m2−iϵ) . Furthermore:

1

Z[0]

δ2Z[J ]

δJ(x1)δJ(x2)
|J=0 = iGF (x1, x2) =

⟨0,+∞|T [iϕ(x1)iϕ(x2)]|0,−∞⟩
⟨0,+∞|0,−∞⟩

= −⟨0|T (ϕ(x1)ϕ(x2))|0⟩ (69)

Thus we recover the usual results.

9.1 Interactions - Functional Formalism: Z[J]

We have seen how the vacuum to vacuum amplitude in the presence of
an external source - Z[J ]- can be calculated in the functional formalism
for the free theory. We now proceed to do this in the interacting theory.
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This can be used to evaluate the expectation values of time ordered
products of fields, which as we have seen, gives (via the LSZ theorem)
the S-matrix. Also for statistical systems it gives the various correlation
functions that are of interest.

Thus let us consider the following action:

S[ϕ] =

∫
d4x[−1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4] (70)

We define the Generating Functional Z[J ]:

Z[J ]λ =

∫
Dϕ(x, y, z, t)ei

∫
dt

∫
d3x[− 1

2
∂µϕ∂µϕ− 1

2
(m2−iϵ)ϕ2− λ

4!
ϕ4+Jϕ] (71)

= ⟨0,∞|0,−∞⟩J

Green’s functions can be evaluated by taking functional derivatives just
as was done for the free case. Thus Zλ[J ] contains all the information
about the quantum theory. As in the free particle case the classical
configuration is the one that gives the largest contribution to the func-
tional integral and can be obtained by extremizing (minimizing) the
action - and this gives the Euler-Lagrange equations of motion. One
can also see the role of the equation of motion of the quantum theory
by the following procedure: As an identity∫

Dϕ(x) δ

δϕ(y)
eiS = 0

This is assuming that the boundaries of field space (infinity) give zero
contribution because the action is infinite. Or if the field is compact
there is no boundary. This immediately gives:∫

Dϕ(x) iδS
δϕ(y)

eiS = ⟨0|T [ iδS
δϕ(y)

]|0⟩ = 0

Thus in the quantum theory the equation of motion holds as an expec-
tation value. We can also consider insertions of ϕ:∫

Dϕ(x) δ

δϕ(y)
[ϕ(z)eiS] = 0
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=

∫
Dϕ(x)[ iδS

δϕ(y)
ϕ(z) + δ(z − y)]eiS = 0

⇒ ⟨0|T [ iδS
δϕ(y)

ϕ(z)]|0⟩+ δ(z − y) = 0

For the free theory this would give:

i(∂µ∂
µ −m2)⟨0|T [ϕ(y)ϕ(z)]|0⟩+ δ(z − y) = 0

9.2 Perturbative Evaluation of Zλ[J ]

We will use perturbation theory to evaluate Z[J ]. Thus

Z[J ]λ =

∫
Dϕ(x, y, z, t)ei

∫
dt

∫
d3x[− 1

2
∂µϕ∂µϕ− 1

2
(m2−iϵ)ϕ2+Jϕ][1+

−
∫
d4x

iλ

4!
ϕ(x)4 +

∫
d4x

−iλ
4!

ϕ4(x)

∫
d4y

−iλ
4!

ϕ4(y) + ....] (72)

Now use the fact that δ
δJ(x)

brings down iϕ(x) from the exponent. Thus

the O(λ) term can be written as:

−iλ
4!

∫
d4x (−i δ

δJ(x)
)4Z[J ]0 (73)

Similarly the O(λ2) term can be written as

[
−iλ
4!

∫
d4x (−i δ

δJ(x)
)4][

−iλ
4!

∫
d4y (−i δ

δJ(y)
)4]Z[J ]0 (74)

It follows that
Z[J ]λ = e−i

λ
4!

∫
d4x (−i δ

δJ(x)
)4Z[J ]0 (75)

where Z[J ]0 was evaluated earlier

Z[J ]0 = Z[0]e
i
2

∫
d4x1

∫
d4x2 J(x1)GF (x1−x2)J(x2) ≡ eiW0[J ]

Thus we need to evaluate (−i δ
δJ(x)

)4eiW0[J ]. We need

i
δW0

δJ(x)
= i

∫
d4y GF (x− y)J(y)
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Figure 1: Feynman Diagrams

and

i
δ2W0

δJ(x)2
= iG(x− x)

These can be represented diagrammatically as ”Feynman Diagrams”.
Rules for drawing these diagrams can be made. ”Feynman Rules”.
Combinatoric rules can be made to get the combinatoric factors such
as 3 and 6 multiplying these expressions.

We can use these in:

δ4Z[J ]

δJ(x)4
= [3(

iδ2W0

δJ2
)2 + 6i

δ2W0

δJ2
(i
δW0

δJ
)2 + (i

δW0

δJ
)4]eiW0[J ]

The argument x of J has been suppressed. Thus to O(λ), Zλ[J ] is given
by

Zλ[J ] = Z0[J ]− i
λ

4!

∫
d4x

δ4Z[J ]

δJ(x)4
=

{1− i
λ

4!

∫
d4x [3(

iδ2W0

δJ2(x)
)2︸ ︷︷ ︸

(1)

+6i
δ2W0

δJ2(x)
(i
δW0

δJ(x)
)2︸ ︷︷ ︸

(2)

+(i
δW0

δJ(x)
)4︸ ︷︷ ︸

(3)

]}Z0[J ]

(76)
So to order λ:

Zλ[J ] = Z0[J ][1− i
λ

4!
((1) + (2) + (3)]

9.3 Green’s Functions

Having calculated Zλ[J ] we can proceed to evaluate Green’s functions.

Example: Calculate

δ4Z0[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
|J=0
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δZ0

δJ(x1)
= i

δW0

δJ(x1)
eiW0

δ2Z0[J ]

δJ(x1)δJ(x2)
= (i

δ2W0[J ]

δJ(x1)δJ(x2)
+ i

δW0

δJ(x1)
i
δW0

δJ(x2)
)eiW0

δ3Z0[J ]

δJ(x1)δJ(x2)δJ(x3)
= (i

δ2W0[J ]

δJ(x1)δJ(x2)
i
δW0

δJ(x3)
+i

δ2W0[J ]

δJ(x1)δJ(x3)
i
δW0

δJ(x2)
+

i
δ2W0[J ]

δJ(x3)δJ(x2)
i
δW0

δJ(x1)
)eiW0

δ4Z0[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
= i

δ2W0[J ]

δJ(x1)δJ(x2)
i

δ2W0[J ]

δJ(x3)δJ(x4)
+

i
δ2W0[J ]

δJ(x1)δJ(x3)
i

δ2W0[J ]

δJ(x2)δJ(x4)
+i

δ2W0[J ]

δJ(x1)δJ(x4)
i

δ2W0[J ]

δJ(x2)δJ(x3)
+terms involving

δW0

δJ

When we set J = 0 only the first three terms survive and what we get
is:

= iG(x1−x2)G(x3−x4)+iG(x1−x3)G(x2−x4)+iG(x1−x4)G(x3−x2)

and what we have evaluated is ⟨0|T [ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)]|0⟩.
Diagrammatically:

O(λ) contribution to G:

Now we evaluate theO(λ) contribution to the Green’s function ⟨0|T [ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)]|0⟩.
Thus we have the sum of three terms. The first one is:

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
[(1)×Z0[J ]] = (1)× δ4Z0[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

= 3(i)2(G(x− x))2
δ4Z0[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
|J=0

Since there are no J ’s in (1). This term has already been evaluated
above.

Similarly acting on (2)Z0[J ], two of the derivatives act on (2) and the
remaining two act on Z0[J ]:
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δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
[(2)× Z0[J ]] =

6(i)3G(x− x)G(x− x1)G(x− x2)i
δ2W0[J ]

δJ(x3)δJ(x4)
Z0[J ]|J=0+

two other permutations

= 6G(x−x)G(x−x1)G(x−x2)G(x3−x4)Z0[0]+two other permutations

The third term is (all derivatives act on (3)):

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
[(3)×Z0[J ]]|J=0 = 4!G(x−x1)G(x−x2)G(x−x3)G(x−x4)Z0[0]

The first two terms are essentially forward scattering terms, i.e there is
no interaction between the scattering particles. Only the last term is
a genuine scattering and it contributes to the S-matrix. Thus the final
result for this terms is

−iλ
∫
d4x G(x− x1)G(x− x2)G(x− x3)G(x− x4)

where we have divided by the vacuum to vacuum amplitude.

9.4 Feynman Diagrams and Rules

Above we have explicitly calculated Green functions and represented
them diagrammatically. We can directly draw the diagrams if we ob-
serve some facts.

1. At the end of the day we are always evaluating (−i)n δnZ0[J ]
δJ(1)δJ(2)...δJ(n)

|J=0.

This is going to be some products of iδW0

δJ
and iδ2W0

δJ(1)δJ(2)
. When

we set J = 0, δW0

δJ
becomes zero. So we are left with products of

(−i)2 iδ2W0

δJ(1)δJ(2)
= −iGF (x1−x2). This called a ”contraction of two

fields” since it represents a two point function. Thus all we have
to do is to make all possible contractions.
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2. The δ
δJ

comes from two sources: i) External fields: Thus if we
are evaluating ⟨0|T [ϕ1ϕ2..ϕn]|0⟩ we will have products of n factors
δ
δJi

. ii) Vertices: The action contains Sint[ϕ] = Sint[−i δδJ ]. Thus

we get a factor of −i λ
4!

∫
d4x (−i)4 δ4

δJ(x)4
from each such term. At

n’th order we have (iSint)
n

n!
.

3. Thus we can draw a diagram:

– Draw the external points xi with one line coming out of each
of them.

– Draw the location of the interaction terms, say x, y.. . As-
sociated with each there is a factor −i λ

4!

∫
d4x ( or

∫
d4y ...).

There are four lines coming out of each of these.

– Make contractions between all lines. The contractions can be
between any pair of points (a, b) where a, b can be an external
point or an interaction vertex. Keep track of the combinatoric
factors counting the different possible ways of making these
contractions to get the same diagram.

– For each contraction between a pair of points a, b associate a
factor −iGF (a− b).

With the above rules one can make diagrams in a simple way.

4. Having drawn a diagram with all the numerical coefficients one can
write it in momentum space. The factor −iGF (x− y) is replaced
by −i

p2+m2−iϵ . Momentum conservation is imposed at each vertex.

If there are undetermined internal momenta, integrate
∫

d4p
2π4 .

5. Connected and Disconnected diagrams

When we evaluate a green’s function (or the generating functionsl)
typically there are parts of the diagram that are not connected to
each other. So the diagram can be separated into disconnected
pieces. Eg Fig 3. If a diagram has no disconnected parts it is
called connected.

The disconnected diagram again may be of two types. If the ex-
ternal lines belong to different external parts, then these two sets
of external lines do not see each other. These are typically either
forward scattering (where each particle is unaffected) or products
of two scattering processes involving smaller number of particles.
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These are not interesting (because they have been calculated al-
ready in a lower order term).

Sometimes one of the disconnected pieces have no external legs
(i.e. factors of J). These are called ”vacuum bubbles”. An eg
of a vacuum bubble is Fig 4. It comes at O(λ) and it is equal
to −i3 λ

4!

∫
d4xGF (x − x)GF (x − x). Since GF (x − x) = G(0) it

doesn’t depend on x. So we end up getting −iV T × Y where Y
is some number O(λ) and V T is the space time volume.

At next order in λ we will have a product of two such terms - so

we get (−iV TY )2

2!
and at n′th order we get (−iV TY )n

n!
. In fact they

exponentiate to give e−iV TY .

The same argument can be made for any vacuum bubble: they
all exponentiate. Thus at the end of the day the vacuum bubbles
contribute a phase factor e−iV T (Y+Z+...). They multiply all Green’s
functions and is a common factor. In fact they also multiply
the identity which means they are just the vacuum to vacuum
amplitude that we have talked about. So dividing by the factor
⟨0,∞|0,−∞⟩ gets rid of vacuum bubbles. So we need not evaluate
diagrams with vacuum bubbles.

6. External Leg Corrections: The diagrams shown in Fig ... are of
a special form. They modify the propagator of the particle. On
shell they modify the mass of the particle which is defined as the
pole of the propagator. So in the S-matrix calculation (fig 3) if
one uses the physical mass of the particle then one need not worry
about these diagrams. Only the central blob is important. The ex-
ternal leg factors do contribute to wave function renormalization.
Thus if one wants the external state to consist of one particle, then
one has to multiply by a factor

√
Z which is less than 1 (formally

- in practice these are infinite!). Thus the full propagator has a
piece of the form

G(p) =
Z

p2 +m2 − iϵ
+multi particle contributions

So the requirement that external states be one particle states re-
duces the final amplitude by a factor (

√
Z)n, when there are n

external states.
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Figure 3:

10 Functional Formalism for Fermions

We have seen that for fermions we have anticommutation relations.
This means that we cannot represent by ordinary functions in the
functional formalism. We need the concept of Grassmann numbers
or variables. These are anticommuting versions of ordinary variables.

10.1 Grassmann Calculus

1. Grassmann Variable
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θ : {θ, θ} = 0 ⇒ θ2 = 0

(Curly brackets denote anticommutators.)

θ1, θ2 : {θ1, θ2} = 0 ⇒ θ1θ2 = −θ2θ1 ; θ21 = θ22 = 0

Similarly θ1, θ2, θN for arbitrary N - maybe infinite.

2. Differentiation:

{ d
dθ
, θ} = 1

function f(θ) = a+ bθ (since higher powers are zero). b must be
Grassmann in order for the function to be well defines - commuting
- otherwise some part is commuting and some part of it is anti
commuting.

df

dθ
=

d

dθ
bθ = −b d

dθ
θ = −b

Similarly

{ d

dθ1
,
d

dθ2
} = { d

dθ1
,
d

dθ1
} = 0

Also
d

dθ1
θ2 =

d

dθ2
θ1 = 0

3. Integration ∫
dθ1 = 0

∫
dθθ = 1

So integration = differentiation.∫
dθ1

∫
dθ2 θ1θ2 = −

∫
dθ1 θ1

∫
dθ2 θ2 = −1

4. Integration over functions

f(θ1, θ2) = a0 + a1θ1 + a2θ2 + a12θ1θ2∫
dθ1

∫
dθ2 f = −a12

This can be generalized in an obvious way.
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Consider
e−

1
2
θTMθ = e−

1
2

∑N
i=1 θiMijθj

If N = 2 this is

e−
1
2
θ1M12θ2− 1

2
θ2M21θ1 = e−

1
2
θ1(M12−M21)θ2 = 1− 1

2
θ1(M12 −M21)θ2

∫
dθ1

∫
dθ2 e

− 1
2
θTMθ =

1

2
(M12 −M21) =M12 =

√
Det M

Clearly only the antisymmetric part of M contributes. This can
easily be generalized to larger values of N , so from now on we take
M to be an antisymmetric matrix.∫

dθ1

∫
dθ2 ...

∫
dθN e−

1
2
θTMθ =

√
Det M

5. Correlators ∫
dθ1

∫
dθ2 ...

∫
dθN θkθl e

− 1
2
θTMθ

=

∫
dθ1

∫
dθ2 ...

∫
dθN − 2

d

dMkl

e−
1
2
θTMθ = −2

d

dMkl

√
Det M

=
√
DetM(M−1)kl

6. Add Grassmann sources:

Z[χ] =

∫
dθ1

∫
dθ2 ...

∫
dθN e−

1
2
θTMθ+χT θ

Shift variables: θ′ = θ +M−1χ:

θ′TMθ′ = θTMθ − 2χT θ − χTM−1χ

So substitute for θTMθ, (dropping the primes on θ)

Z[χ] =

∫
dθ1

∫
dθ2 ...

∫
dθNe

− 1
2
θTMθ− 1

2
χTM−1χ =

√
Det Me−

1
2
χTM−1χ

⟨θkθl⟩ =
δ2

δχkχl
Z[χ] =

√
DetM(M−1)kl
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7. Complex notation

Let θ = θ1+iθ2√
2

and θ∗ = θ1−iθ2√
2

.

Then as before∫
dθ θ =

∫
dθ∗ θ∗ = 1 ;

∫
dθ∗

∫
dθ (θ∗θ) = −1

∫
dθ∗1

∫
dθ1

∫
dθ∗2

∫
dθ2e

−b1θ∗1θ1−b1θ∗2θ2 = b1b2

which generalizes to

∫
dθ∗1

∫
dθ1

∫
dθ∗2

∫
dθ2.....

∫
dθ∗N

∫
dθNe

−θ∗TBθ = DetB

And adding complex Grassmann sources:

∫
dθ∗1

∫
dθ1

∫
dθ∗2

∫
dθ2.....

∫
dθ∗N

∫
dθNe

−θ∗TBθ+η∗T θ+θ∗T η

= DetB eη
∗TB−1η

10.2 Dirac Action

Apply this to the Dirac theory we get

Z[η, η̄] =

∫
Dψ̄Dψei

∫
d4xψ̄(iγµ∂µ−m)ψ+η̄ψ+ψ̄η (77)

In the above B = −i(iγµ∂µ−m) and B−1 = SF (x− y) and in momen-
tum basis B−1 = −i

γµpµ+m
. Also note that our sources are iη̄ and iη.

