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1 Introduction

1. These are some notes for a collection of four lectures given at Matscience in September
2018. It is meant to be an introduction to some of the ideas in the Exact Renormal-
ization Group (ERG). It assumes a background in Quantum Field Theory. While the
material can be understood even by those who are not familiar with renormalization
group, to appreciate it requires some background in the concepts of RG.

2. The basic reference for ERG is the original article in Physics Reports by Kogut and
Wilson. There are other more recent reviews by Bagnuls and Bervillier and a very
comprehensive one by O. Rosten. There is also a good review by Igarashi, Itoh and
Sonoda. This last one is very systematic, compact but gives the mathematical details
in a nice way. I have relied heavily on this one.

3. Some of the derivations and equations I give below are not given in any review but
can easily be derived once the concepts are understood.

4. The notes go into some more detail than the actual lectures in some areas.

5. These notes only deal with scalar field theories and leaves out the vast subject of
gauge theories and symmetry.

2 Wilson’s RG equation

This is a prototype of Wilson’s ERG equation. It is also called a diffusion equation.

∂ψ′

∂t
=

1

2

∂

∂x
(
∂

∂x
+ x)ψ′ (1)

2.1 Solution and Interpretation as Coarse Graining

We use the following mapping to solve Wilson’s RG:

y = xet/2, τ = et, ψ′ = et/2ψ (2)

∂

∂y
=
∂x

∂y

∂

∂x
+
∂t

∂y

∂

∂t
= e−t/2 ∂

∂x
;

∂2

∂y2
= e−t ∂

2

∂x2

∂

∂t
=
∂y

∂t

∂

∂y
+
∂τ

∂t

∂

∂τ
=

1

2
y
∂

∂y
+ et

∂

∂τ

So
∂ψ

∂t
=
∂ψ

∂y

∂y

∂t
+
∂ψ

∂τ

∂τ

∂t
=

1

2
y
∂ψ

∂y︸ ︷︷ ︸
(i)

+ et
∂ψ

∂τ︸ ︷︷ ︸
(ii)
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(i)
1

2
y
∂ψ

∂y
=

1

2
x
∂ψ

∂x
=

1

2
e−t/2x

∂ψ′

∂x

(ii)
Consider the equation

∂ψ

∂τ
=

1

2

∂2ψ

∂y2

=
1

2
e−3t/2∂

2ψ′

∂x2

so

et
∂ψ

∂τ
=

1

2
e−t/2∂

2ψ′

∂x2

So
∂ψ

∂t
= (i) + (ii) =

1

2
e−t/2∂

2ψ′

∂x2
+

1

2
e−t/2x

∂ψ′

∂x
Finally

∂ψ′

∂t
=

1

2
ψ′ + et/2

∂ψ

∂t
=

1

2
ψ′ +

1

2

∂2ψ′

∂x2
+

1

2
x
∂ψ′

∂x
=

1

2

∂

∂x
(
∂

∂x
+ x)ψ′

Thus the coordinate transformation (2) maps “Schroedinger” equation

∂ψ

∂τ
=

1

2

∂2ψ

∂y2
(3)

to Wilson’s RG equation:
∂ψ′

∂t
=

1

2

∂

∂x
(
∂

∂x
+ x)ψ′ (4)

The solution to (3) is

ψ(yf , τf ) ≈
1√

2π(τf − τi)

∫
dyie

− 1
2

(yf−yi)
2

τf−τi ψ(yi, τi) (5)

We are not concerned about overall normalization factors.
Thus the solution to (4) is

ψ(xf , tf ) = e
tf
2

1√
2π(etf − eti)

∫
dxie

− 1
2

(xf e

tf
2 −xie

ti
2 )2

e
tf −eti ψ(xi, ti) (6)

The solution can also be written as

ψ(xf , tf ) =
1√

2π(1− eti−tf )

∫
dxie

− 1
2

(xf−e

ti−tf
2 xi)

2

1−e
ti−tf ψ(xi, ti) (7)
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As tf → ∞ we can see that ψ(xf , tf ) becomes 1√
2π
e−

1
2
x2
f . As tf → ti the kernel becomes

a delta function and ψ(xf , tf ) → ψ(xi, ti).
So the final state is identical to the initial state in the beginning. As time progresses

it has less and less information about the initial state. At tf → ∞, the initial state is
completely integrated over and the final state is a Gaussian: all information is lost.

2.2 Generalizing to Field Theory

In field theory, x is replaced by x(p), i.e. it becomes a mode of a field, and we have to
integrate over all p. So one would like the rate of integrating out to depend on p: Higher
p’s should get integrated out faster. Thus t should be replaced by some function of p - call
it g(p, t). g(p, t) is a time for each mode - and it should increase with p and also with t.
Also Λ = Λ0e

−t is the connection between t and scale - as t increases we move to the IR.
One can replace (4) by a functional DE:

δ

δg(p, t)
ψ[x(p), t] =

δ

δx(p)
(

δ

δx(−p)
+ x(p))ψ[x(p), t] (8)

The solution is obviously

ψ[xf (p), t] =

∫
Dxi(p)e

− 1
2

∫
p

(xf (p)−e−(g(p,t)−g(p,0))xi(p))(xf (−p)−e−(g(p,t)−g(p,0))xi(−p))

(1−e−2(g(p,t)−g(p,0)))) ψ[xi(p), 0]

(9)∫
p
=

∫
dDp

(2π)D

Overall normalization factors are not kept. In field theory ψ is typically some generating
functional (or partition function), whose normalization is not important.

(8) can also be written as

∂

∂t
ψ[x(p), t] =

∫
p
ġ(p, t)

δ

δx(p)
(

δ

δx(−p)
+ x(p))ψ[x(p), t] (10)

Wilson’s choice:

ġ = c+ 2p2e2t = c+
2p2

Λ2
, g(t) = ct+ p2e2t (11)

Λ is the moving scale. g distinguishes high p from low. Also what is considered “high”
changes with t because p is measured relative to the moving scale.

We identify the Bare action SB and the coarse grained “Wilson action” SΛ by:

ψ[xi(p), ti] = e−SB [xi(p),ti], ψ[xf (p), tf ] = e−SΛ[xf (p),tf ]
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We will often write this equation suppressing the momentum label as:

∂

∂t
ψ(x, t) =

1

2
ġ(t)

∂

∂x
(
∂

∂x
+ x)ψ(x, t) (12)

this makes the analogy with ordinary q.m. very clear.
For completeness we write the equation for S suppressing momentum labels:

∂S(x, t)

∂t
= ġ(t)[

∂2S

∂x2
− (

∂S

∂x
)2 + x

∂S

∂x
] (13)
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2.3 Relating Correlations

Scanned by CamScanner
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3 Wilson Action, Generating Functional

We have defined a coarse graining above which gave a Wilson action at low energies. We
define another way of doing this - more suited for usual Feynman Diagram perturbation
theory.

3.1 Wilson Action

Let us start by defining:

Z[J ] ≡ eWB [J ] =

∫
Dϕe−SB [ϕ]+

∫
p J(−p)ϕ(p) (14)

Here SB is the bare action. We separate out the kinetic and interaction terms as follows:

SB[ϕ] =
1

2
ϕ∆−1ϕ+ SB,I [ϕ]

∆ =
e
− p2

Λ2
0

p2
≡
K0(

p2

Λ2
0
)

p2

The proapagator is regulated. Λ0 is a cutoff for the bare theory, which we may eventually
take to ∞. The full propagator will now be written as a sum of two pieces, a high energy
propagator and a low energy propagator: ∆ = ∆h +∆l.

∆h =
K0(p,Λ0)−K(p,Λ)

p2
=
e
− p2

Λ2
0 − e−

p2

Λ2

p2
(15)

propagates fields with momenta Λ < p < Λ0. Λ0 is the bare cutoff which can be taken to
∞ in the continuum limit. Note that as p→ 0, ∆h is non singular.

Then we can show that Z[J ] can also be written as

Z[J ] =

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
Dϕhe

− 1
2
ϕh

1
∆h

ϕh+Jϕh−SB,I [ϕl+ϕh]

= e−SB,I [
δ
δJ

]

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
Dϕhe

− 1
2
ϕh

1
∆h

ϕh+Jϕh

(See below for simple proof)
Another version of the Wilson action can then be defined by the following equations:

Z[0] =

∫
Dϕle−

1
2
ϕl∆

−1
l ϕl

∫
Dϕhe−

1
2
ϕh∆

−1
h ϕh−SB,I [ϕl+ϕh] (16)