So
1

i

δ

δη
= −ψ̄ ,

1

i

δ

δη̄
= ψ

and
Z[η, η̄] = DetB e

∫
d4x1

∫
d4x2 η̄(x1)SF (x1−x2)η(x2) (78)

= Det[−i(iγµ∂µ −m)] e
i
∫ d4p

(2π)4
η̄(p) 1

γµpµ+m
η(−p)
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Also
1

i2
δ2Z

δη̄(x)δη(y)
= −⟨0|T (ψ(x)ψ̄(y))|0⟩ = −SF (x− y)

⇒ δ2Z

δη̄(x)δη(y)
= ⟨0|T (ψ(x)ψ̄(y))|0⟩ = SF (x− y)

10.3 Application: Yukawa Interaction

As an example of the above let us apply this to the Yukawa theory

L = ψ̄(iγµ∂µ −m)ψ − 1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − 1

2
∂µχ∂

µχ− 1

2
m2χ2︸ ︷︷ ︸

L0

+ gψ̄ψϕ+ hχ̄χϕ︸ ︷︷ ︸
Lint

We have the propagators

⟨0|T (ϕ(x)ϕ(y))|0⟩ = DF (x− y), ⟨0|T (χ(x)χ(y))|0⟩ = ∆F (x− y),

⟨0|T (ψ(x)ψ̄(y))|0⟩ = SF (x− y)

Thus

Z[η̄, η, J, j] =

∫
Dψ̄DψDϕDχei

∫
d4x[L+η̄ψ+ψ̄η+Jϕ+jχ]

If we define

Z0 =

∫
Dψ̄DψDϕDχei

∫
d4x[L0+η̄ψ+ψ̄η+Jϕ+jχ]

= e−
∫ ∫

(η̄SF (x−y)η+ 1
2
JDF J+

1
2
j∆F j

then

Z[η̄, η, J, j] = ei
∫
d4x [g(− 1

i
δ

δηa(x)
)( 1

i
δ

δη̄a(x)
)( 1

i
δ

δJ(x)
)+h( 1

i
δ

δj(x)
)( 1

i
δ

δj(x)
)( 1

i
δ

δJ(x)
)]Z0[η̄, η, J, j]

The Dirac indices, a, are summed over.

Let us calculate a term in Z that has one J , and to lowest non trivial
order in g, h. This comes from:

i

∫
d4x [g(−1

i

δ

δηa(x)
)(
1

i

δ

δη̄a(x)
)(
1

i

δ

δJ(x)
)+h(

1

i

δ

δj(x)
)(
1

i

δ

δj(x)
)(
1

i

δ

δJ(x)
)]Z0[η̄, η, J, j]
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=

∫
d4x

∫
d4y [gJ(y)DF (y−x)Tr(SF (x−x))−hJ(y)DF (y−x)∆F (x−x)]

This can be obtained from the Feynman Rules: i) Each propagator
gives a factor of SF , DF ,∆F . ii) Each vertex is ig × I (- in the Dirac
index space it is identity) or ih andiii) for each external boson leg a
factor i J or i j and iv) a trace and a factor of (−1) for each fermion
loop.

11 Effective Action Γ

A very useful object in QFT is the effective action. It is defined as the
Legendre transform of W [J ]. It is the action that is to be used as a
tree level (i.e. classical action) to evaluate correlation functions in the
full quantum theory. It has all the information of the quantum theory
in it.

1. Definition

Z[J ]λ =

∫
Dϕ eiS[ϕ]+i

∫
d4x J(x)ϕ(x) (79)

Let

S[ϕ] =

∫
d4x{−1

2
(∂µϕ∂

µϕ+m2ϕ2)− V [ϕ]}

V [ϕ] = λ
4!
ϕ4 is an example.

Then
Z[J ]λ ≡ eiW [J ] = e−iV [ 1

i
δ
δJ

]eiW0[J ]

and

W0[J ] =
1

2

∫
x

∫
y

JxGF (x− y)Jy

eiW [J ] ≡ Z[J ] =

∫
Dϕ eiS[ϕ]+i

∫
d4x J(x)ϕ(x) ≡ eiΓ[ϕcl]+i

∫
x JxΦcl (80)

2. Legendre Transform

1

i

δZ

δJ(x)
=

∫
Dϕ ϕ(x)eiS[ϕ]+i

∫
d4x J(x)ϕ(x) = Φcle

iΓ[ϕcl]+i
∫
x JxΦcl
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Thus

δW

δJ(x)
=

1

Z

1

i

δZ

δJ(x)
=

⟨+∞, 0|ϕ|0,−∞⟩J
⟨+∞, 0|0,−∞⟩J

= Φcl(x)

Thus we get the Legendre transform relation:

δW [J ]

δJ(x)
= Φcl(x) (81)

So we have to invert this relation, solve for J in terms of Φcl and
substitute in W and in

W [J ] = Γ[Φcl] +

∫
dx J(x)Φcl(x)

to get Γ.

3. Free Theory

W0[J ] =
1

2

∫
x

∫
y

JxGF (x−y)Jy;
δW0[J ]

δJ(x)
=

∫
y

GF (x−y)Jy = Φcl(x)

Acting with the wave operator:

(□x −m2)
δW0[J ]

δJ(x)
= −J(x) = (□x −m2)Φcl(x)

Thus Φcl obeys the classical EOM.

4. Inverting the Relation

Γ[Φcl] = W [J ]−
∫
x

JxΦclx

δΓ

δJ(x)
=

∫
y

δΓ

δ|Phicl(y)
δΦcl(y)

δJ(x)
=

δW

δJ(x)
−Φcl(x)−

∫
y

J(y)
δΦcl(y)

δJ(x)

Thus using the defn of Φ we get comparing coefficient of δΦ
δJ(x)

,

δΓ

δΦcl(y)
= −J(y)
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5. Quantum Corrected EOM

Zλ[J ] = e−iV [ 1
i

δ
δJ

]eiW0[J ]

1

i

δZλ
δJ(x)

= e−iV [ 1
i

δ
δJ

]

∫
y

GF (x− y)J(y)Z0[J ]

(□x −m2)
1

i

δZλ
δJ(x)

= e−iV [ 1
i

δ
δJ

][−J(x)]eiV [ 1
i

δ
δJ

]Zλ[J ]

= −J(x)Zλ[J ] + [e−iV [ 1
i

δ
δJ

], J ]eiV [ 1
i

δ
δJ

]Zλ[J ]

1

Zλ[J ]
(□x −m2)

1

i

δZλ
δJ(x)

= −J(x) + 1

Zλ[J ]
V ′[

1

i

δ

δJ(x)
]Zλ[J ]

We have used [J, 1
i

δ
δJ(x)

] = −1
i
. Thus

(□x−m2)Φcl(x) = −J(x)+ λ

3!
[(
δW

δJ(x)
)3︸ ︷︷ ︸

Φcl(x)3

−6i
δ2W

δJ(x)2
δW

δJ(x)
− δ3W

δJ3(x)︸ ︷︷ ︸
O(ℏ)

The Φ3
cl term is part of the interacting classical EOM. The rest of

it is non classical. We see that the interacting classical equation
is corrected by quantum effects.

12 Application to Particle Physics: S-Matrix

� Having described the properties of free quantum field theories, and
listed possible interaction terms, we need to spell out what it is that
we seek to calculate. In particle physics the goal is to calculate the
S-Matrix. Experiments involve collision of two particles, followed by
detection of what comes out of the collision. The probability ampli-
tudes of all the possibilities is the information contained in this matrix.
So first we need a precise definition.

� The first ingredient is the definition of the initial state. These are typ-
ically states containing widely separated particles. Since the particles
are widely separated they do not interact with each other. This is an
experimental fact and is also a property of any local QFT. It is called
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”cluster decomposition”. Thus the state can be thought of as a direct
product of single particle states. Single particle states are defined by
their quantum numbers: 4-momentum, spin, charge etc. Let Eα be the
actual energy, this single particle state. It is an eigenvector of the full
H : i.e there is a state Ψα that satisfies HΨα = EαΨα. Thus (following
Weinberg’s notation) let Φα denote a single particle eigenstate of the
free Hamiltonian with the same energy: H0Φα = EαΦα. This means
that the parameters of H0 will be chosen so that Eα is the energy of
this state. The full Hamiltonian H can be written as H = H0 + HI ,
where HI is the interaction part - it is defined by this relation.

For the free theory the multiparticle state is simply a direct product
of free single particle state and is also an eigenstate. Thus Eα = E1 +
E2 + ... where Ei are the various single particle energies. Thus more
generally we let Φα denote a multi particle eigenstate of H0. However
this multiparticle state is not an eigenstate of the full Hamiltonian.

We are in the Heisenberg formalism where a general state Ψ defines
a history and has no time dependence. However at different times,
observes will see different things. What they see are related by the
evolution operator e−iHt. Thus at time t an observer will see the ket
e−iHtΨ if the observer at time t = 0 sees the ket Ψ - and this happens
because the operators that the observer uses at time t are related to
the ones he uses at t = 0 by OH(t) = eiHtO(0)e−iHt. In the Scroedinger
formalism one would simply say that the state itself changes.

Note that in the Heisenberg formalism Ψ defines a history - so it is var-
ious states (kets) at various times - related by Hamiltonian evolution.
So Ψ is a label he uses for the history - the label could be the descrip-
tion of the state at t = 0. So we label the history by the Schrodinger
state at t = 0. An observer who uses a different clock - say his time is
zero when mine is t - will see at his time zero in this history a different
state - e−iHtΨ. He may label this history like that.

To describe the scattering experiment we have to define a Heisenberg
state (”history”) that has the property that an observer in the far past
would see it as two widely separated free particles. Thus to an observer
at t = −∞ it should look like the state Φα. Thus we get that our state
Ψα should satisfy:

lim
t→−∞

e−iHtΨα = lim
t→−∞

e−iH0tΦα
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Such a state is called an in-state Ψ+
α or |Ψα, in⟩.

Similarly the outcome of the scattering experiment is a bunch of widely
separated particles that one may hope to detect. These are eigenstates
of H0. Thus we let Ψβ be a state that to an observer at t = +∞ looks
like a bunch of widely separated particles - an eigenstate Φβ of H0 with
some definite energy Eβ. Thus

lim
t→+∞

e−iHtΨβ = lim
t→+∞

e−iH0tΦβ

These states are called out-states Ψ−
β or |Ψβ, out⟩.

The matrix elements ⟨out,Ψβ|Ψα, in⟩ = Sβα define the S-Matrix. One
can define the operator eiHte−iH0t = Ω(t) so that Ψα = limt→−∞ Ω(t)Φα

Then the S-matrix can also be written as

⟨out,Ψβ|Ψα, in⟩ = ⟨out,Φβ|Ω†(∞)Ω(−∞)|Φα, in⟩

We can also define Ω(t, t′) = Ω†(t)Ω(t′) = eiH0te−iH(t−t′)e−iH0t′ , in terms
of which the S-Matrix is S = Ω(+∞,−∞). Ω is just the evolution
operator with the infinte phases that would be there in free propagation
taken out. i.e. if the theory is free, Ω = 1 whereas the usual evolution
operator would be eiE(t−t′). It thus has only the effects of interaction.
Note that for a free theory Sβα = δ(α− β), by definition.

(Intuitively, In the Schroedinger formalism one would just take the
matrix element of the evolution operator e−iHt , for t → ∞ between
the multiparticle states |α⟩, |β⟩ with the free phase e−iEαt divided out

Sβα = lim
t→∞

⟨β|e−iHt+iEαt|α⟩

This is very rough - it works only if the initial state is an exact energy
eigenstate as plane waves. For wave packets it would require using H0

in place of Eα.)

� Let us illustrate all this with case of a single particle scattering (say off
a potential):

Free case:

Our initial state is |k⟩ and final state is |p⟩. So the naive FPI would
give:

Kfi = ⟨k|e−iH0(tf−ti)|p⟩
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= e−i
p2

2m
(tf−ti)δpk

We take ti = −T and tf = +T and let T → ∞. So we get

= e−i
p2

2m
2T δpk

Let us write the above in terms of Heisenberg history of states:

The history |k, ti⟩H is (writing the states at t = −T on the extreme
right,t = 0 in the middle and t = +T on the left:

e−i
p2

2m
2T |k⟩ e−i

p2

2m
T |k⟩ |k⟩

(Thus |k, ti⟩H is the state that is |k⟩ at t = ti.) Analogously H⟨p, tf | is

⟨p| ⟨p|e−i
p2

2m
T ⟨p|e−i

p2

2m
2T

The innerproduct ( can be evaluated at any time) is e−i
p2

2m
2T δpk. And

we can write this as

H⟨p, T |k,−T ⟩H = e−i
p2

2m
2T δpk

The infinite phase factor is clumsy and we would like to get rid of this.
So we need a history such that at t = 0 the states are |p⟩ and |k⟩.
In other words we need H⟨p, 0|k,−0⟩H = δpk. That corresponds to a
different history:

e−i
p2

2m
T |k⟩ |k⟩ ei

p2

2m
T |k⟩ = |k, in⟩ (82)

⟨p, out | = ⟨p|ei
p2

2m
T ⟨p| ⟨p|e−i

p2

2m
T (83)

Thus our state at t = −T should be ei
p2

2m
T |k⟩ = e−iH0ti |k⟩ and at t = tf

should be⟨p|ei p2

2m
T = ⟨p|eiH0tf . (Or e−iH0tf |p⟩ in terms of kets).

Thus with these initial and final states what we are calculating is

Spk = ⟨p|eiH0tf e−iH0(tf−ti) e−iH0ti |k⟩

= ⟨p|eiH0tf U(tf , ti) e
−iH0ti |k⟩
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= ⟨p| Ω(tf , ti) |k⟩
= δpk

Interacting Case:

The interacting case would have the same equation as above except
that U(tf , ti) = e−iH(tf−ti) where H is the full Hamiltonian rather than
the free one.

Thus if we define (with ti = −T, tf = T, T → ∞)

eiHtie−iH0ti |k⟩ = |k, in⟩H

This is the history that at t = ti is the state e−iH0ti |k⟩. and

⟨p|eiH0tf eiHtf =H ⟨p, out|

then
Spk =H ⟨p, out|k, in⟩H

If we draw the history |k, in⟩H , we get

e−H2T ei
p2

m
T |k⟩ e−iHT ei

p2

2m
T |k⟩ ei

p2

2m
T |k⟩

Similarly H⟨p, out|

⟨p|ei
p2

2m
T ⟨p|ei

p2

2m
T e−iHT ⟨p|ei

p2

2m
T e−iH2T

and

Spk =H ⟨p, out|k, in⟩H = ⟨p|ei
p2

2m
T e−iH2T ei

p2

2m
T |k⟩

Note that when H = H0 we recover the free result. Note also that the
state |k, in⟩ corresponds to |Ψα, in⟩ and |p, out⟩ corresponds to |Ψβ, out⟩
in the general case described earlier and |k⟩ corresponds to |Φα⟩.

� Differential equation for Ω:

Ω(t, t′) = eiH0te−iH(t−t′)e−iH0t′

dΩ

dt
= eiH0ti(H0 −H)e−iH(t−t′)e−iH0t′
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dΩ

dt
= eiH0ti(H0 −H)e−iH0t︸ ︷︷ ︸

−iHI(t)

Ω(t, t′)

i
dΩ

dt
= HI(t)Ω(t, t

′)

Integral equation is Ω(t, t′) = 1− i
∫ t
t′
dt′′HI(t

′′)Ω(t′′, t′)

Ω(t, t0) = T{e−i
∫ t
t0
dt′ HI(t

′)}

HI(t) has a time evolution due to free part only. This is the inter-
action picture. One can thus use the interaction picture field ϕI(t)
that has the property that ϕ(x, 0) = ϕI(x, 0) and can be expanded in
annihilation and creation operators. These are the free field operators.
At any given time this can always be done. One can also identify the
states of the Heisenberg picture and Scroedinger picture, as well as in-
teraction picture at a given. At a later time, and also at earlier times,
ϕ evolves in a complicated way involving H whereas ϕI evolves as free
field with H0 and thus always has an expansion in terms of a, a†. (In
the Schroedinger picture, ϕ does not evolve at all. ) Thus ϕI acts on
the vacuum of the free theory to create or annihilate a free particle.
Thus ⟨0|ϕI(x)|p⟩ = eipx. Similarly the full field ϕ acts on the vacuum of
the full theory to create or annihilate particles: ⟨ω|ϕ(x)|p⟩ =

√
Zeipx.

The factor of
√
Z is because ϕ does more than create single particle

states - it also creates multiparticle states in an interacting theory.

� The philosophy in perturbation theory is to work entirely with |0⟩ - the
free vacuum and ϕI a free field (because it evolves like a free field). The
relation between ϕ(x, t) and ϕI(x, t) allows one to write the interactions
in terms of ϕI . What allows us to write |ω⟩ in terms of |0⟩ is the
following observation: If one starts at t = −T ≈ −∞ with |0⟩ and lets
it evolve (by H) it will eventually settle down in the true ground state
of the theory. Thus

e−iH(t0−(−T ))|0⟩ = e−iE0(t0−(−T ))|ω⟩ ⟨ω|e−iH(T+t0)e+iE0(T+t0)|0⟩︸ ︷︷ ︸
= ⟨ω|0⟩ = C0

+
∑
n

e−iEn(t0−(−T ))t|n⟩Cn

In Euclidean time we can easily see that the lowest energy state will
dominate the RHS. One can also add a small imaginary part to t to
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make the same argument. So after a long time

lim
T→∞

|ω⟩ = e−iH(t0+T )eiE0(t+T )|0⟩ (⟨ω|0⟩)−1

Similarly one can expand ⟨0| in a complete basis and act on it from the
right by e−iH(T−t0). One gets using the Euclideanisation argument:

lim
T→∞

⟨ω| = ⟨0|e−iH(T−t0)eiE0(T−t0)(⟨0|ω⟩)−1

� Thus
⟨ω|T (ϕ(x1)ϕ(x2)...)|ω⟩ = (⟨0|ω⟩)−1

⟨0|eiE0T e−iHTT (Ω(t1)ϕI(x1)Ω
†(t1)Ω(t2)ϕI(t2)Ω

†(t2)...)e
−iHT eiE0T |0⟩(⟨ω|0⟩)−1

Now
⟨0|e−i(H−H0)T e−i(H−H0)T |0⟩ =H ⟨0, T |0,−T ⟩H

(Remember that e−iHT |0⟩ = e−iHT |0⟩H = |0,−T ⟩H . Also we assume
for simplicity that H0|0⟩ = 0, i.e. the pert vac has zero energy for the
free theory.) Now

⟨0|e−i(H−H0)T e−i(H−H0)T |0⟩ = ⟨0|e−i(H−H0)T |ω⟩⟨ω|e−i(H−H0)T |0⟩+higher excited states

= ⟨0|e−i(H−H0)T |ω⟩⟨ω|e−i(H−H0)T |0⟩
= e−2iE0T ⟨0|ω⟩⟨ω|0⟩

Thus two inverse powers (which are normalization factors)and e2iE0T

can be combined into ⟨0|Ω(T,−T )|0⟩. The various factors of Ω are eas-
ily seen to combine into (remember that factors of eiH0T can be added
at the ends because of our choice of energy definition) the evolution
operators Ω(ti, tj) inserted between operators and a factor Ω(T, t1) and
Ω(tn,−T ) at the ends. The whole thing is thus

⟨0|T (e−i
∫+T
−T HI(t)dtϕI(x1)ϕI(x2)....ϕI(xn))|0⟩(⟨0|Ω(T,−T )|0⟩)−1

Here |0⟩ is the interaction picture vacuum at t = 0.