=

∫
Dϕle−

1
2
ϕl∆

−1
l ϕl−SI,Λ[ϕl] =

∫
Dϕle−SΛ[ϕl] (17)
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SI,Λ[ϕ] is the interacting part of the Wilson action defined by integrating out the high
momentum modes. We are left with an effective theory that is a QFT description of low
energy phenomena:

e−SI,Λ[ϕl] ≡
∫

Dϕhe−
1
2
ϕh∆

−1
h ϕh−SB,I [ϕl+ϕh] (18)

For this theory Λ acts as a UV cutoff as in all effective field theories. From the point of view
of the original field theory SB since we are only integrating modes with momentum above
Λ, Λ is an IR cutoff. In fact because we have not done any low momentum integration, SΛ
is analytic at p = 0.

Simple proof: Consider

Z[J ] = e−SB,I [
δ
δJ

]

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
Dϕhe

− 1
2
ϕh

1
∆h

ϕh+Jϕh

Do the integrals to get (ignoring field independent determinants)

Z[J ] = e−SB,I [
δ
δJ

]e
1
2
J(∆h+∆l)J

Z[J ] = e−SB,I [
δ
δJ

]

∫
Dϕe−

1
2
ϕ∆−1ϕ+Jϕ

=

∫
Dϕe−

1
2
ϕ∆−1ϕ+Jϕ−SB,I [ϕ]

=

∫
Dϕe−SB [ϕ]+Jϕ

All though SΛ is a low energy effective field theory, because of the analytic nature of
the cutoff, in fact it has all the high energy information in it. Thus in the vertices of the
action, the coefficient functions are actually analytic functions of the momenta and one
can extract high energy behaviour also from it. This will be clear below in (24) and (25).

3.2 WΛ[J ]

We start with some definitions:

Z[J ] ≡ eWB [J ] =

∫
Dϕe−SB [ϕ]+

∫
p J(−p)ϕ(p) (19)
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Now we have seen that Z[J ] can be written as

Z[J ] =

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
Dϕhe

− 1
2
ϕh

1
∆h

ϕh+Jϕh−SB,I [ϕl+ϕh]︸ ︷︷ ︸
I[J,ϕl]

(20)

I[J, ϕl] ≡
∫

Dϕhe
− 1

2
ϕh

1
∆h

ϕh+Jϕh−SB,I [ϕl+ϕh] (21)

Z[J, ϕl] ≡
∫

Dϕhe
− 1

2
ϕh

1
∆h

ϕh+Jϕh−SB,I [ϕl+ϕh]+Jϕl = I[J, ϕl]e
Jϕl ≡ eWΛ[J,ϕl] (22)

I[J, ϕl] can be rewritten as

I[J, ϕl] =

∫
Dϕhe

− 1
2
(ϕh −∆hJ)︸ ︷︷ ︸

ϕ′

1
∆h

(ϕh−∆hJ)+
1
2
J∆hJ−SB,I [ϕl+ϕh]

=

∫
Dϕ′e−

1
2
ϕ′ 1

∆h
ϕ′+SB,I [ϕ

′+ϕl+∆hJ ]+
1
2
J∆hJ

= e−SΛ,I [ϕl+∆hJ ]+
1
2
J∆hJ (23)

Also
I[J, ϕl]e

Jϕl = eWΛ[J,ϕl]

Thus I is the generating functional when ϕh has been integrated out with a source.
ln I[J, 0] =WΛ[J, 0] =WΛ[J ] is the quantity for which we need an ERG. Thus we have

WΛ[J ] = −SΛ,I [∆hJ ] +
1

2
J∆hJ (24)

The limit Λ → 0 gives us WB[J ]

lim
Λ→0

WΛ[J ] =WB[J ] (25)

Here we see explicitly, that SΛ gives the correct behaviour at p >> Λ.