This can also be written as

⟨0,+T |ϕ(x1)....ϕ(xn)|0,−T ⟩
⟨0,+T |0,−T ⟩
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which is what is naturally calculated in the FPI formulation.

This achieves the aim of writing everything in terms of interaction
picture entities. What remains is to give Wick’s theorm for evaluating
the time ordered product in perturbation theory. The denominator
normalization factor is called the vacuum to vacuum amplitude, or
vacuum persistence amplitude.

12.1 LSZ Reduction Formula

� Scalar Particles

This formula gives the S-matrix element in terms of time ordered prod-
ucts: (Note: We have used relativistic normalization for the external
states in this formula.)

⟨pβ, out|qα, in⟩ = Limp2i+m
2→0, ∀i=(1,..,β)

∫
d4x1 e

−ip1x1
∫
d4x2 e

−ip2x2 ...

∫
d4xβ e

−ipβxβ

Limq2j+m
2→0, ∀j=(1,...,α)

∫
d4y1 e

+iq1y1

∫
d4y2 e

+iq2y2 ...

∫
d4yβ e

+iqβyβ

⟨0|T (ϕ(x1)ϕ(x2)...ϕ(xβ)ϕ(y1)ϕ(y2), , ϕ(yα))|0⟩×
∏
i

(p2i+m
2)
∏
j

(q2j+m
2)

(84)
In this formula p0i = Epi and q

0
j = Epj

The factor e−iEqj y
0
j picks out the creation operator out of ϕ(yj) and the

corresponding factor for x0i picks the annihilaton operator out of ϕ(xi).
The integration over t blows up (on shell) but this pole is precisely
cancelled by the multiplicative factor of q2j +m2. The proof of this is
given in various textboks and we will not worry about it here.

� Dirac Particle

The factors eipx are the wave functions of the scalar field external states.
In the case of the spin 1/2 particle we replace them with corresponding
solutions of the Dirac equation.

The mode expansion of the Dirac field is given below:

ψ(x) =

∫
d3p

(2π)3

∑
s=1,2

1√
2Ep

[ as(p)︸ ︷︷ ︸
annihilation particle

us(p)eipx︸ ︷︷ ︸
+ve energy

+ b†s(p)︸ ︷︷ ︸
creation antiparticle

vs(p)e−ipx︸ ︷︷ ︸
−ve energy

]
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ψ†(y) =

∫
d3q

(2π)3

∑
s=1,2

1√
2Eq

[a†s(q)u†s(q)e−iqy + bs(q)v†s(q)e+iqy]

Thus if we have an incoming particle with spin labelled by s and
momentum q we need the operator a†s(q)e−iqx (or āse−iqx). Using∫
d3x ψ†(x)ur(q)eiqx = a†r(q)

√
2Eq we see that in the reduction for-

mula we need to multiply the Dirac field by
∫
d4x us(q)eiqx instead of∫

d4x eiqx of the scalar field reduction formula. Similarly the factor
q2 +m2 is replaced by γµqµ +m. Thus for an incoming particle the
factor is

∫
d4x (γµqµ +m)u(q).

For an incoming antiparticle
∫
d4x v̄s(q)eiqx(γµqµ +m).

For an outgoing particle
∫
d4x ūr(p)e−ipx(γµpµ +m).

For an outgoing anti particle
∫
d4x (γµpµ +m)vr(p)e−ipx.

� photons

This is very similar to the scalar field. For incoming photon the factor
is
∫
d4xeiqxϵrµ. There is a restriction that kµϵµ = 0.

12.2 S Matrix element for ϕ4

Let us apply the reduction formula for scalars to the ϕ4 theory leading order
term. We got

⟨0|T [ϕ(1)ϕ(2)ϕ(3)ϕ(4)]|0⟩ = −iλ
∫
d4x GF (x1−x)GF (x2−x)GF (x3−x)GF (x3−x)

(85)
We assume that x1, x2 are the incoming particles denoted by yi in the

LSZ formula.∫
d4x1e

iq1x1GF (x1 − x) = eiq1x
∫
d4x1e

iq1(x1−x)GF (x1 − x) = eiq1x
1

q21 +m2

Similarly for the outgoing particles:∫
d4x3e

−ip3x3GF (x3−x) = e−ip3x
∫
d4x3e

ip3(x3−x)GF (x3−x) = e−ip3x
1

p23 +m2

Thus the LSZ formula gives:

Sq1,q2;p3,p4 =

∫
d4x ei(q1+q2−p3−p4)x(−iλ) = −iλ(2π)4δ4(q1+q2−p3−p4) (86)
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12.3 Scattering Cross Section

We will derive expressions for the cross section starting from the S-matrix
element, obtained via the LSZ formula. 2

S = ⟨Φβ|Ω(+∞,−∞)|Φα, in⟩ = ⟨Ψβ, out|Ψα, in⟩ ≡ 1− iT (87)

If we therefore ignore forward scattering it has the form:

Sβα = −(2π)4iRβαδ
4(pβ − pα) (88)

This defines the matrix M . The LSZ reduction formula uses relativistic
normalization. If we use ordinary non relativistic normalization we can write

Sβα = −(2π)4iMβαδ
4(pβ − pα) (89)

This defines M .
Since the states are typically plane waves we need to be careful in defining

transition probabilities since plane waves are not normalizable in the usual
sense. So as an intermediate step we put the whole thing in a box of volume
V , and we let the time interval be T . Then we have strictly normalizable
quantities. At the end of the calculation one can let both V,T go to infinity.

Box Normalization:

δ3V (p− p′) =
V

(2π)3
δp⃗,p⃗′ (90)

δT (Eα − Eβ) =
1

2π

∫ T
2

−T
2

dt ei(Eα−Eβ)t (91)

If ⟨x|p⟩ = eipx then |p⟩box = 1√
V
|p⟩. |p⟩box has unit norm. So ⟨p⃗|p⃗⟩ = V =

(2π)3δ3(0). If our initial state Φα⟩ has Nα particles then

|Φα⟩box = (
1√
V
)Nα |Φα⟩

Sβα = ⟨Φβ|Ω|Φα⟩ = V
Nα+Nβ

2 ⟨Φβ|Ω|Φα⟩box

= V
Nα+Nβ

2 Sβαbox

2We follow the treatment of Weinberg here. Weinberg defines the S-matrix using non
relativistic normalization of states.
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Transition Probability

P (α → β) = |Sβαbox|
2 = V −(Nα+Nβ)|Sβα|2

What remains is the integration over final states. The number of states in
the momentum interval d3p is V d3p

(2π)3
. So the total number of states for all

Nβ particles is dNβ = V Nβdβ = V Nβ d3p1
(2π)3

d3p2
(2π)3

...
d3pNβ

(2π)3

So
dP (α → β) = V −Nα |Sβα|2dβ

If we assume the form (88) we get

|Sβα|2 = [(2π)4δ3V (pβ − pα)δT (Eβ − Eα)]
2|Mβα|2

Using (90) we get

δ3V (p− p′)2 =
V

(2π)3
δ3V (p− p′)

Similarly

δT (E − E ′)2 =
T

(2π)
δ3T (E − E ′)

Thus
|Sβα|2 = (2π)4δ3V (pβ − pα)δT (Eβ − Eα)V T |Mβα|2

Therefore the final general expression for the transition rate from a state
with Nα particles in the initial state to Nβ particles in the final state is:

dΓ =
dP (α → β)

T
= (2π)4δ4(pβ − pα)V

1−Nα|Mβα|2dβ (92)

We can now specialize:
Nα = 1
This corresponds to a decay:

dΓ = (2π)4δ4(p− p′)|Mβα|2dβ

The matrix element M is not rel inv. This is because the states |p⟩ have
non rel normalization. |p⟩rel =

√
2p0|p⟩ is rleativistically normalized.

Rβα =
∏
α

2pα0
∏
β

2pβ0 |Mβα|2
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is Lorentz invariant.
Similarly dβ is not rel inv. dβ∏

β 2pβ0
is rel invariant. in terms of these the

equation is manifestly covariant:

dΓ =
dP (α → β)

T
= (2π)4δ4(pβ − pα)

1

2E1

Rβα
dβ∏
β 2p

β
0︸ ︷︷ ︸

rel invariant

The decay rate transforms like 1
E
as expected.

Nα = 2

dΓ(2 → β) = (2π)4
1

V
|Mβα|2dβ δ4(pβ − pα)

dΓ
flux

= dσ is the differential cross section.
Concept of Cross Section:
Target particles are distributed uniformly over an area (looking from the

direction of the incoming beam) A.
We calculate number of scattering events per incoming particle and ex-

press it as the number of target particles inside an area σ surrounding the
incoming particle. This is clearly σ

A
and defines σ. Total number of target

particles is one - so this is a fraction.
Total number of events per unit time then is σ

A
.- assuming there is one

target particle and one incoming particle per unit time.
We assume that a total of N incoming particles are scattering.Then rate

of scattering is NΓ (no of particles scattered per unit time as measured by a
detector).

Number of particles per unit time =flux = number density of particles
×A× velocity of incoming particle-uα. Note that we are interested in the
number of particles that are inside the area A - only these are relevant. Also
the particles are plane waves with uniform probability inside the box of 1

V
.

So the number density is just Nα

V
if we are talking about N particles. So we

get flux =NA 1
V
uα. So total number of scattered particles per unit time per

unit flux (unit flux means one incoming particle per unit time per unit area)
is NΓV

NAuα
. This should equal σ

A
. Thus σ = ΓV

uα
.

Another way of seeing this: Γ gives the rate of scattering for one incoming
particle (and one target particle - this is always fixed). The flux associated
with this incoming particle is 1

V
(number density) ×uα (velocity). So σ =

Γ
flux

= ΓV
uα

.
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Note that here uα is the magnitude of the relative velocity defined in the
rest frame of one particle as the velocity of the other particle and vice versa.
So our final expression for the differential scattering cross section is:

dσ =
(2π)4

uα
|Mβα|2δ4(pβ − pα)dβ

=
(2π)4

uα
δ4(pβ − pα)

1

2E12E2

Rβα
dβ∏
β 2p

β
0︸ ︷︷ ︸

rel invariant

uαE1E2 =
√

(p1.p2)2 −m2
1m

2
2 can be verified by going to the rest frame of

one particle. Since it is manifestly invariant it can be used in any frame.

dσ =
(2π)4δ4(pβ − pα)

4
√

(p1.p2)2 −m2
1m

2
2

Rβα
dβ∏
β 2p

β
0

In this last form it is manifestly Lorentz invariant.
λϕ4 scalar field theory cross section:
We can apply this to λϕ4 theory for which at tree level

Sβα = −iλ(2π)4δ4(p1 + p2 − p3 − p4)

Thus Rβα = λ.
Do the calculation in the C of M frame where p⃗1+p⃗2 = 0. Let p1 = (p01, p⃗1)

and p2 = (p02,−p⃗1). So p1.p2 = −E2 − |p⃗1|2. So

(p1.p2)
2 −m2

1m
2
2 = (−E2−|p1|2+m2)(−E2−|p1|2−m2) = 4E2|p1|2 = E2

cm|p1|2

So

dσ = λ2
∫

dp33
(2π)32E3

∫
dp34

(2π)32E4

(2π)4δ(Ecm−E3−E4)δ
3(p3+p4)

1

4
√

(p1.p2)2 −m2
1m

2
2

Energy conservation says |p⃗1| = |p⃗3| = |p⃗4| and 2E3 = 2E4 = Ecm. Thus

dσ = λ2
∫

dp33
(2π)32E32E4

(2π)δ(Ecm − E3 − E4)
1

4Ecm|p1|

dσ

dΩ
= λ2

∫
dp3
(2π)3

p232π

E2
cmEcm

1

4Ecm|p1|
δ(2
√
p23 +m2 − Ecm)
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Let y = 2
√
p23 +m2 and the integral becomes

λ2
∫
dy

yδ(y − Ecm)

(2π)216E3
cm

So
dσ

dΩ
=

1

64π2

λ2

E2
cm

(93)

Finally integrating over Ω gives a factor of 2π (rather than 4π, because the
final state has identical particles - we overcount if we integrate over the full
4π) the total cross section:

σ =
λ2

32πE2
cm

13 Application to Critical Phenomena

Consider a ferromagnet. The spin at a point x is labelled s(x). x is discrete
but as discussed earlier if we are only interested in length scales much larger
than the lattice spacing then x can be assumed to be continuous. In that
case we can treat s(x) as continuum field and write down a continuum Hamil-
tonian for it. A typical Hamiltonian woule be H =

∫
d3x 1

2
(∇s)2 + Bs2 +

Cs4−hs. Here h is an external magnetic field. This is a gradient expansion.
We have seen that typically the nearest neighbour interaction in the dicrete
Hamiltonian generates a derivative and next nearest neighbour interaction
gives a second derivative term that is multiplied by more powers of a. Thus
when a is small we can approximate by keeping just the leading term-which
is the sqaure of a single derivative. In fact to the zero’th approximation we
can assume s is uniform so that we need not even worry about the gradient
term. This means we can effectively work with M =

∫
d3x s(x) the total

magnetization.
Critical phenomena is known to involve long wavelenth fluctuations and to

study these we can make this continuum approx. Typically in a ferromagnet
there are two phases. Assuming a finite number of egrees of freedom we have
: at high temperature, with h = 0, M = 0 and M is proportional to h in
a continuous way. At low temperature, M ̸= 0 but when h = 0 all values
of M are equally likely and in equilibrium. If we turn on an infinitesimal h
then M aligns with it. So M changes discontinuously when h changes sign.
This is a first order phase transition. At a critical temperature Tc M = 0
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and changing h changes M also in a continuous way. At the critical point
there is a second order phase transition. In fact at Tc, M can take any value
i.e there is no cost in free energy. That is why there are large fluctuations.

Landau modelled the free energy by (h is the external fld)

G(M,H) = A(T ) +B(T )M2 + C(T )M4 −Mh

The minimium is given by

∂G

∂M
= 0 = 2MB(T ) + 4C(T )M3 = h

If h = 0 either M = 0 or B(T ) + 4M2C(T ) = 0. So M2 = − B(T )
2C(T )

.

Clearly if B(T ) > 0 the only soln is M = 0. On the other hand if
B(T ) < 0 we have another soln. So we need B(T ) to change sign at T = Tc
if we want this to describe a ferromagnet. In particular at T = Tc it must
then be zero. So to a first approximation B(T ) = b(T−Tc). This immediately

gives M =
√

b(Tc−T )
2C(Tc)

for T ≈ Tc.

This treatment for a ferromagnet can be generalized to many systems. M
or s(x) is an order parameter field that characterizes the system. The Lan-
dau Ginzburg potential for M that assumes s is uniform is called the Mean
Field approximation. The behaviour of the order parameter as a function of
temperature is found to be the same for a large class of systems and so we
write M ≈ (Tc− T )β and β is called a critical exponent. Mean field analysis
gives β = 1

2
.

In the functional formalism we have approximated the integral that gives
the partition fn by a ”semi classical” soln that extremizes the classical action.
This is mean field theory. We have neglected the thermal fluctuations. Using
field theory techniques we can systematically estimate the corrections. Or we
can start ab initio and try to solve the full problem using other techniques
that do not rely on starting with the Mean field approximation.

The fact that the parameter β is the same in a large class of systems is
called universality. Field theory (using Renormalization Group ideas) gives a
neat explanation of this phenomenon. It is this that allows us to write down a
(continuum) field theory with a small number of parameters as a description
of the system near the critical point. If there were no universality then
we would need a large number of parameters and then the continuum field
described by a Hamiltonian itself is not a useful technique.
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Continuuing withe same example, when h is non zero, but T = Tc we get

4C(Tc)M
3 = h

. Thus M ≈ h
1
3 . This gives another universal critical exponent M = h

1
δ .

Thus Mean field theory gives δ = 3.
Similarly χ = ∂M

∂h
= 1

B(T )
= 1

T−Tc gives the susceptibility - response of M
to h. This also diverges at Tc. The critical exponent γ defines this behaviour
χ ≈ (T − Tc)

−γ. Mean field theory gives γ = 1.
We can also ask about the spatial behaviour of s(x). Thus if we turn on

a magnetic field h(x) = h0δ
3(x) and ask about s(x), mean field theory says

we should just solve the classical equation of motion:

−(∇)2s+ 2b(T − Tc)s+ 4cs3 = h0δ
3(x)

The solution to this is given by the Green function G(x, 0) and by now we
know that

G(x, 0) = ⟨s(x)s(0)⟩

The solution is

s(x) =

∫
d3k

(2π)3
h0

|k|2 + 2b(T − Tc)︸ ︷︷ ︸
”m2”

s(x) ≈ h0
4π

1

r
e−

r
ξ

where ξ = [2b(T − Tc)]
− 1

2 is called the correlation length.
The dependenc of ξ on T − Tc is yet another exponent ξ = (T − Tc)

−ν

and MFT gives ν = 1
2
.

At T = Tc, we have a power law fall off ⟨s(x)s(0)⟩ = r−(1+η) defines
the critical exponent η. Mean fld theory gives η = 0. This is also called
the anomalous dimenion of the field. (Note that in d -space dimensions
⟨s(x)s(0)⟩ = r−(d−2+η) defines η.)