3.3 W̄Λ[J ]

Associated with the Wilson action one can define a generating functional:

Z̄Λ[J ] = eW̄Λ[J ] =

∫
Dϕle−SΛ[ϕl]+Jϕl (26)

One can use this to calculate correlations using the low energy Wilson action. As will
be shown below, one can reconstruct the original correlations from this. So we conclude
that the Wilson action has all the information about the original theory. This was also
demonstrated earlier in the Wilsonian coarse graining defined in the beginning.
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3.4 WB

eWB [J ] =

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
Dϕhe

− 1
2
ϕh

1
∆h

ϕh−SI,Λ0
[ϕl+ϕh]+Jϕh (27)

Completing the square and changing variables of integration gives:

=

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
D(ϕh−∆hJ)e

− 1
2
(ϕh−∆hJ)

1
∆h

(ϕh−∆hJ)−SI,Λ0
[ϕl+∆hJ+(ϕh−∆hJ)]+

1
2
J∆hJ

=

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕle−SI,Λ[ϕl+∆hJ ]+
1
2
J∆hJ

The last step follows from the definition of SI,Λ. Let ϕl +∆hJ = ϕ′.

eWB [J ] =

∫
Dϕ′e−

1
2
(ϕ′−∆hJ)

1
∆l

(ϕ′−∆hJ)+J(ϕ′−∆hJ)−SI,Λ[ϕ
′]+ 1

2
J∆hJ

=

∫
Dϕ′e−

1
2
ϕ′ 1

∆l
ϕ′+J

∆h
∆l

ϕ′− 1
2
J

∆2
h

∆l
J−J∆hJ+Jϕ′−SI,Λ[ϕ

′]+ 1
2
J∆hJ

=

∫
Dϕ′e−

1
2
ϕ′ 1

∆l
ϕ′+J ∆

∆l
ϕ′− 1

2
J

∆h∆

∆l
J−SI,Λ[ϕ

′]

=

∫
Dϕ′eJ

∆
∆l

ϕ′−SΛ[ϕ
′]− 1

2
J

∆h∆

∆l
J

= eWB [J ] = e
W̄Λ[

∆
∆l

J ]− 1
2
J

∆h∆

∆l
J

(28)

Here W̄Λ[J ] is the (log) of the generating functional of just the Wilson action. ∆
∆l
J couples

only to ϕl. If we take ∆ = K0
p2

, ∆l =
K
p2

and ∆ = K0−K
p2

, then

WB[J ] = W̄Λ[
K0

K
J ]− 1

2
J
(K0 −K)K0

Kp2
J

Differentiate wrt J :

⟨ϕ(p1)ϕ(p2)⟩SB
=

2∏
i=1

K0(pi)

K(pi)
⟨ϕ(p1)ϕ(p2)⟩SΛ

− (K0 −K)K0

Kp21
δ(p1 + p2)

⟨ϕ(p1)...ϕ(pn)⟩SB
=

n∏
i=1

K0(pi)

K(pi)
⟨ϕ(p1)...ϕ(pn)⟩SΛ

upto disconnected pieces involving terms of the form (K0−K)K0

Kp2i
δ(pi + pj).

As Λ → 0, W̄Λ has less and less infmn about high momentum modes. To squeeze out
that infmn the argument of W̄Λ becomes singular: K → 0! Because of the analytic nature
of the cutoff, even for very small Λ all the infmn about high momentum modes is there.
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Thus as long as K0
K is analytic no information is lost. Note also that the RHS

n∏
i=1

K0(pi)

K(pi)
⟨ϕ(p1)...ϕ(pn)⟩SΛ

is independent of Λ.

3.4.1 In terms of R

The object R is often introduced in ERG literature. It is defined by the following equation:

∆h =
1

R+ p2
(29)

One can think of it as a generalized mass term - so that even at p = 0 fluctuations of the
field are damped.

R+ p2 =
p2

1−K
=⇒ R =

p2K

1−K

For simplicity we have taken K0 = 1 corresponding to Λ0 being infinity. Also

R

K
=

p2

1−K
=

1

∆h

We already have:

WΛ[J ] = −SΛ,I [∆hJ ] +
1

2
J∆hJ

In terms of SΛ:

WΛ[J ] = −SΛ,I [∆hJ ]−
1

2
∆hJ

1

∆l
∆hJ︸ ︷︷ ︸

−SΛ

+
1

2
J∆hJ +

1

2
∆hJ

1

∆l
∆hJ

=⇒ WΛ[J ] = −SΛ[∆hJ ] +
1

2
J
∆h(∆l +∆h)

∆l
J

So

WΛ[J ] = −SΛ[∆hJ ] +
1

2
J
1

R
J (30)
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3.5 Polchinski’s ERG

3.5.1 Interacting Wilson Action - SI,Λ

Now the ERG for SΛ[ϕ] is the Polchinski equation:

∂SI,Λ[ϕ]

∂t
= −1

2
∆̇l[(

∂SI,Λ
∂ϕ

)2 − (
∂2SI,Λ
∂ϕ2

)] (31)

Derivation: Start with the definition of SI,Λ[ϕ]:

e−SI,Λ[ϕ] =

∫
Dϕhe−

1
2
ϕh∆

−1
h ϕh−SB,I [ϕl+ϕh] (32)

Note that the entire t dependence in the RHS is from ∆h. So

d

dt
e−SI,Λ[ϕ] =

∫
Dϕh(−

1

2
ϕh

d

dt
(∆−1

h ))ϕhe
− 1

2
ϕh∆

−1
h ϕh−SB,I [ϕl+ϕh] (33)

=

∫
Dϕh

1

2
ϕh

∆̇h

∆2
h

ϕhe
− 1

2
ϕh∆

−1
h ϕh−SB,I [ϕl+ϕh]

Now consider
∂2

∂ϕ2l
e−SI,Λ[ϕl] =

∫
Dϕhe−

1
2
ϕh∆

−1
h ϕh

∂2

∂ϕ2l
e−SB,I [ϕl+ϕh] (34)

=

∫
Dϕhe−

1
2
ϕh∆

−1
h ϕh

∂2

∂ϕ2h
e−SB,I [ϕl+ϕh]

=

∫
Dϕh

∂2

∂ϕ2h
e−

1
2
ϕh∆

−1
h ϕhe−SB,I [ϕl+ϕh]

=

∫
Dϕh[(ϕh∆−1

h )2 −∆−1
h ]e−

1
2
ϕh∆

−1
h ϕhe−SB,I [ϕl+ϕh]

Comparing (33) with (34) we see that

d

dt
e−SI,Λ[ϕl] =

1

2
∆̇h

∂2

∂ϕ2l
e−SI,Λ[ϕl] (35)

which is the same as (31) upto a field independent term.
Note that ∆̇l = −∆̇h.
We can also write this as

∂ψ′[ϕ, t]

∂t
= −1

2
∆̇l
∂2ψ′[ϕ, t]

∂ϕ2
= −1

2
Ġ
∂2ψ′[ϕ, t]

∂ϕ2
(36)
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with ψ′ = e−SI,Λ[ϕl]. We will use G interchangeably with ∆l below. And also as

∂ψ′(x, t)

∂t
= −1

2
∆̇l
∂2ψ′(x, t)

∂x2
= −1

2
Ġ
∂2ψ′(x, t)

∂x2
(37)

where x is used in place of ϕ. This is the non relativistic Schroedinger equation - Eu-
clideanized.

3.5.2 Full Wilson Action - SΛ:

One can write an equation for the full action

SΛ[ϕ] =
1

2
ϕ∆−1

l ϕl + SI,Λ[ϕ]

Let
ψ(x, t) = e−

1
2
G−1x2

ψ′(x, t) = e−S(x,t)

where ψ′ obeys (37) and S is now the full action. Then it is very easy to see by substitution
that

∂ψ(x, t)

∂t
= −1

2
Ġ(t)

∂

∂x
(
∂

∂x
+ 2G−1x)ψ(x, t) (38)

Note the similarity with (12) - Wilson’s original equation.
In terms of S it reads:

∂S

∂t
= −1

2
Ġ(t)[

∂2S

∂x2
− (

∂S

∂x
)2 + 2G−1x

∂S

∂x
] (39)

3.5.3 WΛ[J ]

We need
dWΛ

dt
= −

dSΛ,I [∆hJ ]

dt
+

1

2
J∆̇hJ (40)

We see that
dSΛ,I [∆hJ ]

dt
=
∂SΛ,I [∆hJ ]

∂t
+ ∆̇hJ

∂SΛ,I [ϕ]

∂ϕ
|ϕ=∆hJ (41)

We can substitute (31) in the RHS of (41) and the following (let ∆hJ = Φ) obtained
from (24):

−
∂SΛ,I [Φ]

∂Φ
+

Φ

∆h
=
∂W

∂J

1

∆h

and

−
∂2SΛ,I [Φ]

∂Φ2
+

1

∆h
=
∂2W

∂J2

1

∆2
h
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to obtain

dWΛ

dt
=

1

2

∆̇h

∆2
h

[(
∂WΛ

∂J
)2 +

∂2WΛ

∂J2
]− 1

2

∆̇h

∆h

= −1

2

d

dt
(
1

∆h
)[(
∂WΛ

∂J
)2 +

∂2WΛ

∂J2
]− 1

2

∆̇h

∆h
(42)

This is almost the same as the equation for SI,Λ except that ∆−1
h replaces ∆h.