In addition to the statement that these critical exponents are universal,
universality makes a stronger statement. It says that

⟨s(x)s(0)⟩ = r−(d−2+η)f(
r

ξ
)
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This says for any system (in a universality class) the correlation fucntion
has the form given above. The function f (near the critical temperature)
depends only on r

ξ
. This follows from the scaling hypothesis that says that

all systems depend only on one scale - the correlation length. If there were
other scales in the problem, the function would depend on all of them :
f( r

ξ
, λ1, λ2...) where λ.. are some dimensionless parameters analogous to that

in λϕ4 theory, and that depend on the system under consideration. These
characterize the microscopic details. The scaling hypothesis says that near a
second order phase transition the only quantity we need worry about is the
length scale is the scale ξ. This is also experimentally quite successful. Field
theory RG arguments and fixed points (thereof) explain why this is so in a
fairly natural way.

14 Loops

We now analyse the corrections in detail. Not all diagrams need be calcu-
lated. Thus we note the following:

1. We have already seen that vacuum bubbles factorise and equal ⟨0,∞|0,∞⟩
and since this is a normalization factor it cancles out.

2. Disconnected digrams need be evaluated. Z[J ] = eW [J ]. Then

Z[J ] = 1 +W [J ] +
W [J ]2

2!
+
W [J ]3

3!
+ ...

If we have a connected graph inW [J ] then the second termW 2 contains
two disconnected copies of this graph and W 3 contains three copies of
this graph, and so on. Thus all disconnected graphs can be accounted
for in this manner. The conclusion is that we need only calculate
connected graphs - which is W [J ] and then Z is just the exponential
of this.

3. Vacuum energy

Z0[0] is the vacuum bubble of the free theory. This comes from a
determinant.

Z0[0] = Det
1
2
2π

A
= e−

1
2
Trln−∂2+m2

2π
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1

2
Trln

−∂2 +m2

2π
=

1

2

∫
d4x⟨x|ln−∂

2 +m2

2π
|x⟩

=
1

2
V T

∫
d4p

(2π)4
ln(p2 +m2)

Let

I(m2) =
1

2
V T

∫
d4p

(2π)4
ln(p2 +m2)

dI

dm2
=

1

2
V T

∫
d4p

(2π)4
1

(p2 +m2)

Do the contour integral

= −1

2
V T

∫
d4p

(2π)4
1

(p0 − Ep)(p0 + Ep)

=
1

2
V T

∫
d3p

(2π)3
i

2
√
p⃗2 +m2

I(m2) =
1

2
V T

∫
d3p

(2π)3
i
√
p⃗2 +m2 =

1

2
V T

∫
d3p

(2π)3
iEp

Z0[0] ≈ e

−i 1
2
(V

∫
d3p

(2π)3
Ep)︸ ︷︷ ︸

zero point energy

T

4. Propagator corrections

The two point function has a correction (Do diagrammatically) given
by

⟨0|T [ϕ(1)ϕ(2)]|0⟩ = − 1

Zλ[0]

δ2Z[J ]

δJ(1)δJ(2)
|J=0

= −iGF (x1 − x2)−
iλ

2
(−i)3

∫
d4x GF (x1 − x)GF (x− x)GF (x− x2)

In momentum space:

−i
k2 +m2

+
−i

k2 +m2
[−iλ

2

∫
d4p

(2π)4
−i

p2 +m2
]

−i
k2 +m2
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We need to do an integral (we have put back the iϵ):

I =
λ

2

∫
d4p

(2π)4
−i

p2 +m2 − iϵ

The location of the poles allows the rotation : p0 = ip0E onto the
imaginary axis in an anti clockwise manner, so that p0E goes from −∞
to +∞. So we get

i

∫
d4pE
(2π)4

−i
p2E +m2

This is called Wick rotation. The integral is divergent and can be
cutoff. ∫

d4pE = 2π2

∫
p3EdpE = π2

∫
(pE)

2d(pE)
2

Let p2E = ρ.

I =
λ

2

1

(4π)2

∫ Λ2

0

dρ
ρ

ρ+m2
=
λ

2

1

(4π)2
[Λ2 −m2ln

Λ2 +m2

m2
] = ”∆m2”

Our two point function becomes:

−i
k2 +m2

+
−i

k2 +m2
[−i∆m2]

−i
k2 +m2

≈ −i
k2 +m2 +∆m2

When we include higher order terms we will have an infinite series of
such corrections - as shown in the Fig. The geometric series can be
summed and then the approximate equality becomes exact. Thus the
correction has the effect of changing the mass by an infinite amount.

Thus we have to backtrack: we should not say that m is the mass.
Define the physical mass by m2

phys = m2 +∆m2!.

This is the first step in the programme of ”Renormalization”. The
next step is to show that we can write the final answer (for any sen-
sible experimental question) in terms of m2

phys. Then we can take the
experimental value for mphys. But we cannot calculate it from first
principles.

5. Vertex Corrections
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We calculate ⟨0|T [ϕ(1)ϕ(2)ϕ(3)ϕ(4)]|0⟩: To leading order we have ob-
tained:

−iλ
∫
d4x (−i)GF (x1−x)(−i)GF (x2−x)(−i)GF (x3−x)(−i)GF (x4−x)

The next order correction is (with the combinatoric factors):

(−i λ
4!
)2

2!
4.3.4.3.2.2

∫
d4x

∫
d4y(−i)GF (x1 − x)(−i)GF (x3 − x)

(−i)GF (x2 − y)(−i)GF (x4 − y)[(−i)GF (x− y)]2

There are also two other diagrams, in which x1 is paired with x2 and
with x4. They all lead to the same kind of integrals.

Let us write them in momentum space by writing GF (x) =
∫

d4p
(2π)4

eipx

p2+m2

The leading term is (we write
∫
p
as shorthand for

∫
d4p
(2π)4

)∫
p1

∫
p2

∫
p3

∫
p4

ei(p1x1+p2x2+p3x3+p4x4)(−iλ)

∫
d4x e−i(p1+p2+p3+p4)x

−i
p21 +m2

−i
p22 +m2

−i
p23 +m2

−i
p24 +m2

=

∫
p1

∫
p2

∫
p3

∫
p4

ei(p1x1+p2x2+p3x3+p4x4)

−i
p21 +m2

−i
p22 +m2

−i
p23 +m2

−i
p24 +m2

(2π)4δ4(p1+ p2+ p3+ p4)(−iλ) (94)

We see the Feynman rules in momentum space at work here: A factor
of −i

p2+m2 for each line, a factor of −iλ for each vertex, and a momentum
conservation delta function.

The second correction becomes in momentum space:

1

2!
(
−iλ
4!

)24.3.4.3.2.2∫
p1

∫
p2

∫
p3

∫
p4

ei(p1x1+p2x2+p3x3+p4x4)
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∫
k1

∫
k2

∫
d4x e−i(p1+p3)x

∫
d4y e−i(p2+p4)y

−i
p21 +m2

−i
p22 +m2

−i
p23 +m2

−i
p24 +m2

eik1(x−y)eik2(x−y)
−i

k21 +m2

−i
k22 +m2

=

∫
p1

∫
p2

∫
p3

∫
p4

ei(p1x1+p2x2+p3x3+p4x4)(2π)4δ(p1 + p2 + p3 + p4)

−i
p21 +m2

−i
p22 +m2

−i
p23 +m2

−i
p24 +m2

(−iλ)21
2

∫
k1

−i
k21 +m2

−i
(p1 + p3 − k1)2 +m2

(95)

The same Feynman rules give this expression also, with the additional
rule that undetermined momenta are integrated over. Finally we divide
by a symmetry factor of 2 for this graph - corresponding to the fact
that the two internal lines can be intercghanged. The symmetry factor
is m! for interchange of m internal lines between two vertices.

Comparing (94) with (95) we see that the factor −iλ is replaced by

(−iλ)2 1
2

∫
d4k1
(2π)4

−i
k21+m

2
−i

(p1+p3−k1)2+m2 .

This is called a vertex correction and is a direct correction to the inter-
action strength λ. The interaction strength is affected by other kinds
of correction also indirectly, as will be seen later. This integral is also
(logarithmically) divergent as can be seen by counting powers of mo-
menta.

There are two other terms of the same type with p1 + p3 replaced by
p1 + p2 and p1 + p4.

6. Evaluation of the integral: Feynman parameters

In order to evaluate the integral we use the following parametrization:

1

A
=

∫ ∞

0

dt e−tA
1

B
=

∫ ∞

0

ds e−sB

⇒ 1

AB
=

∫
dt

∫
ds e−tA−sB

Let τ = t+ s and xτ = t, (1− x)τ = s Jacobian =τ
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1

AB
=

∫ 1

0

dx

∫ ∞

0

dτ τe−τ(xA+(1−x)B

=

∫ 1

0

dx
1

[xA+ (1− x)B]2

We let k21 +m2 = A and p1 + p3 − k1 ≡ P − k1 = B. This gives:∫
d4k1
(2π)4

−i
k21 +m2

−i
(p1 + p3 − k1)2 +m2

= −
∫

d4k1
(2π)4

∫ 1

0

dx
1

[(k21 +m2)(1− x) + ((P − k1)2 +m2)x]2

Now

[(k21 +m2)(1− x) + ((P − k1)
2 +m2)x] = k21 − 2k1.Px+ P 2x+m2

= (k1 − Px)2︸ ︷︷ ︸
k′2

+P 2x(1− x) +m2︸ ︷︷ ︸
M2

≡ k′2 +M2

Plugging this back in and changing integration variables to k′ we get:

−
∫

d4k′

(2π)4

∫ 1

0

dx
1

[k′2 +M2]2

Now performing a Wick rotation, we let k′ = ik′E to get:

−i
∫ 1

0

dx

∫
d4k′E
(2π)4

1

[k′2E +M2]2

Letting k′E
2 = ρ as before, we get:

−i
∫ 1

0

dx π2

∫
d(k′E)

2(k′E)
2

(2π)4
1

[k′2E +M2]2
= −i

∫ 1

0

dx
π2

(2π)4

∫ Λ2

0

dρ
ρ

[ρ+M2]2

=
−i

(4π)2

∫ 1

0

dx {ln Λ2 +M2

M2
+M2[

1

Λ2 +M2
− 1

M2
]}

We can take Λ >> M to write

+i

(4π)2
− i

(4π)2

∫ 1

0

dx ln
Λ2

M2
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Thus the vertex correction is

−iλ
2

2
[

1

(4π)2
− 1

(4π)2

∫ 1

0

dx ln
Λ2

M2
]

with M2 = P 2x(1 − x) +m2. As mentioned earlier we also have two
other terms of the same form with P = p1 + p2 and P = p1 + p4.

7. Other Corrections to Scattering:

Let us consider the other diagrams that contribute to scattering at this
order. First there are disconnected graphs. We have already seen that
if we evaluate W [J ] we need only calculate connected graphs. The dis-
connected graphs are automatically accounted for when we exponenti-
ate. Similarly vacuum bubble corrections also we are not interested in.
The only remaining connected graph that contributes is a propagator
correction on one of the legs, for eg.

1

2
(−iλ)2

∫
d4x

∫
d4y (−iGF (x1 − y))(−iGF (y − y))(−iGF (y − x))

(−iGF (x2 − x))(−iGF (x3 − x))(−iGF (x4 − x))

The factor of 1
2
is the symmetry factor for this graph. This represents

a propagator correction on one of the external legs. There are four
such graphs - one for each external leg. The evaluation of these graphs
does not involve anything new, since it is the same integral encountered
earlier. However all these graphs have to be taken into account in a
systematic way while calculating scattering amplitudes.

8. Divergent graphs and power counting:

We calculate ⟨0|T [ϕ(1)ϕ(2)...ϕ(N)]|0⟩. When we FT to momentum
space we get something of the form∏

i=1,N

[

∫
d4pi
(2π)4

eipixi

p2i +m2
]G(p1, p2, ..pN)δ4(p1 + p2 + ...+ pN) (96)

We have extracted the external propagators and also an overall mom
cons delta function. Let us call G the amputated Green’s function.
This is evaluated using the Feynman rules that we have developed. It
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has say NL loop integrals and P propagators. Then ”superficial degree
of divergence”, D = no. of powers of momenta in the numerator - no.
of powers in the denominator = 4NL − 2P . By our rules NL = No.
of undetermined momenta = no. of momenta - no. of delta functions.
=P − (V − 1) where V is the number of vertices in the graph. One
of the delta functions imposes overall momentum conservation on the
external legs and does not constrain the internal momenta. So

D = 4(P − (V − 1))− 2P = 2P − 4(V − 1)

Now in ϕ4 theory it is true that 4V = 2P + N because each vertex
gives 4 lines and out of the total, N are external lines. So 4V −N must
become internal lines. Two internal lines contract to form a propagator.
So 2P = 4V −N

D = 4V −N − 4(V − 1) = 4−N

Thus whenD is non negative we can expect a divergence:
∫

d4p
pn

≈ Λ4−n.
When n = 4 we can expect a ln Λ.

Note that this result can be obtained by counting dimensions in (96).
Thus the LHS has dimension N (each fld has dim 1). If [G] denotes the
dimension of the amputated green fn we have, counting powers of d4p
and p2, N = 2N − 4 + [G]. So [G] = 4 − N . Thus amputated green’s
fn with 0,2,4 external legs can be divergent. 0 corresponds to vacuum
bubbles, which we are not interested in for the moment. 2 external legs
gives the propgator, which has a quadratic divergence as we explicitly
saw. Finally 4 external legs gives the scattering amplitude 2-2. This is
logarithmically divergent as we will see explcitly below.

This is only the ”superficial” divergence because even a graph with say
external legs can be divergent if it contains a subgraph that is divergent.
Thus in any graph, we can replace a propagator by the loop corrected
propagator, that is quadratically divergent. Similarly one can always
have an internal loop corrected G(1, 2, 3, 4) which will be divergent, as
we have seen. See Fig. But the point is all divergences are of these
two types. This is not trivial to prove, but is intuitively obvious. Such
theories are called ”renormalizable”. Because if we know how to deal
with these two divergences, by some clever redefinition (as we did with
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mass above) we can get well defined answers for all other scattering
amplitudes.

It is interesting to see what would happen to this counting if we add a
λ6ϕ

6 interaction. We still have D = 4NL − 2P , NL = P − (V − 1) and
so D = 2P − 4(V − 1). But V = V4 + V6 because we have two types of
vertices. Furthermore 4V4+6V6 = 2P +N . So we get D = 2V6+4−N .
This means the superficial divergence depends not only on the external
lines, but also on the number of internal vertices. So a higher order
graph with the same external legs will be more divergent. This counting
is easy to understand from dimensional arguments. We have, as before
[G] = 4 − N . But the graph has dimensional coupling constants λ6
which has dimensions −2. Thus if we take out the explicit powers of
λ6 in G, we get the contribution to the dimension that comes from the
momenta integrals and propagators. Thus D = [G] + 2V6, which gives
the same result for the superficial divergence.

This means that graphs with any number of external legs can be diver-
gent at some high order. This makes the theory ”non renormalizable”
because it is not enough to redefine two parameters. All scattering am-
plitudes will continue to be divergent even if we redefine or renormalize
a few (finite number) of them. So there is no predictive power.

15 Renormalization

15.1 Philosophy

Having evaluated the integrals and seeing that they are infinite when Λ → ∞
we have to figure out a way to make sense of this procedure. Logically one
simple solution is to say that Λ is a finite number. The problem is that we
don’t now what it’s value is and since there is no experimental evidence for
the discreteness of space-time, Λ had better be very large - much larger than
our experimental scales. The question is do we have any predictive power
left? If physical quantities depend sensitively on the precise value of Λ, when
Λ is large, that means they depend on positive powers of Λ, and then we will
not be able to take Λ very large.

So we try the following. Let us pretend that λ,m are just free parameters
that have no direct physical or experimental significance. We calculated the
one loop corrected mass which ism2+∆m2 and clalled this the physical mass.
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Similarly we calculate the one loop corrected scattering amplitude and call
this the physical scattering amplitude. Call this λphys. These are complicated
functions of the original parameter and furthermore involve Λ which should
perhaps even be infinite. But if at the end of the day, I can express everything
(i.e. various scattering amplitudes that I might want to calculate) in terms of
λphys and mphys without any sign of λ,m,Λ, then we have finite well defined
quantities and some predictive power. Actually to require that there should
be no sign of Λ is too strong. We don’t mind negative powers of Λ. The real
requirement is that after we express everything in terms of λphys,mphys we
should be able to take the limit Λ → ∞.

For this to work the amplitudes must have the propery that the depen-
dence on the unphysical parameters and Λ is always in some particular form.
Otherwise this won’t work.

To be precise, let us fix Λ = l1 and fixm,λ by computing the mass and 2-2
scattering and checking against experiment. Then we calculate 3-3 scattering
and use the particular relation between λ,m and Λ that was fixed by the 2-2
scattering. Repeat the same procedure with Λ = 10l1. If the value of 3-3
scattering changes by a large amount, then we say that the theory depends
very sensitively on the cutoff. i.e. it doesn’t just depend on the physical
parameters λphys,mphys Similarly we can calculate 4-4 scattering and it is
likely that this will also depend very sensitively on Λ if the 3-3 scattering
does. Typically we will find that positive powers of Λ show up in the answers
when there is such a sensitive dependence. If there were only negative powers
of Λ then the theory would not depend so sensitively on Λ. In particular for
instance we would be able to take Λ to infinity and still get finite answers.

Historically the motivation was to take Λ to infinity in the above pro-
cedure, because of the belief in the space-time continuum. Theories that
allowed that were called renormalizable. That meant that for any given very
large Λ the above procedure made sense,i.e. given that mass and 2-2 scatter-
ing data is used to fix the two parameters , then all other quantitites could
be calculated, and gave sensible finite answers when Λ went to ∞. This is
equivalent to saying that they do not depend sensitively on Λ. Of course
if the theory had three parameters, then three experimental points are re-
quired to fix those parameters for any given Λ and the rest should give results
insensitive to Λ.