3.5.4 In terma of R

Since 1
∆h

= R + p2(µp )
η, d

dt(
1
∆h

) = Ṙ. (This is a propagator with anomalous dimension.)
So the equation for W is:

−Λ
∂

∂Λ
eWΛ[J ] =

∫
p
Λ
∂RΛ(p)

∂Λ

1

2

δ2

δJ(p)δJ(−p)
eWΛ[J ] . (43)

3.5.5 Anomalous Dimension

W [J ] =
1

2

∫
p

J(p)J(−p)
p2(µp )

η +RΛ(p)
(44)

is a quadratic action with anomalous dimension.
Let us introduce explicit Λ dependence in J by defining

J ′ = (
Λ

µ
)
η
2 J, Λ

∂

∂Λ
J ′ =

η

2
J ′

W [J ] =W ′[J ′] =
1

2

∫
p

(Λµ )
−ηJ ′(p)J ′(−p)

p2(µp )
η +RΛ(p)

=
1

2

∫
p

J ′(p)J ′(−p)
p2(Λp )

η + (Λµ )
ηRΛ(p)

≡ 1

2

∫
p

J ′(p)J ′(−p)
p2(Λp )

η +R′
Λ(p)

This defines R′. Noting that

Λ
∂RΛ

∂Λ
= (

Λ

µ
)−η(−ηR′

Λ + Λ
∂R′

Λ

∂Λ
),

δ

δJ
= (

Λ

µ
)η

δ

δJ ′

and plugging into (43) we get an equation with anomalous dimension.

−Λ
∂

∂Λ
eW

′
Λ[J

′] =

∫
p

[
η

2
J ′(p)

δ

δJ ′(p)
+

(
Λ
∂R′

Λ(p)

∂Λ
− ηR′

Λ(p)

)
1

2

δ2

δJ ′(p)δJ ′(−p)

]
eW

′
Λ[J

′] .

(45)
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4 “Solution” or Integral Representation

4.1 Polchinski’s Eqn for SI

We would like to solve Polchinski’s equation:

∂ψ′(x, t)

∂t
= −1

2
Ġ
∂2ψ′(x, t)

∂x2
(46)

This can be written as:
∂ψ′(x, t)

∂G
= −1

2

∂2ψ′(x, t)

∂x2
(47)

The solution we know from Feynman:

ψ′(xf , tf ) =
1√

2π(Gf −Gi)

∫
dxie

1
2

(xf−xi)
2

Gf−Gi ψ′(xi, ti) (48)

4.2 Polchinski Eqn for S

We would like to now solve the equation for the full action:

∂ψ(x, t)

∂t
= −1

2
Ġ(t)

∂

∂x
(
∂

∂x
+ 2G−1x)ψ(x, t) (49)

One way is to use (48) and use ψ(x, t) = e−
1
2
x2G−1

ψ′(x, t):

ψ(xf , tf ) =
1√

2π(Gf −Gi)

∫
dxi e

− 1
2
x2
fG

−1
f + 1

2

(xf−xi)
2

Gf−Gi
+ 1

2
x2
iG

−1
i ψ(xi, ti)

This can be rewritten as in (55) below.
Another way is to change variables (x, t) → (y, τ): Let y = x√

G(t)
and τ = t.

∂

∂t
= −1

2

Ġ

G
y
∂

∂y
+

∂

∂τ
;

∂

∂x
=

1√
G

∂

∂y

Let us write ψ′(x, t) = ψ̃(y(x, t), τ(t)) - and drop the tildes! Thus LHS of (49) becomes

∂ψ

∂t
(x, t) = −1

2

Ġ

G
y
∂ψ

∂y
+
∂ψ

∂τ

RHS becomes (dropping a constant term)

−1

2

Ġ

G

∂2ψ

∂y2
− Ġ

G
y
∂ψ

∂y
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So
∂ψ

∂τ
= −1

2

Ġ

G

∂2ψ

∂y2
− Ġ

G
y
∂ψ

∂y
+

1

2

Ġ

G
y
∂ψ

∂y

Define g = − lnG and and use dg = ġdτ to get

∂ψ

∂g
= +

1

2
[
∂2ψ

∂y2
+ y

∂ψ

∂y
] (50)

This becomes a version of Wilson’s equation (4) whose solution was:

ψ(yf , tf ) =
1√

2π(1− eti−tf )

∫
dyie

− 1
2

(yf−e

ti−tf
2 yi)

2

1−e
ti−tf ψ(yi, ti) (51)

We just replace t→ g to get

ψ(yf , gf ) =
1√

2π(1− egi−gf )

∫
dyie

− 1
2

(yf−e

gi−gf
2 yi)

2

1−e
gi−gf ψ(yi, gi) (52)

Now

eg1−gf =
Gf

Gi
, e

gi−gf
2 =

√
Gf

Gi

so we get

ψ(yf , gf ) =
1√

2π(1− Gf

Gi
)

∫
dyie

− 1
2

(yf−

√
Gf
Gi

yi)
2

1−
Gf
Gi ψ(yi, gi) (53)

In the last step we restore the variable x = y
√
G:

ψ(xf , gf ) =
1√

2π(1− Gf

Gi
)

∫
dxie

− 1
2

(
xf√
Gf

−

√
Gf
Gi

xi√
Gi

)2

1−
Gf
Gi ψ(xi, gi) (54)

Thus the solution to (49) can be written in a more symmetric way:

ψ(xf , tf ) =
1√

2π(1− Gf

Gi
)

∫
dxie

− 1
2

(
xf
Gf

− xi
Gi

)2

1
Gf

− 1
Gi ψ(xi, ti) (55)
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A standard form of all such solutions is

ψ(xf , tf ) =

∫
dxi e

− 1
2
A2(xf−Zxi)

2
ψ(xi, ti) (56)

Z(p) in this case is
Gf

Gi
≈ e−p2/Λ2

and damps the high frequency modes as we have already
seen in Wilson’s original equation.

5 Composite Operators

5.1 Field theoretic Treatment

1.

⟨ϕ(p1).......ϕ(pn)⟩SB
=

n∏
i=1

K0(pi)

K(pi)
⟨ϕ(p1).......ϕ(pn)⟩SΛ

(57)

This is because

ZB[J ] =

∫
Dϕe−SB [ϕ]+Jϕ =

∫
Dϕ′e−

1
2
ϕ′ 1

∆l
ϕ′+J ∆

∆l
ϕ′− 1

2
J

∆h∆

∆l
J+SI,Λ[ϕ

′]

=

∫
Dϕ′e−SΛ[ϕ

′]+J ∆
∆l

ϕ′− 1
2
J

∆h∆

∆l
J

So

δ

δJ(p1)
...

δ

δJ(p1)
ZB[J ] = ⟨ϕ(p1).......ϕ(pn)⟩SB

=
n∏

i=1

K0(pi)

K(pi)
⟨ϕ(p1).......ϕ(pn)⟩SΛ

We have used ∆
∆l

= K0
K .

2. When ∫
Dϕh OB[ϕl + ϕh]e

− 1
2
ϕh∆

−1
h ϕh−SI,B [ϕl+ϕh] = OΛ[ϕl]e

−SI,Λ[ϕl]

Then we say that
[OB[ϕ]] = OΛ[ϕ]

is the composite operator corresponding to OB.

One can think of it as follows. Perturb SB by a term of order ϵ and get the change
in SΛ to order ϵ:∫

Dϕhe−
1
2
ϕh∆

−1
h ϕh−SI,B [ϕl+ϕh]+ϵOB [ϕl+ϕh] = e−SI,Λ[ϕl]+ϵOΛ[ϕl]

One can include sources in SB to get
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eWB [J,ϵ] =

∫
Dϕe−

1
2
ϕ 1

∆
ϕ+Jϕ−SI,B [ϕ]+ϵOB [ϕ] (58)

=

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
Dϕhe

− 1
2
ϕh

1
∆h

ϕh−SI,B [ϕl+ϕh]+ϵOB [ϕl+ϕh]+Jϕh(59)

=

∫
Dϕ′eJ

∆
∆l

ϕ′−SΛ[ϕ
′]+ϵOΛ[ϕ

′]− 1
2
J

∆h∆

∆l
J

(60)

Differentiating wrt J we get

⟨OB[p]ϕ(p1)ϕ(p2)....ϕ(pn)⟩SB
=

∏
i=1,n

∆(pi)

∆l(pi)
⟨OΛ[p]ϕ(p1)ϕ(p2)....ϕ(pn)⟩SΛ

Note that if pi+pj = 0 one can get extra disconnected pieces proportional to ∆h∆
∆l

(pi).
The LHS is independent of Λ, therefore so is the RHS. This explains the raison d’etre
for defining the composite operators.