The λϕ4 theory is renormalizable in this sense. So once we fix λ amd m so
that the physical mass is the experimental value and the 2-2 scattering is the
experimental value, then all other calculations give well defned results more
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or less independent of Λ. That means their dependence on Λ has negative
powers only. So in fact we can assume Λ is infinite and get precise predictions.

Note that the mass correction and scattering corrections need not have
negative powers of Λ. They can have positive powers and diverge. This is
because we can always choose m,λ to make sure we get the experimental
numbers no matter what Λ is. We may for instance have to take λ to zero,
but since m,λ are free parameters we don’t care what values they take.

15.2 Systematic Procedure

The above procedure can be implemented systematically as follows. We start
with something we call the ”Bare Lagrangian”. This is the original (God-
given) theory and we have to make sense of this. The parameters of the
theory are mB and λB. Thsu

LB = −1

2
(∂µϕB∂

µϕB +m2
Bϕ

2
B)−

λB
4!
ϕ4
B (97)

The fields also have a subscript on them. These are clearly not necessary close
to the experimental values. We introduce mR, λR as the ”Renormalized”
values and are (finite and) close to the experimental values and express the
bare parameters in terms of these as shown below. We will also define a
renormalized field ϕR that can differ by a normalization factor from ϕB:
ϕB =

√
ZϕR.

We write LB as the sum of two Lagrangian densities, a renormalized one
and whatever remains, called the ”counterterm” Lagrangian density.

LB = −1

2
(∂µϕB∂

µϕB +m2
Bϕ

2
B)−

λB
4!
ϕ4
B

= −1

2
Z(∂µϕR∂

µϕR +m2
Bϕ

2
R)−

λB
4!
Z2ϕ4

R

= −1

2
(∂µϕR∂

µϕR +m2
Rϕ

2
R)−

λR
4!
ϕ4
R︸ ︷︷ ︸

LR

+

−1

2
(Z − 1)(∂µϕR∂

µϕR)−
1

2
(Zm2

B −m2
R)︸ ︷︷ ︸

δm2
R

ϕ2
R)−

λBZ
2 − λR
4!︸ ︷︷ ︸
δλR
4!

ϕ4
R

︸ ︷︷ ︸
Lcounter term
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= LR + Lct (98)

Thus Zm2
B = m2

R+δm
2
R and Z2λB = λR+δλR. Calculations are organized

as a power series in λR. The counterterm parameters δm2
R, δλR and Z−1 are

chosen so that physical quantities calculated are finite as Λ → ∞ and equal
to some experimental numbers. Once the counterterm is fixed (to a given
order in λR) all physical quantities calculated to that order, will be finite as
Λ → ∞ since the theory is renormalizable. Furthermore they will depend on
mR, λR.

Note that while doing calculations, the quadratic part of LR defines the
propagator. Everything else is treated as an interaction, to be treated per-
turbatively. Thus the terms in the counterterm Lagrangian are also to be
treated as interaction vertices. Thus δm2

Rϕ
2, and (Z − 1)∂µϕ∂

µϕ are vertices
with two lines coming out, λRϕ

4 and δλRϕ
4 have four lines coming out.

15.3 Renormalizing ϕ4 theory

We apply this procedure now to the ϕ4 theory for which the one loop graphs
have been calculated.

We write LB = LR + Lct, where (δZ = Z − 1),

Lct = −δZ 1

2
∂µϕ∂

µϕ− 1

2
δm2ϕ2 − δλ

4!
ϕ4

These are treated as vertices to be used perturbatively order by order in λR.
Thus our equation for mass, including correction is

m2
R +

λR
2

1

(4π)2
[Λ2 −m2

Rln
Λ2 +m2

R

m2
R

] + δm2

One possibility is to choose δm2 so that the m2
R is the physical mass

(taken from experiment). In that case

δm2 = −λR
2

1

(4π)2
[Λ2 −m2

Rln
Λ2 +m2

R

m2
R

]

This fixes the counterterm at O(λR). At higher orders we can expect
further modification. There is some freedom in our choice of counterterm.
Becuause if we change it by a finite amount then the theory still makes
sense. Only the meaning of the parameter m2

R changes. The usual choice is
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to choose the counterterms δZ and δm2 in such a way that the propagator
has the standard form −i

p2+m2
R
as p2 → −m2

R. In other words it should have a

(single) pole at p2 = −m2
R and a residue of −i.

GF (p) =
−i

p2 +m2
R

+ terms regular at p2 = −m2
R

Here mR is the physical mass of the particle. δZ is non zero starting O(λ2R).
Thus we have renormalized the propagator at O(λ), by adding a coun-

terterm. Now when we calculate any diagram at O(λ2) this counterterm two
point vertex will also contribute.

Let us proceed to the 4-point function:
T0 O(λ2) the vertex is

−iλR − iλ2R
2

[
1

(4π)2
− 1

(4π)2

∫ 1

0

dx ln
Λ2

M(1, 3)2
]

−iλ
2
R

2
[

1

(4π)2
− 1

(4π)2

∫ 1

0

dx ln
Λ2

M(1, 2)2
]

−iλ
2
R

2
[

1

(4π)2
− 1

(4π)2

∫ 1

0

dx ln
Λ2

M(1, 4)2
]− iδλ

with M(i, j)2 = (pi + pj)
2x(1 − x) + m2. We have added the counterterm

contribution. Once again while we choose the counterterm to cancel the ln Λ
divergent term, it is possible to add some finite pieces to it. We need some
prescription or convention. This is up to us. Note that the correction depends
on the invariant momentum in the intermediate state - which is (pi + pj)

2.
So we can adopt the following convention. When the invariant momentum
is some fixed value - say (p1 + p2)

2 = (p1 + p2)
2 = (p1 + p2)

2 = µ2, we let
−iλR be the scattering amplitude. So we choose δλ to cancel the correction
at this value of invariant momentum. Thus

δλ = −3
λ2R
2
[

1

(4π)2
− 1

(4π)2

∫ 1

0

dx ln
Λ2

µ2x(1− x) +m2
]

Thus the final result for the renormalized 4-point amplitude is

−iλR − i
λ2R
2

1

(4π)2

∫ 1

0

dx {ln (p1 + p2)
2x(1− x) +m2

µ2x(1− x) +m2
+
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ln
(p1 + p3)

2x(1− x) +m2

µ2x(1− x) +m2
+ ln

(p1 + p4)
2x(1− x) +m2

µ2x(1− x) +m2
} (99)

We can also call (p1 + p2)
2 = s, (p1 + p3)

2 = t, and (p1 + p4)
2 = u.

Thus at s = t = u = µ2 the scattering amplitude is λR. When s, t, u > µ2,
the amplitude increases logarithmically. One can say that the effective λ
increases with momentum.

We can also at this point calculate the Bare parameters, although for the
purposes of calculating amplitudes in perturbation theory we don’t really
need them. In the next section we will find a use for them.

At O(λ), Z = 1 so we have λB = λR + δλ and m2
B = m2

R + δm2. Thus

λB = λR − 3
λ2R
2
[

1

(4π)2
− 1

(4π)2

∫ 1

0

dx ln
Λ2

µ2x(1− x) +m2
] (100)

m2
B = m2

R − λR
2

1

(4π)2
[Λ2 −m2

Rln
Λ2 +m2

R

m2
R

] (101)

Another scheme
Let us consider a simpler from of the counterterm

δλ = 3
λ2R
2

1

(4π)2
ln

Λ2

µ2

Here we have chosen the counterterm to just cancel the logarithmic di-
vergence in the amplitude. Since the purpose of adding a counterterm is to
make the amplitude finite, we might as well choose a simple form. With this
the amplitude takes the form:

−iλR − 3i
λ2R
2

1

(4π)2
− i

λ2R
2

1

(4π)2

∫ 1

0

dx {ln (p1 + p2)
2x(1− x) +m2

µ2

ln
(p1 + p3)

2x(1− x) +m2

µ2
+ ln

(p1 + p4)
2x(1− x) +m2

µ2
} (102)

The relation between the bare and renormalized parameter becomes:

λB = λR + 3
λ2R
2

1

(4π)2
ln

Λ2

µ2
(103)

Note that if we set µ = Λ, then λB = λR!
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What is λB?
Let us go over the sequence of events:
We started out thinking that λB was the coupling constant - we didn’t

have the subscript B then. Then we found that it gives divergent and non-
sensical results at one loop. So we decided to abandon the idea of λB having
any physical significance and decided that the sum of the tree and one loop
amplitudes was the physically correct quantity, and this we called λR. (Of
course the calculation was organized in a different way, but this was what
effctively we were trying to do.) Now we see that the difference between
λB and λR is just one of scale. The coupling constant depends on µ and
choosing µ = Λ means we choose to define our coupling at the high scale Λ.
So that is the meaning of the bare parameter λB. It is the amplitude at a
very high energy scale. We have already seen that the scattering amplitude
grows logarithmically with energy. That is why λB is much larger that λR.
If we take Λ to infinity then in this approximation λB is also infinite.

Scheme dependence
We have described two schemes characterized by the choice of countert-

erms. In one scheme λR had a direct physical significance - it was the value
of a scattering ampliude at some value of the invariant momenta µ2. In the
other schem λR is a parameter that is clearly closely related to the scatter-
ing amplitude at µ2 though not exactly that. This scheme is charaterized
by the simplicity of the counterterm - it was just the divergent part of the
scattering amplitude. The advantage od this is that the connection with the
bare parameter is very direct. The bare and renormalized parameters differ
by the value of the renormalization point µ.

We can relate the coupling constants in the two schemes. Let us call λR1

the coupling of the first scheme and λR2 that of the second. The scattering
amplitude at any value of pi have to be equal in both schemes. This gives
a relation between the two schemes. Thus if we let λR1 = λR2 + a1λ

2
R2 +

a2λ
3
R2 + .... then we find (HW problem) (on equating the amplitudes)

a1 = −1

2

1

(4π)2
[1 +

∫ 1

0

dx
µ2
1x(1− x) +m2

µ2
2

]

Since we only have results upto O(λ2R) this is sufficient. At higher orders,
the other ai get fixed.

Renormalizability: As we have seen in the section on computing di-
vergences of diagrams, all diagrams with more than 4 external legs are su-
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perficially convergent. The only divergences they can have are due to subdi-
vergences, either propagator corrections to the internal lines, or corrections
to 4-point vertices. These two become finite (as we have just seen above) on
adding the counterterms, that we have calculated (to leading order). So all
diagrams with more than 4 external legs are finite once we have made finite
the diagrams with 2 and 4 legs. This is the content of the statement that
λϕ4 is a renormalizable theory. The proof of this is not trivial however and
involves classifying all types of subdivergences, and proving it in a recursive
fashion.

15.4 What does “renormalization” mean?

1. Our starting point is the God given Bare Lagrangian:

LB = −1

2
(∂µϕB∂

µϕB +m2
Bϕ

2
B)−

λB
4!
ϕ4
B

2. Using this Lagrangian we can calculate Γ[ϕB] by evaluating 1PI graphs.
This has all the information we need about the theory. Since the mo-
mentum integrals are divergent they have to be cutoff with a cutoff Λ.
The result is

Γ[ϕB] =
∑
n

∫
p1

∫
p2

...

∫
pn

ΓnB[p1, p2, ..., pn;mB, λB,Λ]ϕB(p1)ϕB(p2)...ϕB(pn)

(104)
We have indicated the dependence on the bare parameters and the
cutoff. What we would like is a finite Γ.

3. Then we reorganize the calculation in terms of a “renormalized” La-
grangian and a “counterterm” Lagrangian

LB = LR + Lct (105)

so that order by order the 1PI graphs are finite. First we define

ϕB =
√
ZϕR (106)

Z is chosen to normalize the kinetic term in LR correctly. Field normal-
ization change is allowed because the field is a variable of integration.
Thus

LR = −1

2
(∂µϕR∂

µϕR +m2
Rϕ

2
R)−

λR
4!
ϕ4
R
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and

Lct = −1

2
(Z − 1)(∂µϕR∂

µϕR)−
1

2
δm2ϕ2

R − δλR
4!

ϕ4
R

4. Using this Lagrangian we calculate the same Γ[ϕB] again, but now in
terms of ϕR and λR,mR:

Γ[ϕB] = Γ[ϕR] =
∑
n

∫
p1

∫
p2

...

∫
pn

ΓnR[p1, p2, ..., pn;mR, λR, µ]ϕR(p1)ϕR(p2)...ϕR(pn)

(107)
An example of this is (102) where the leading correction to Γ4[p1, p2, p3, p4;λR,mR, µ]
has been calculated.

Comparing (104) and (107), and using (106), we see that

Γn
B[p1, p2, ..., pn;λB,mB,Λ]Z

n
2 = Γn

R[p1, p2, ..., pn;λR,mR, µ]

(108)

The RHS is finite (if the theory is renormalizable). Thus we have a well
defined finite object from which experimental numbers can be predicted
- input from experiment being used to first fix the two parameters
λR,mR. This summarizes the effect of renormalization.

16 Wilson’s Interpretation

1. Why are λB and λR so different? In fact the difference is infinity if
we take Λ = ∞. The source of the large difference is the sum over
intermediate states that one has to do in pertrubation theory in quan-
tum mechanics of the form: ∆E ≈

∑
I

⟨f |Hint|I⟩⟨I|Hint|i⟩
EI−Ei

. In this case
there are a large number of states that contribute because we are deal-
ing with a field, which always has a large (infinite) number of degrees

of freedom. The number of modes per unit volume is
∫

d3p
(2π)3

. This
is infinity if there is no cutoff on mode number. The contribution of
higher modes is suppressed but not sufficiently. Thus we typically get
an integral of the form

∫∞
0

dp
p
. Note that each decade of mode number

contributes the same amount:
∫ 10µ

µ
dp
p
=
∫ 100µ

10µ
dp
p
. This is the source of

the logarithmic divergence.
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This explains why λR is so different from λB. It has to describe the
scattering amplitude at a low energy µ but this gets contributions from
very high modes also. Note that if the momenta of external particles is
of O(Λ) also, then we do not get a divergence. We get O(lnΛ

p
) ≈ ln1 ≈

0 as the loop correction term.

2. Wilson’s idea was as follows: Suppose we could construct an “effective
action” that has the property that it can describe only low energy
phenomena, but can describe these as well as the orginal action. Then,
working with this action would be a lot easier because we do not get
any log divergences. There are only a few modes in this theory. The
reason it is plausible that a theory with fewer degree of freedom can be
equivalent to the full theory is because the smaller theory has a very
limited range of validity. So it only has the modes that are essential
for the problem. On the other hand, even though the theory has fewer
degrees of freedom, if it is a very complicated action, then it doesn’t
help much. What Wilson showed is that renormalizable theories are
such that their effective action retains the simple form.

3. His procedure to construct the action was as follows:

Integrating Out

In the functional form we can integrate out some degrees of freedom.

Thus consider a quantum mechanical system described by two variables
x(t), X(t)

K(xf , Xf , T ;xi, Xi, 0) =

∫
Dx DX eiS[x,X]

If do a Wick rotation t = iτ we can write this as the density matrix
ρ(x,X;x′, X ′, β) with β = 1

kT
= iT .

The expectation value of any operator O is given by

TrρO =

∫
dx dx′ dX dX ′ρ(x,X;x′, X ′)O(x, x′;X,X ′)

here O(x, x′;X,X ′) = ⟨x′, X ′|O|x,X⟩. Suppose we are interested in
expectation value of some quantities O that depend only on x. Then
O(x, x′;X,X ′) = O(x, x′)δ(X −X ′). Thus

⟨O⟩ = TrρO =

∫
dx dx′ dX dX ′ρ(x,X;x′, X ′)O(x, x′)δ(X −X ′)
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We can define ρeff (x, x
′) =

∫
dXρ(x,X;x′, X) and write

⟨O⟩ =
∫
dx dx′ρeff (x, x

′)O(x, x′)

This is the idea of ”integrating out” degrees of freedom that we are not
interested in observing. We illustrated this with the density matrix, but
it can also be done in the original quantum mechanical problem. Thus
in the original problem we know that X wave function is in the ground
state at initial and final time, and we are not interested in expectation
value of any X dependent quantity we can do the following: Define

Keff (xf , T ;xi, 0) =

∫
dXf

∫
dXi ψ

∗
0(Xf )K(xf , Xf , T ;xi, Xi, 0)ψ0(Xi)

All quantum mechanical averages involving only x can be done with
this Keff . The point is that the integration over X can be done once
and for all, if we are not interested in expectation value of X dependent
quantities. We need not do it over and over again for each calculation.

This can be represented at the level of the action itself as follows: We
are using fld theory notation and suppressing all the wave function
infmn. In fld theory the iϵ prescription takes care of this.

Z[j] =

∫
Dx DX eiS[x,X]+jx =

∫
DxeiSeff [x]+jx

where: ∫
DXeiS[x,X] ≡ eiSeff [x]

4. Field theory We now apply these ideas to a field theory such as the
ϕ4 theory, with action S[ϕ].

If we want to study scattering of particles with momenta of O(µ) we
need to calculate ⟨0|T [ϕ(p1)ϕ(p2)....ϕ(pN)]|0⟩, with pi ≈ µ. So we can
in principle ”integrate out” (in the sense explained above) all modes
with momenta significantly larger than µ. However it is not possible to
integrate them out exactly, so we have to rely on perturbation theory.
Furthermore, in perturbation theory, if we integrate out a large region
of momenta, say between µ and Λ this will intoduce large logarithms
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of the form ln Λ
µ
. Thus we need some other method. Wilson’s (and

Kadanoff’s) idea is to integrate them out in many stages. Thus we
integrate out first all modes Λ1 < |p| < Λ. Get an effective action
-say S1[ϕ]. Then integrate out modes Λ2 < |p| < Λ1. This gives S

2[ϕ].
Iterate the process:

S[ϕ] R−→ S1[ϕ] R−→ S2[ϕ] R−→....R−→ Sn[ϕ]

The idea then is to find out what the changes are after one iteration,
and then infer from this what the changes are going to be after n
iterations, without actually repeating the calculation.

So let us integrate out all modes between Λ and say Λ
2
. This reduces

the number of degrees of freedom to half. Thus Λ1 =
Λ
2
and Λn = Λ

2n
,

at which point the number of DOF is 2−n of the starting number.

In order to do this the first step is to write the action in terms of the
high and low momentum modes.

5. Position Space Interpretation To get a physical picture of the above
let us consider an Ising model on a lattice of spacing a = 1

Λ
. We

want to reduce the number of degrees of freedom to half. One way
is to combine two lattice points into one and put a spin whose value
is the sum of the two spins that are being replaced. Thus if the spin
values are 1,−1 to begin with, the new lattice with a spacing of 2a
will have spins whose values can be 2, 0,−2. At the next step it will
take values 4, 2, 0,−2,−4 and the spacing will be 4a. This process
can be iterated. If we continue this we get a coarse lattice with a
field that can essentially take an infinite discrete number of values -
so it can be approximated by a scalar field of the type we have been
dealing. This is the order parameter field of Landau. Alternately, we
can average three spins at each step and after each step we can specify
that we set the spins to be either +1 or -1 depending on whether it
is greater than zero or less than zero. This way after each step we
get back an Ising model with fewer degrees of freedom and also with a
different set of parameters. The meaning of integrating out high modes
is physically more transparent here - we clearly see that it corresponds
to an averaging or ”coarse graining”. We start with a fine grained
description and progress towards a coarse grained description.
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There are standard techniques for obtaining the new set of parame-
ters in terms of the old. We will not do this in this position space
formulation. Let us go back to the momentum space formulation.

6. Back to the field theory

Let us write ϕ(p) = ϕ1(p) + χ(p) with ϕ1(p) = ϕ(p), |p| < Λ1;ϕ1(p) =
0, Λ1 < |p| < Λ. And χ(p) = ϕ(p), Λ1 < |p| < Λ;χ(p) = 0, |p| < Λ1.

Thus in the functional integral we integrate over χ(p) and get an action
functional for ϕ1(p). ϕ1 has fewer modes than ϕ. This process is iterated
until we get a field ϕn that has only low momentum modes |p| < Λn ≈
µ.

So we write in general: S[ϕ] = S[ϕ1 + χ] = S[ϕ1] + S[χ] + ∆S[ϕ1, χ].∫
DϕeiS[ϕ] =

∫
Dϕ1]e

iS[ϕ1]

∫
DχeiS[χ]+∆S[ϕ1,χ] ≡

∫
Dϕ1e

iS1[ϕ1]

The crucial step is the integration over χ, which of course cannot be
done exactly. It has to be done perturbatively - often diagrammatically.

Note that we are primarily interested in the ϕ1 dependence of S
1. Con-

stant terms are only overall normalizations. They do not affect corre-
lation functions. Consider

Z[J ;ϕ1, λ,m
2] =

∫
DχeiS[χ]+∆S[ϕ1,χ]+

∫
d4x Jχ

The action ∆S contains terms with different numbers of χ. The ver-
tices have ϕ1 in them - in the form of coupling constants ( except that
they can carry momenta). We can evaluate Z[J, ϕ1, λ,m

2] in the usual
manner by writing χ(x) = −iδ

δJ(x)
acting on Z0[J ] etc as we did earlier.

But we don’t really need Z[J, ϕ1, λ,m
2] - we only need Z[0, ϕ1, λ,m

2]
because we are not interested in correlators involving χ. Diagram-
matically these are diagrams with no external χ’s- this means we just
evaluate vacuum bubbles. The ϕ1 can be thought of as coupling con-
stants, but since they represent varying fields, we can just think of
these as external background fields, that are fixed - i.e. not dynamical.
So our vacuum bubbles will have ϕ1 fields attached to them.
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Furthermore we are interested in writing Z[0, ϕ1, λ,m
2] as eiδS[ϕ1] to be

thought of as a correction to S[ϕ1]. Thus we need only the connected
diagrams.

To be concrete

∆S =

∫
d4x [4ϕ3

1χ+ 6ϕ2
1χ

2 + 4ϕ1χ
3]

Diagrammatically we can classify the vacuum diagrams in terms of the
number of external ϕ1’s that are present. If no ϕ1 are present these
are the constant terms of S1. Thus if only vertices from S[χ] are used,
these have no ϕ1 in them, so these contribute to the constant term.
If there are two ϕ1’s (from ∆S), these contribute to the kinetic term
for ϕ1 in S1. If there are four ϕ1’s then it contributes to the quartic
interaction in S1.

Let us see what the vertices are and what the diagrams are to leading
order Fig:

Fig 8 is a mass correction and is clearly O(λ2Λ2). Fig 9 is the correction
to the quartic coupling. The numerical factor is − 1

2!
(λ
4
)2.2.4! = −3λ2

2
.

The 2! in the denominator is because it comes from two powers of the
ϕ2
1χ

2 interaction term brought down from the exponent. The coefficient
of this term is 6λ

4!
= λ

4
. The 2 comes from the two ways of contracting.

Finally the 4! is because this corrects λ
4!
and we want the correction to

λ. The integral is the old one:

−i
∫ 1

0

dx
π2

(2π)4

∫ Λ2

Λ′2
dρ

ρ

[ρ2 +M2]2

where M2 = P 2x(1 − x) + m2 and ρ = (k1 − Px)2. |k1| > Λand
|k1−Px| > Λ. This gives including the numerical factors, as correction
to −iλ:

i
3λ2

2

1

(4π)2

∫ 1

0

dx ln
Λ2

Λ2
1

So

λ→ λ− 3λ2

2

1

(4π)2

∫ 1

0

dx ln
Λ2

Λ2
1

As expected from the behaviour of the scattering amplitude, λ decreases
with decreasing Λ1.
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Notice that the connection between the two couplings is pretty much
the same as the connection between the bare and renormalized cou-
plings obtained earlier in the second scheme, if we take µ = Λ1. This
establishes the point made about the connection between the Wilsonian
way of thinking and the earlier one where we hade a bare coupling and a
renormalized coupling. That is to say we can think of the renormalized
coupling as the effective coupling at a lower scale.

We can also calculate dλ
dln Λ1

|Λ=Λ1 to get 3λ2

(4π)2
which is called the beta

function. It tells you the rate of change. More about this below.

17 Renormalization Group

17.1 β function and evolution of coupling

We have seen that scattering amplitudes depend on momentum. This is not
surprising at all. We have also seen in the Wilsonian formulation that λ
defined as the effective four point coupling chnages with the cutoff. Let us
now study this scale dependence in in yet another way. In fact this was how
these facts were originally discovered. This come from our definition of the
renormalized coupling that had a parameter µ.

What is the meaning of this µ dependence? µ was an arbitrary parameter
- that was used to define what we meant by λR. Why should a physical
amplitude depend on that? The answer is that it shouldn’t. But if we
change µ the only way the amplitude can remain the same is if λR changes!
Thus if we change µ, λR must change in just such a way that the actual
physical scattering amplitude is the same. In this way λR becomes an implicit
function of µ. This is an important result. The coupling constant becomes
scale dependent and this is called the ”running of the coupling”.

Consider the relation between the bare and renormalized couplings ob-
tained in the second scheme. One way of finding the µ dependence of λR is
to note that λB cannot possibly depend on µ, since it is the original bare
parameter. So we can find the µ-dependence by acting on both sides of the
equation by d

d ln µ
and saying that dλB

dln µ
= 0. Thus

dλB
dln µ

= 0 =
dλR
dln µ

+ 3λR
dλR
dln µ

1

(4π)2
ln

Λ2

µ2
− 3λ2R

1

(4π)2
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⇒ dλR
dln µ

[1 + 3λR
1

(4π)2
ln

Λ2

µ2
] = 3λ2R

1

(4π)2

⇒ dλR
dln µ

= 3λ2R
1

(4π)2
1

[1 + 3λR
1

(4π)2
ln Λ2

µ2
]

Since the calculation is only accurate to O(λR)
2 we get

βλ ≡
dλR
dln µ

= 3λ2R
1

(4π)2
(109)

This is called the β function. It tells us how the λR should change as we
change the renormalization point µ. Notice that because β > 0, λR increases
with µ. Since λR is a measure of the strength of interaction at s ≈ t ≈ u ≈ µ,
it means that the theory becomes strongly interacting at high energies. This
is also clear from the 4 -point scattering vertex calculation. We see from the
one loop correction increases with p2.

The fact that λR increases with µ can be made more dramatic by solving
the differential equation

dλR
dln µ

= 3λ2R
1

(4π)2

⇒ dλR
λ2R

=
3

(4π)2
d ln µ

1

λR1

− 1

λR2

=
3

(4π)2
ln

µ2

µ1

where λR1 = λR(µ1). This gives the renormalization group (RG) trajectory
of λR as a function of µ. One can also introduce a mass scale M defined by

1

λR1

+
3

(4π)2
ln µ1 =

1

λR2

+
3

(4π)2
ln µ2 =

3

(4π)2
ln M

M = µ1e
(4π)2

3λR1 = µ2e
(4π)2

3λR2

Clearly M is a mass that characterizes the (RG) trajectory. In fact it can
be defined as the scale µ at which λR = ∞. It is called the ”Landau pole”,
after Landau who argued that the theory doesn’t make sense as a field theory
because of this. (Quantum Electrodynamics also has a similar problem.) At
the other end of the trajectory, at µ = 0, λ = 0 and we get a free non-
interacting theory.
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The scale M characterizes this theory. One should remember that clas-
sically the theory was scale invariant (except for a mass term). Even with
a mass term it should have become scale invariant at high energies where
the mass is negligible. Instead we have a situation where the coupling
constant changes with scale, and in fact blows up at some high scale M .

M = µ1e
(4π)2

3λR1 >> µ1 is a large number if λR1 << 1. This scale M has noth-
ing to do with the physical mass mR and would have more or less this value
even if mR = 0 (mR does not enter the formula for M .)

Furthermore, we see that λR is not really a free parameter in this theory.
Two theories with different λR are simply related by an overall change of
scale! The only difference between the two theories being an overall change
of scale, we can say that the theory is characterized by a scaleM rather than
by the parameter λR! Thus a dimensionless free parameter is replaced by a
dimensionful parameter - a mass. This is called ”dimensional transmutation”.
It can be traced to the fact that the quantum theory violates scale invariance,
even though the classical theory had scale invariance. This in turn can be
traced to the UV divergences that necessitated the introduction of a UV
cutoff Λ.

When quantum effects violate a classical symmetry, it is called an ”anomaly”.
In this case it is an anomaly in scale invariance.

17.2 Wilson’s Renormalization group, Universality in
Critical Phenomena

1. Near the critical temperature (of, say, a ferromagnet) the correlation
length becomes very large. This means that a large number of DOF
(spins) interact with and influence each other. So we have a prob-
lem tailor made for a field theory. Furthermore what is found is that
many results (eg critical exponents) do not depend on details of the
microscopic Hamiltonian and are the same for a large class of systems
- these systems are said to belong to the same universality class. This
independence of the microscopic details is called universality.

As explained above, in understanding the dynamics of a field theory at
energies much lower than the cutoff, the RG helps. The idea is integrate
out degrees of freedom and get a theory with fewer number of DOF. We
should integrate out all modes with wave number much larger than the
inverse correlation length. In other words we have to bring the cutoff
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down far enough that only a few DOF are left in a volume of size one
correlation length. Once we have such a Hamiltonian calculations are
easy and perturbation theory will converge quite fast.

It is very useful to do the RG transformation in some detail to see
what exactly the steps are. What we have done in the previous sec-
tion is a schematic calculation that indicates how the coupling constant
changes. We have also related this to the earlier renormalization pro-
gram involving counterterms etc.

We describe the procedure in some detail. But for simplicity we do it for
the free theory first. We then do the same for the ϕ4 term, but again we
neglect the coupling between the high and low modes. This simplified
setup is very instructive. We then incorporate the effects of the cross
coupling between the high and low modes. For this we use the results of
the previous section where we diagrammatically calculated the change
in λ.

2. We consider a scalar field on a lattice exactly like the one at the begin-
ning of these lectures. 3 We will work in Euclidean space. So we can
take over the results from the first chapter of these notes, but discard
the time dependence. We started with a Hamiltonian

H =
1

2

N∑
i=1

(qi+1 − qi)
2

After a mode expansion qm =
∑

K(QKe
imK + cc), we get (upto some

numerical factors):

H ≈ N
∑
K

ω2
KQKQ−K

where ωK = 2sinK
2
and K = 2πn

N
, n = 1, 2.., N . Note that Q−K = Q∗

K .
Also if N is large and n << N , we have ωK = K. (Note that −π <
K < π.) Motivated by this we work with

H ≈ N
∑
K

K2QKQ−K

Furthermore we add a term r2
∑

m q
2
m which makes H:

H ≈ N
∑
K

(K2 + r2)QKQ−K

3The best reference for this is the Phys Reports by Kogut and Wilson
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This is the crystal lattice version of a free massive scalar. Finally we
go over to continuum notation and write

H ≈ N2

∫ 1

0

dDK (K2 + r2)QKQ−K ≈
∫ 1

0

dDK (K2 + r2)ϕ(K)ϕ(−K)

We have kept the upper limit as 1 rather than π - this is a matter of
rescaling. Finally note that K = 2πn

N
= 2πna

L
= ka = k

Λ
. Here k is

the physical momentum, a is the lattice spacing and L is the size of
the crystal and we have set a = 1

Λ
. Thus K is the physical momentum

measured in units of the cutoff-which is why the max value is 1. This
being the case we can set m = rΛ and think of m as the physical mass.
Thus r is the mass measured in units of the cutoff.

3. Now we perform the integrating out - we integrate all modes with
momenta between 1

2
and 1. In physical units, from Λ

2
to Λ. Since we are

considering the free theory there are no cross terms - so ∆S[ϕ1, χ] = 0.
Integrating χ thus only gives an overall normalization factor, and S[ϕ1]
is unmodified. Thus we get

Z =

∫
Dϕ1(K)ei

∫ 1
2
0 dDK (K2+r2)ϕ1(K)ϕ1(−K)

In order to figure out how the parameters of the new action 4are related
to those of the old one. In order to do that we must rescale the mo-
mentum so that the range of integration is 0−1. This will also entail a
rescaling of the field so that the k2 part is unchanged. Thus let k′ = 2k
and ϕ1 = ζϕ. We get

S1[ϕ] = 2−Dζ2
∫ 1

0

dDK ′ (
K ′2

4
+ r2)ϕ(K ′)ϕ(−K ′)

=
2−Dζ2

4

∫ 1

0

dDK ′ (K ′2 + 4r2)ϕ(K ′)ϕ(−K ′)

We now set ζ = 21+
D
2 so that

S1[ϕ] =

∫ 1

0

dDK ′ (K ′2 + 4r2)ϕ(K ′)ϕ(−K ′)

4We sometimes refer to it as the Hamiltonian. It can equally well be considered to be
the (Euclidean) action.
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Thus we get back the original action with a parameter r′ = 2r. This
is the only effect of the transformation. This is easy to understand.
r = m

Λ
. We have rescaled the momenta so that now it is expressed

in terms of the new cutoff Λ′ = Λ
2
. Thus r′ = m

Λ′ = 2r. Thus it just
follows from dimensional analysis. This naive dimensional works here
because we are not considering interactions. Interactions can modify
the ”engineering” dimensions (naive dimensions) of operators.

4. In the context of critical phenomena of say spin systems, the ”mass”m,
should be thought of as 1

ξphys
- the inverse physical correlation length. r

can be thought of as the inverse correlation length in units of the lattice
spacing. Thus we can expect that after blocking together spins to get
a lattice of spacing 2a, the correlation length becomes half (measured
in units of the new lattice spacing.) This is of course what happens.

Parameters such as r that grow bigger after an RG transformation are
termed ”relevant” parameters. They become more important after a
few RG transfromations. Note that r2 in the Landau Ginzburg free
energy was T − Tc. Thus after some blocking the theory looks less and
less critical - because th effective T − Tc gets bigger - in umits of the
cutoff momentum. After some blocking the correlation length comes
down to around 1 (in units of the lattice). At this point the theory has
become quite simple to handle because there are few degrees of freedom
that one needs to worry about in any calculation.

5. One can do the same analysis for the ϕ4 term. In momentum space it
is

λ

4!

∫ 1

0

dDp1

∫ 1

0

dDp2

∫ 1

0

dDp3

∫ 1

0

dDp4 ϕ(p1)ϕ(p2)ϕ(p3)ϕ(p4)δ(p1+p2+p3+p4)

We split this into high and low momentum fields as before. Let us
concentrate on the low momentum piece and do the rescalings. The
low momentum piece is

S[ϕ1] =
λ

4!

∫ 1
2

0

dDp1

∫ 1
2

0

dDp2

∫ 1
2

0

dDp3

∫ 1
2

0

dDp4

ϕ1(p1)ϕ1(p2)ϕ1(p3)ϕ1(p4)δ(p1 + p2 + p3 + p4)
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We rescale and write p′ = 2p as before and ϕ1 = ζϕ.

S1[ϕ] = ζ42−3D λ

4!

∫ 1

0

dDp′1

∫ 1

0

dDp′2

∫ 1

0

dDp′3

∫ 1

0

dDp′4

ϕ(p′1)ϕ(p
′
2)ϕ(p

′
3)ϕ(p

′
4)δ(p

′
1 + p′2 + p′3 + p′4)

The momentum conservation delta function soaks up one of the mo-
mentum integrals. Substituting ζ = 21+

D
2 we get

S1[ϕ] = 24−D
λ

4!

∫ 1

0

dDp′1

∫ 1

0

dDp′2

∫ 1

0

dDp′3

∫ 1

0

dDp′4

ϕ(p′1)ϕ(p
′
2)ϕ(p

′
3)ϕ(p

′
4)δ(p

′
1 + p′2 + p′3 + p′4)

This is of course only part of the contribution to S1[ϕ]. The effect of the
interactions we have already seen earlier and has to be included. We
will do this later. What we see is that λ′ = 24−Dλ. This when D < 4 it
is a relevant parameter just like r. On the other hand for D > 4 it gets
smaller with each RG transformation. These are called ”irrelevant”
parameters - precisely because they get smaller and smaller, so in the
low energy action it has no effect. Precisely at D = 4 it doesn’t change
and is called a ”marginal” parameter. This analysis is again just a
restatement of dimensional analysis. We know that in 4 dimensions λ
is dimensionless, which means it doesn’t scale. In three dimensions it
has dimensions of mass. So clearly it gets bigger when measured in
units of the cutoff. In nore than 4 dimensions it has length dimensions,
so it gets smaller (measured in units of the cutoff).

The same result can be obtained more simply by taking the ϕ4 theory
in x-space and scaling x = bx′ (length specified in units of the new
lattice spacing, is x′ and is smaller), ϕ = ϕ′

b
. The mass parameter m2

becomes b2m2 and λ does not scale.

Once again we caution the reader that naive dimensional analysis works
because we are not including the effect of interactions. Below we will
see some effects of interactions.

6. Thus we see that some coefficients get smaller and smaller. In fact if
we consider a general Hamiltonian for an order parameter field, in any
dimension, only the first few powers are relevant. All higher powers
are irrelevant. Thus in 4 dimensions, (if we neglect intarctions, or if λ
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is very small) all ϕn for n > 4 are irrelevant. So that means the low
energy dynamics is governed by one or two parameters, no matter what
the initial Hamiltonian. (The coefficient of the ϕ2 term is proportional
to T −Tc and is tuned by the experimenter - it does not depend on the
microscopics). This is the basis of universality in critical phenomena.
Near the critical point because the correlation function is large we need
to work with the long distance effective Hamiltonian that is obtained
by this RG process. The details of the microscopic theory determine
the starting Hamiltonian. But only one or two of the lowest order
operators of the original Hamiltonian are important in determining the
form of the final Hamiltonian. Two Hamiltonians differing in all other
higher order terms will have identical long distance behaviour - i.e. near
the critical point. This is the universality that is observed in critical
phenomena.

7. In the above discussion we have neglected the effect of the interactions.
Let us indicate qualitatively what happens when we include the effect
of interactions. We saw above that λ′ = 24−Dλ. When 4−D ≈ 0 5 We
have:

δλ = (24−D − 1)λ ≈ ln 2(4−D)λ

This does not include the effect of the interactions. But we have seen
that the change due to the interactions (from the one loop graph) is
δλ ≈ − 3λ2

(4π)2
ln Λ

Λ′ . (The sign is negative - the coupling decreases at low

energies.)This calculation was done in 4 dimensions. So we assume that
D is close to 4. In the above calculation Λ

Λ′ = 2 and including this effect
we have

δλ ≈ ln 2(4−D)λ− 3λ2

(4π)2
ln 2

This modifies the situation somewhat. Earlier we had concluded that
for D < 4, λ is a relevant parameter. Now we see that this depends
on the value of λ. In fact there is some value of λ that makes δλ = 0.
This satisfies

(4−D)λ∗ − 3λ∗2

(4π)2
= 0 ⇒ λ∗ = 0 or λ∗ ≈ ϵ

(4π)2

3

5D is the space dimensionality here and is actually an integer- usually 3. However for
mathematical purposes we assume that it is a real number close to 4. This is called the ϵ
(ϵ = 4−D) expansion. At the end of the calculation we can set ϵ = 1.
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The above calculation is approximate. We have used the continuum
one loop calculation results. This is not quite the same as integrating
out from Λ′ to Λ. Also the effect of the mass term is not taken into
account. See the original papers (such as Phys Rep by Kogut and
Wislon) for a more detailed calculation.

These values are called fixed points. So when D < 4 there is a non
trivial fixed point. Once the coupling has that value it doesn’t change
and is exactly marginal. In the above example if λ > λ∗, δλ < 0, so λ
decreases and approaches the fixed point. Similarly if λ < λ∗, δλ > 0
and once again it approaches the fixed point. So either way at low
energies λ→ λ∗.

The other fixed point λ = 0 is called the trivial fixed point (or the
Gaussian fixed point). If λ > 0 it flows to λ∗ under RG transformations.
This analysis is for D < 4. For D ≥ 4 the only known fixed point is
the Gaussian one.

This fact makes universality even stronger. Not only are the irrelevant
couplings unimportant, but even the consequences of the λϕ4 term in
the microscopic theory is independent of λ, because it always ends up
at the fixed point value λ∗! This also explains the scaling hypothesis
described in section 14 that says that the only scale in the problem
near the critical temperature is ξ and there is some universal function
f( r

ξ
) that describes correlation functions. This means that there is no

free parameter such as λ that the function depends on. This is now
explained by saying that λ ≈ λ∗ near the critical temperature and is
some fixed number - not a free parameter.

17.3 Callan-Symanzik Equation

17.3.1 Renormalization Group eqn

The Callan Symanzik equation is a useful way to extract the consequences
of RG for correlation functions. Our starting point is this equation derived
earlier:

ΓnB[p1, p2, ..., pn;λB,mB,Λ]Z
n
2 = ΓnR[p1, p2, ..., pn;λR,mR, µ] (110)

Write this as:

ΓnB[p1, p2, ..., pn;λB,mB,Λ] = Z−n
2ΓnR[p1, p2, ..., pn;λR,mR, µ] (111)
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and observe that the LHS does not depend on µ, it only depends on Λ.
It follows that

µ
d

dµ
ΓnB[p1, p2, ..., pn;λB,mB,Λ] = 0

=⇒ µ
d

dµ
[Z−n

2ΓnR[p1, p2, ..., pn;λR,mR, µ]] = 0

This gives a constraint on ΓR. Now define

µ
d

dµ
ln
√
Z = γϕ (112)

This is called the anomalous dimension of the field ϕ.

µ
d

dµ
mR = mRγm (113)

This is the anomalous dimension of the operator ϕ2.
Then using the chain rule

µ
d

dµ
[Z−n

2ΓnR[p1, p2, ..., pn;λR,mR, µ]] =

Z−n
2 [−nγϕ + µ

dλ

dµ

∂

∂λ
+ µ

dmR

dµ

∂

∂mR

+ µ
∂

∂µ
][ΓnR[p1, p2, ..., pn;λR,mR, µ]] = 0

=⇒ [−nγϕ + βλ
∂

∂λ
+mRγm

∂

∂mR

+ µ
∂

∂µ
][ΓnR[p1, p2, ..., pn;λR,mR, µ]] = 0

(114)
This is a Renormalization Group equation for ΓR

17.3.2 Callan Symanzik equation

Now combine with simple dimensional analysis to get it in a different
form: Let [x] denote the mass dimension of x. Then

[p] = 1, [m] = 1, [µ] = 1

From the form of the kinetic term in the action which is dimensionless:∫
dDx ϕ(x)□ϕ(x), we conclude that

[ϕ(x)] =
D − 2

2
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and from ϕ(p) =
∫
dDx ϕ(x)e−ipx we conclude that

[ϕ(p)] = [ϕ(x)]−D = −D + 2

2

Let dimension of Γ(p1, ....pn) be b:

Γ[ϕ] =
∑
n

∫
dDp1

∫
dDp2....

∫
dDpn−1Γ(p1, ....pn;m,λ, µ)ϕ(p1)....ϕ(pn)

Since Γ[ϕ] is dimensionless we have:

b+ (n− 1)D + n(−D + 2

2
) = 0 =⇒ b = D + n− nD

2

For our case D = 4 so b = 4 − n. Then dimensional analysis tells us that if
we perform the scaling:

p→ tp,m→ tm, µ→ tµ =⇒ Γ → tbΓ

i.e.

[pi
∂

∂pi
+m

∂

∂m
+ µ

∂

∂µ
]Γ(p1, .., pn;m,λ, µ) = bΓ(p1, .., pn;m,λ, µ)

It can also be written as

[t
∂

∂t
+m

∂

∂m
+ µ

∂

∂µ
− b]Γ(tp1, .., tpn;m,λ, µ) = 0 (115)

Combining (115) with (114) and eliminating µ ∂
∂µ

gives:

[−t
∂

∂t
+ (γm − 1)m

∂

∂m
+ βλ

∂

∂λ
+ b − nγϕ]Γ

n
R(tp1, .., tpn;mR, λR, µ) = 0

(116)
This is the Callan-Symanzik equation and relates Γ(tp1, .., tpn;m,λ, µ) at

different momenta rather than at different µ.
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17.3.3 Solution to C-S eqn

Since the equation relates changes in t to changes in λ,m and overall nor-
malization one can expect the solution to be of the form

Γ(tp1, .., tpn;m,λ, µ) = f(t)Γ0(p1, .., pn;m(t), λ(t), µ)

Applying t ∂
∂t

and using the chain rule one gets

∂Γ

∂t
=
df

dt
Γ0 + f(

dm

dt

∂Γ0

∂m
+ t

dλ

dt

∂Γ0

∂λ
)

t
∂Γ

∂t
= t

1

f
[
df

dt
Γ + f(

dm

dt

∂Γ

∂m
+ t

dλ

dt

∂Γ

∂λ
)]

[−t ∂
∂t

+ t
1

f

df

dt
+ t

dm

dt

∂

∂m
+ t

dλ

dt

∂

∂λ
]Γ(tp1, .., tpn;m,λ, µ) = 0 (117)

Comparing (117) with (116) we see that they are the same if we identify

t
dλ

dt
= βλ(λ,m), t

dm

dt
= m(γm(λ,m)− 1), t

1

f

df

dt
= b− nγϕ(t) (118)

In other words we need to solve the above and obtain, λ(t),m(t) and then
solve for f(t). The solution is thus:

Γ(tp1, .., tpn;m,λ, µ) = tbe−
∫ t
0

nγϕ
t

dtΓ(p1, p2, ..., pn;m(t), λ(t), µ)

(119)
b is the engineering dimension and −nγϕ is the anomalous dimension.
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18 Quantum Electrodynamics

The EM field is described by the four-vector Aµ. This has 4 components.
But we know that the em field has only 2 DOF’s - two polarizations of the
em wave. So the question is how does this happen. We are forced to have 4
components because that is the smallest representation of the Lorentz group
after the scalar - which has one, and we know the structure of the theory
from classical em. Somehow two DOF’s have to drop out. This is best seen
in the canonical analysis. But actual quantization is easier in the functional
formalism.

We start with the action

S = −1

4

∫
d4x FµνF

µν + JµA
µ

To make contact with our standard definitions in electrostatics where
E⃗ = −∇⃗ϕ, we let A0 = ϕ = −A0 so Ei = −∂iA0 = +∂iA0. In general then
Ei = Fio = ∂iA0 − ∂0Ai. J

0 = ρ is the charge density.

18.1 Canonical Analysis

L = −1

4
FµνF

µν + JµA
µ

= −1

2
F0iF

0i − 1

4
FijF

ij + [J0A
0 + JiA

i]

=
1

2
F0iF0i −

1

4
FijF

ij + [J0A
0 + JiA

i]

=
1

2
(∂0Ai)

2 +
1

2
(∂iA0)

2 − ∂iA0∂0Ai −
1

4
FijFij + [J0A

0 + JiA
i] (120)

canonical momenta are:

Πi =
∂L
∂Ȧi

= ∂0Ai − ∂iA0 = F0i = −Ei

Π0 =
∂L
∂Ȧ0

= 0 (121)

The above is a (”primary”) constraint - there is no momentum conjugate
to A0.
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The Hamiltonian is:
H = ΠiȦi − L

Use Ȧi = Πi + ∂iA0 to get

H =
1

2
Π2
i +Πi∂iA0 +

1

4
FijFij − [J0A

0 + JiA
i]

=
1

2
Π2
i − A0∂iΠi +

1

4
FijFij + [J0A0 − JiA

i]

We have integrated by parts and dropped a total divergence. Using
{A0,Π0}PB = 1 If we now calculate

{H,Π0}PB = ∂iΠi + J0 = 0

⇒ ∂iEi = J0

This must also be satisfied. This is another (”secondary”) constraint. In
fact this is just Gauss Law.

Once both constraints are obtained using equations of motion, then the
constraints must be consistent with EOM:

Ȧi = [Ai, H]P

This means, the constraints χN must satisfy:

[χN , H] = 0

A constraint is first class if they all commute with each other [χN , χM ]P =
0 (after calculating PB and then imposing constraints, the PB should vanish).

These can be understood as symmetries of H under (gauge) transforma-
tions

δNA = ϵN [χN , A]

Π0, ∂iΠi + J0 are two first class constraints. If we could solve for A0 by
using ∂iΠi + J0 = 0 we could reduce the variables. But this equation has no
time derivatives - if satisfied at t = 0 it is always satisfied identically:

∂0[∂i
∂L

∂Fi0
− J0] = −∂0[∂i

∂L

∂F0i

+ J0] = ∂i∂j
∂L

∂Fij
− ∂iJi − ∂0J

0

= 0− ∂µJ
µ = 0
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(Using current conservation.) This is of course due to gauge invariance. Soln
is to impose a gauge condition eg ∂iAi = 0 Coulomb gauge is one choice.
Now we can solve for A0

−∂i∂iA0 = J0 =⇒ A0 =

∫
d3y

J0

4π|x− y|

Now the constraints are ∂i∂
iA0 and ∂iΠi + J0. These do not commute :

Second Class. Use Dirac brackets. Or eliminate extra degree of freedom.
We will come back to canonical quantization later.

18.2 Green’s Function and Functional Formalism

The EOM is
∂µFµν = ∂µ[∂µAν − ∂νAµ] = −Jν
⇒ [∂µ∂µgνρ − ∂ρ∂ν ]A

ρ = −Jν
This wave operator has no inverse, hence the Green’ function does not exist.
To see that it has no inverse, we observe that it has a zero mode (i.e. there
is a solution to the homogeneous equation) so the determinant vanishes.
Aµ = ∂µΛ solves the homogeneous eqn for any function Λ(x, t). This means
that given Jµ , Aµ is not uniquely fixed. Aµ+∂µΛ is also a solution. These are
”gauge transformations”. Fµν and hence the action and EOM are invariant
under this gauge transformation.

The same fact shows up in a different way in the fnl integral

Z[0] =

∫
DAµ(x)eiS[A]

Since any gauge tranformed configuration gives the same value for the action,
There is an infinite factor in Z corresponding to the volume of the gauge
group - at each space time point.

Gauge fixing illustration:
To illustrate this consider a simpler problem involving two variables:

I =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 f(x1, x2)

Where f is a fn that is symmetric under translations of x. f(x1, x2) =
f(x1+a, x2+a). Clearly it depends on the difference x1−x2 only.6 This can

6An example to keep in mind is f = e−(x1−x2)
2

.
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be written more compactly as f(x) = f(xa). We assume that xa ≡ x+a, and
xaa1 ≡ (xa1)a. Clearly the above integral is of the form

∫∞
−∞ dx1

∫∞
−∞ dyf(y) =

L ×
∫∞
−∞ dyf(y), where y = x1 − x2 and L is the regularized size of the box

and is actually ∞.
This can be done in a more general way as follows: Define a ”gauge fixing”

function χ(x) that is not invariant under the symmetry, i.e. χ(xa) ̸= χ(x).
Define ∫

da δ[χ(xa)] = ∆−1(x)

An expression for ∆(x) is obtained from:∫
dχδ[χ(xa)] = 1 =

∫
da||∂χ(x

a)

∂a
||δ[χ(xa)]

So ∆(x) = ||∂χ(x
a)

∂a
|| is the Jacobian for the change of variables.

Here da is the Haar measure for the translation group and satisfies da =
d(aa1) = d(a1a). Also the measure satisfies dx = dxa. Now consider inserting
1 (”unity”) in the following way inside the integral:

I =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫
da δ[χ(xa)]∆(x)︸ ︷︷ ︸

=1

f(x1, x2)

=

∫ ∞

−∞
dxa1

∫ ∞

−∞
dxa2

∫
da δ[χ(xa)]∆(xa)f(xa1, x

a
2)

All the quantities where x was replaced by xa are invariant, so nothing has
been changed. Now xa is an integration variable and can be replaced by x:

I =

∫
da

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 δ[χ(x)]∆(x)f(x1, x2)

The integral over the group volume, which is infinite has been factored out,
and we can divide by it to get:

I ′ ≡ I∫
da

=

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 δ[χ(x)]∆(x)f(x1, x2) (122)

As an example let χ(xa) = xa1. Then ∆(x) = 1. So

I ′ =

∫ ∞

−∞
dx2f(0, x2)
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Gauge fixing in QED
The above example can be applied directly to the full problem with the

changes:

x→ Aµ(x), dx→ DAµ(x), xa → Agµ(x), da→ Dg,

χ(xa) → χ(Ag(x)), ∆(x) → ∆[A], f(x) → eiS[A]

We get

Z ′ =
Z∫
Dg

=

∫
DAµ(x) δ[χ(A(x))]∆[A]eiS[A]

Z’is finite. Here ∆[A] = || δχ
δg
|| is known as the Fadeev-Popov determinant.

The LHS Z’ does not depend on χ (since neither Z nor
∫
Dg do). So

we can consider δ[χ − c] for arbitrary function c instead, and we can even

average over such functions with a weight e−
i
2α

∫
d4x c2 , to get

Z ′ =

∫
DAµ(x) e−i

1
2α

[χ(A(x))]2∆[A]eiS[A]

This form has the advantage that it is easy to incorporate χ2 as part of
the action.

Furthermore let us choose χ(A) = ∂µA
µ. Then ∆[A] = Det[∂2δ(x − y)]

(using δχ = ∂2Λ). This does not depend on A so it is just a constant nor-
malization factor which we henceforth drop. (When we calculate correlation
function we always divide by Z[0], so the normalizations cancel out anyway.)

Finally we can calculate the Green function for the modified wave equa-
tion:

(□gνρ − (1− 1

α
)∂ν∂ρ)A

ρ = −Jν

(□gνρ − (1− 1

α
)∂ν∂ρ)G

ρµ(x, x′) = −δρνδ(x− x′)

In momentum space we can solve

[−k2gνρ + kνkρ(1−
1

α
)][Agρµ +Bkρkµ] = −δρν

where we have made a general ansatz for the Green’s function.
This gives for the photon propgator:

Gµν(k) =
i

k2
[gµν − (1− α)

kµkν

k2
] = −⟨0|T (Aµ(k)Aν(−k)|0⟩
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Where we have inserted the factor of i which is required just as in the
scalar case. α = 1 is called Feynman gauge and α = 0 is called Landau
gauge.

18.3 Canonical Quantization

Since we need to get rid of two coordinates, so that we have the same number
of independent coordinates and momenta, we can impose a gauge condition.
∂iAi = 0 called the Coulomb gauge, is quite convenient. Once we impose
this the EOM

∂iF
i0 + J0 = 0 ⇒ ∂i(∂iA0 − ∂0Ai) = J0

⇒ −∇2A0 = J0

This can be solved explicitly for A0. (Note that Gauss Law by itself, without
the gauge condition, cannot be used to solve for A0 for all time, because if
it is satisfied at some initial time, the EOM guarantees that it is satisfied
for all time. This has to do with gauge invariance - A0 as long as it obeys
the EOM will satisfy Gauss law. We have already seen that EOM cannot be
used to solve for the A’s because of gauge invariance.) The solution is well
known:

A0(x, t) =

∫
d3y

J0(y, t)

4π|x⃗− y⃗|

Now that we have two DOF we can define Π⃗ = Π⃗⊥ + Π⃗L the longitudinal
and transverse components, which satisfy ∂iΠ⊥i = 0, ∂iΠLi = −J0. In fact
Πi = F0i = ∂0Ai︸︷︷︸

Π⊥

− ∂iA0︸︷︷︸
ΠL

. Thus Π⊥i = ∂0Ai and ΠLi = ∂iA
0.

We can write the Hamiltonian in terms of the independent unconstrained
momenta:

H =
1

2
(Π⊥i + ∂iA

0)2 − A0∂i(∂iA
0) +

1

4
FijFij + J0A0 − JiA

i

=
1

2
(Π⊥i)

2 +
1

2
(∂iA

0)2 − A0∂i(∂iA
0) +

1

4
FijFij + J0A0 − JiA

i

Now −A0∇2A0 = +A0J
0. The second term also after an integration by

parts, is of this form. Combining all the J0A0 terms we get:

H =
1

2
(Π⊥i)

2 +
1

4
FijFij +

1

2
J0A0 − JiA

i (123)
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Here ∂iAi = 0 is understood. Note that∫
d3x

1

2
J0(x, t)A0(x, t) =

1

2

∫
d3x

∫
d3y

J0(x, t)J0(y, t)

4π|x− y|

is just the electrostatic energy of the charges. Note also that this expression
is non-local i.e. it involves quantities at different points in space. This is the
price we pay for expressing the hamiltonian in terms of the physical variables
only. The gauge invariant description was local but the price we paid was
the redundancy of variables. This is always the trade off in gauge theories.

Poisson Brackets: We can now calculate the PB of the independent
momenta and then replace them by commutators.

{Ai(x),Πi
⊥(y)}PB = {Ai(x),Πi(y)−Πi

L(y)}PB = δijδ3(x−y)−{Ai(x),Πi
L(y)}PB

We need to express ΠL in terms of Πi.

ΠLj(y) = ∂jA
0(y) = ∂yj

∫
d3z

J0(z)

4π|y − z|
= ∂yj

∫
d3z

−∂zkΠk(z)

4π|y − z|

= ∂yj

∫
d3z ∂zk

1

4π|y − z|
Πk(z) =

substituing in the PB we get

{Ai(x),Πi
⊥(y)}PB = δijδ3(x− y) +

∂2

∂xi∂xj

1

4π|x− y|
(124)

On multiplying by i we get the commutators.
The same result is obtained for the Dirac brackets between Π and A. See

Weinberg’s book for the Dirac bracket treatment.

18.4 Generating Functional for QED

The Lagrangian density with source is:

−1

4
FµνF

µν − 1

2α
(∂µA

µ)2 + (ψ̄(iγµ∂µ + eγµAµ︸ ︷︷ ︸
Lint

−m)ψ + JµAµ + η̄ψ + ψ̄η

The generating functional:

Z[Jµ, η̄, η] =

∫
DAµDψ̄Dψei

∫
d4x[L+JµAµ+η̄ψ+ψ̄η] = e

i
∫
d4x e(− 1

i
δ

δηa(x)
)(γµ)ab( 1

i
δ

δη̄b(x)
)( 1

i
δ

δJµ(x)
)
Z0[J

µ, η̄, η]
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with
Z0[J

µ, η̄, η] = Z0[0]e
−

∫ ∫
[η̄SF η+

1
2
JµD

µν
F Jν ]

where DF = −igµν
p2+m2 -in the Feynman gauge and in momentum space.

Let us now calculate a term in Z[J ] with two J ’s to lowest non trivial
order. The leading term of course is −1

2

∫
d4x

∫
d4yJµD

µν
F Jν and represents

the propgation of a photon between two currrents (see Fig).
The next such term comes at second order in perturbation theory:

1

2!
i

∫
d4x e(−1

i

δ

δηa(x)
)(γµ)ab(

1

i

δ

δη̄b(x)
)(
1

i

δ

δJµ(x)
)

i

∫
d4y e(−1

i

δ

δηc(y)
)(γν)cd(

1

i

δ

δη̄d(y)
)(
1

i

δ

δJν(y)
)Z0[J, η̄, η]

= (ie)2
∫
d4x

∫
d4y(−1

i

δ

δηa(x)
)(γµ)ab(

1

i

δ

δη̄b(x)
)(−1

i

δ

δηc(y)
)(γν)cd(

1

i

δ

δη̄d(y)
)

(−1)

∫
d4x1J

ρ(x1)DFρµ(x1 − x)

∫
d4x2J

σ(x2)DFσν(x2 − y)Z0[J = 0, η̄, η]

where we have first extracted the two J ’s so we can now set J = 0 inside Z0.
We now do the fermionic part. Since we don not want any η’s in the final
answer, the η and η̄ derivatives have to contract in pairs. We are interested
in connected diagrams, so we make sure that acting on η̄(y1)SF (y1−y2)η(y2)
x = y1 and y = y2 or vice versa. (This gives a factor of 2, to cancel the 2! in
the denominator.)

Thus one term comes from δ
δηa(x)

δ
δη̄d(y)

)
∫ ∫

(−η̄(y1)SF (y1 − y2)η(y2)) =

−SdaF (y−x). This is multiplied by− δ
δηc(y)

δ
δη̄b(x)

)
∫ ∫

(−η̄(y1)SF (y1−y2)η(y2)) =
SbcF (x − y) where the (−) sign is because we have interchanged the order of
the derivatives. The factors of 1

i
and −1

i
all combine to give 1. Thus we get

(ie)2(γµ)abSbcF (x− y)(γν)cd(−SdaF (y − x)) = e2Tr[γµSF (x− y)(γν)SF (y − x)]

So the final result is

−
∫
d4x

∫
d4y

∫
d4x1J

ρ(x1)DFρµ(x1 − x)

∫
d4x2J

σ(x2)DFσν(x2 − y)

e2Tr[γµSF (x− y)(γν)SF (y − x)]
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The correction to the propagator is

− δ2Z

δJµ(x′)δJν(y′)
=

∫
d4x

∫
d4yDFρµ(x

′−x)DFσν(y
′−y)e2Tr[γµSF (x−y)(γν)SF (y−x)]

Let us work in momentum space and calculate the amputated Green
function (i.e. without the two factors of DF ):

e2
∫

d4k

(2π)4
Tr[γµ

−i
(p+ k)ργρ +m

γν
−i

kσγσ +m
]

This can be summarized by the Feynman rules: i) ieγµ at each vertex.
ii) SF for each fermion propagator and DF for each photon propgagtor iii)
(−1) for each fermion loop and iv) trace over Dirac indices for each loop.

The evaluation of this integral will be done later.

18.5 Tree Level Processes

DONE IN PARTICLE PHYSICS COURSE

18.6 One Loop Diagrams, Renormalization, beta-function

We start with the Bare Lagrangian (density):

LB = −1

4
FBµνF

Bµν − 1

2α
(∂µA

µ
B)

2 + ψ̄B(iγ
µ∂µ −mB)ψB + eBψ̄Bγ

µABµψB

and write it as a sum of the Renormalized Lagrangian and a counterterm
Lagrangian:

LR = −1

4
FRµνF

Rµν − 1

2
(∂µA

µ
R)

2 + ψ̄R(iγ
µ∂µ −mR)ψR + eRψ̄Rγ

µARµψR

Lct = −(ZA − 1)

4
FRµνF

Rµν − 1

2
(
ZA
α

− 1)(∂µA
µ
R)

2 + (Zψ − 1)ψ̄R(iγ
µ∂µ)ψR

−(ZψmB −mR)ψ̄RψR + (Zψ
√
ZAeB − eR)ψ̄Rγ

µARµψR

1. Note that the bare coupling to the EM field can be written as Zψ
√
ZAeB.

So the covariant derivative in the bare theory is (i∂µ+
√
ZAeBAµR). In

the renormalized theory it is (i∂µ+eRAµR). If these are to be equal then

151



√
ZAeB = eR. The coupling in the bare theory Zψ

√
ZAeBψ̄Rγ

µψRARµ
is conventionally written as Z1eRψ̄Rγ

µψRARµ, (i.e.Zψ
√
ZAeB = Z1eR).

Thus equality of covariant derivatives implies Z1 = Zψ. In con-
ventional notation Zψ ≡ Z2 and ZA ≡ Z3. So in conventional textbooks
one finds the statement Z1 = Z2. This is a Ward Identity. More about
this in the next subsection.

2. Another Ward Identity states that the longitudinal part of the propa-
gator is fixed to be whatever it is in the renormalized Lagrangian. We
have chosen the renormalized Lagrangian to be in the Feynman gauge.
There is no correction to this. Thus there is no need to modify the
coefficient of (∂µA

µ)2 - it remains as 1
2
. So we can choose α = ZA.

18.6.1 One Loop Graphs

We already have the one loop vacuum polarization graph. Let us evaluate it.
We will use dimensional regularization: Work in D = 4− 2ϵ.

18.6.2 Mathematical Digression: Volume element

Let us first of all work out the expression for a volume element in D dimen-
sions using spherical coordinates. Do this in a recursive way.

1. S1 Start with a circle of radius r1 in the x− y plane. The length is

dA1 = r1dθ1

2. Now we go to three dimensions. The angle in the x−y plane is usually
called ϕ. The angle wrt the z- axis is usually called θ, here we call
it θ1. The radius vector in three dimensions will be called r2. Then
r1 = r2sin θ1. The area element on S2 embedded in R3 is

dA2 = r2dθ1r1dϕ

3. Similarly if An−1 is the area element of Sn−1 embedded in Rn

dA3 = r3dθ2r2dθ1r1dϕ

dA4 = r4dθ3r3dθ2r2dθ1r1dϕ

dAn−1 =
n−1∏
i=1

ridθi−1dϕ (125)

(126)
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4. Furthermore just as in three dimensions:

r1 = r2sin θ1

r2 = r3sinθ2

rn−2 = rn−1sinθn−2 (127)

5. In n dimensions, the relevant radius is rn−1 ≡ R and plugging the
expressions recursively we get

dAn−1 = Rn−1(sinn−2θn−2dθn−2) (sin
n−3θn−3dθn−3)....(sinθ1dθ1)dϕ

(128)
All the angles range from 0 to π except ϕ which ranges over 2π.

6. Finally we write
dVn = dAn−1dR

The final integral of a function that depends only on R is thus:

In = 2π
n−2∏
k=1

∫
sinkθkdθk

∫ ∞

0

Rn−1dR f(R) (129)

Now we can use∫ π
2

0

sin2a−1x cos2b−1x dx =
1

2

Γ(a)Γ(b)

Γ(a+ b)

Set b = 1
2
and a = k+1

2
to get∫ π

0

sinkx dx = 2

∫ π
2

0

sinkx dx =
√
π
Γ(k+1

2
)

Γ(k+2
2
)

Plugging this into In we get

In = 2
π

n
2

Γ(n
2
)

∫ ∞

0

Rn−1dR f(R) (130)
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18.6.3 Mathematical Digression: Some useful Integrals

Using the above we obtain∫
dnp

(p2 +M2)a
= π

n
2
Γ(a− n

2
)

Γ(a)

1

(M2)a−n/2
(131)

Also replacing p by p+ k we can get results of the form∫
dnp

(p2 + 2k · p+M2)a
= π

n
2
Γ(a− n

2
)

Γ(a)

1

(M2 − k2)a−n/2

Differentiating wrt k we can get∫
dnp

pµ

(p2 + 2k · p+M2)a
= π

n
2
Γ(a− n

2
)

Γ(a)

(−kµ)
(M2 − k2)a−n/2
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18.6.4 One loop graphs

Figure 4: Electron and Photon Self Energy
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18.7 Ward Identities

19 Yang-Mills Theory

Yang-Mills is the natural generalization of electromagnetism to a non-Abelian
group.

19.1 Lie Groups Basics

Lie Groups are continuous groups. The group is also a differentiable manifold.
(eg SU(2) = S3). At any point one can define a tangent space and the
tangent vectors define generators of the group. They form a vector space -
the tangent space. The generators can thus be added and multiplied so they
form an algebra - called the Lie Algebra. These are defined by commutation
relations:

[Ta, Tb] = C c
abTc (132)

C c
ab are called the structure constants of the group. They also obey the Jacobi

identity
[[Ta, Tb], Tc] + [[Tb, Tc], Ta] + [[Tc, Ta], Tb] = 0

A general element of the group is then

g = eΛ
aTa ≡ eΛ

If we want them to be represented by unitary matrices then we choose Ta
to be anti-Hermitian, and the structure constants are real. (Some people
prefer Hermitian generators, in which case one has an extra factor of i in the
exponent.)

The simplest example is the SU(2) group. The Pauli matrices define
Hermitian generators obeying

[σi, σj] = 2iϵijkσk

If we prefer to work with Anti Hermitian generators we can define: Ti = − i
2
σi

so that
[Ti, Tj] = ϵijkTk

Further the structure constants define a normalization of the T ’s. So with
anti-Hermitian generators, we can choose for instance:

Tr(TaTb) = −1

2
δab (133)
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The same algebra can be represented by different matrices (Ta)
k
l , of dif-

ferent rank. Thus the Pauli matrices define a 2× 2 representation of SU(2).
One also has (2j + 1) × (2j + 1) dimensional matrices, as we know. j = 1

2

gives the Pauli matrix.
The number of generators is the dimension of the group. If the dimension

is n, then a special representation is the one by n×n matrices. This is called
the adjoint representation. In this case the matrix looks like (Ta)

c
b. In fact

one can show, using the Jacobi identity, that these are just the structure
constants:

(Ta)
c
b = +C c

ab (134)

For SU(2) the adjoint representation is three dimensional i.e. by 3 × 3 ma-
trices. This is the well known matrix representation of rotations of a three
vector.

19.2 Covariant Derivative

As in EM we define a covariant derivative:

Dµ = ∂µ + Aµ ; Aµ = AaµTa (135)

(Ta)
j
i is a matrix representation of the generator, chosen according to the

representation of the field it is acting on. Thus if ϕi is the field then

(Dµϕ)i ≡ ∂µϕi + Aaµ(Ta)
j
iϕj

Thus in SU(2) if ϕ is a spin half field then it has two components: i = 1, 2
and then Ta = − i

2
σa.

Under group rotations
ϕ→ gϕg†

If Dµ is a covariant derivative then

Dµϕ→ gDµϕg
† = (gDµg

†)gϕg†

Letting g = e−Λ, we conclude that

∂µ + Aµ → g∂µg
† + gAµg

† = ∂µ + ∂µΛ + gAµg
†

Thus we require that the gauge field should transform as

Aµ → ∂µΛ + gAµg
† (136)
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It is often easier to specify the infinitesimal form of the transformation: g =
I − Λ

δAµ = ∂µΛ− [Λ, Aµ] = ∂µ + [Aµ,Λ]

In component notation:

δAaµ = ∂µΛ
a+AbµΛ

cC a
bc = ∂µΛ

a+AbµC
a
bc Λ

c = ∂µΛ
a+Abµ(Tb)

a
cΛ

c = ((∂µ−+Aµ)Λ)
a = (DµΛ)

a

where we have used (134).

19.3 Action

Given the definition of the covariant derivative it is easy to see that

[Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] ≡ Fµν

is a gauge covariant field strength, in the sense that under gauge transfor-
mations

Fµν → gFµνg
†

and therefore an invariant (because of cyclicity of the trace) action is

1

2

∫
d4x Tr(FµνF

µν) = −1

4

∫
d4x F a

µνF
µνa (137)

where the orthonormality (133) of the generators have been used.
Finally a coupling constant can be introduced by rescaling A→ gYMA so

Fµν → gYMFµν

where the new field strength is:

Fµν = ∂µAν − ∂νAµ + gYM [Aµ, Aν ] ≡ Fµν

Similarly the covariant derivative becomes

Dµ = ∂µ + gYMAµ

Thus we can write the YM action as,

1

2g2YM

∫
d4x Tr(FµνF

µν)
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or with the gYM inside the field strength by the above rescaling.
They are equivalent except when we take the g → 0 limit: the first form

gives a free quantum theory with quadratic action, the second form gives a
classical but non linear theory with a (cubic, quartic) action.

Finally coupling to matter fields - scalars and fermions - is easy:∫
d4x[(Dµϕ)

†(Dµϕ) + ψ̄ /Dψ]

That completes our discussion of the classical Yang-Mills construction.
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