3. Schematically
U(tf , ti)O(ti)|ψ(ti)⟩ = O(tf )U(tf , ti)|ψ(ti)⟩

or

O(tf ) = U(tf , ti)O(ti)U
−1(tf , ti)

4. Example of a composite operator:∫
DϕδSB

δϕ
e−SB [ϕ]+Jϕ =

∫
DϕJe−SB [ϕ]+Jϕ =

∫
DϕJe−SΛ[ϕ]+J

K0
K

ϕ− 1
2
J

∆h∆

∆l
J

=

∫
Dϕ( K

K0

δ

δϕ
e+J

K0
K

ϕ)e
−SΛ[ϕ]− 1

2
J

∆h∆

∆l
J
= − K

K0

∫
Dϕe+J

K0
K

ϕ− 1
2
J

∆h∆

∆l
J
(
δ

δϕ
e−SΛ[ϕ])

=
K

K0

∫
DϕδSΛ[ϕ]

δϕ
e−SΛ[ϕ]e

+J
K0
K

ϕ− 1
2
J

∆h∆

∆l
J

So

[K0
δSB
δϕ

] = K
δSΛ
δϕ

5. What is [ϕ]?

∫
Dϕϕe−SB [ϕ]+Jϕ =

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
Dϕh(ϕl + ϕh)e

− 1
2
ϕh

1
∆h

ϕh−SI,B [ϕl+ϕh]+Jϕh
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=

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl

∫
Dϕh(ϕl +

δ

δJ
)e

− 1
2
ϕh

1
∆h

ϕh−SI,B [ϕl+ϕh]+Jϕh

=

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl(ϕl +
δ

δJ
)e−SI,Λ[ϕl+∆hJ ]+

1
2
J∆hJ

=

∫
Dϕle

− 1
2
ϕl

1
∆l

ϕl+Jϕl(ϕl −∆h
δSI,Λ
δϕl

)e−SI,Λ[ϕl+∆hJ ]+
1
2
J∆hJ |J=0

So

[ϕ] = ϕl −∆h
δSI,Λ
δϕl

[ϕ] = ϕl −
K0 −K

p2
δSI,Λ
δϕl

Use
δSI,Λ
δϕl

=
δSΛ
δϕl

− 1

∆l
ϕl

to get

[ϕ] =
∆

∆l
ϕl −∆h

δSΛ
δϕl

=
K0

K
ϕl −

K0 −K

p2
δSΛ
δϕl

Better derivation - without J = 0:

δ

δJ

∫
Dϕe−SB [ϕ]+Jϕ =

δ

δJ

∫
Dϕe−

1
2
ϕ 1

∆l
ϕ+J ∆

∆l
ϕ− 1

2
J

∆h∆

∆l
J−SI,Λ[ϕ]

=

∫
Dϕ( ∆

∆l
ϕ−∆h

∆

∆l
J)e

− 1
2
ϕ 1

∆l
ϕ+J

K0
K

ϕ− 1
2
J

∆h∆

∆l
J−SI,Λ[ϕ]

=

∫
Dϕ(K0

K
ϕ− K0 −K

p2
K0

K
J)e

− 1
2
ϕ 1

∆l
ϕ+J

K0
K

ϕ− 1
2
J

∆h∆

∆l
J−SI,Λ[ϕ]

The second term is∫
Dϕ ∆h(

δ

δϕ
e
J ∆

∆l
ϕ
)e

− 1
2
J

∆h∆

∆l
J−SΛ[ϕ] =

∫
Dϕ ∆h

δSΛ[ϕ]

δϕ
e
J ∆

∆l
ϕ− 1

2
J

∆h∆

∆l
J−SΛ[ϕ]

=

∫
Dϕ K0 −K

p2
(
δ

δϕ
eJ

K0
K

ϕ)e
− 1

2
J

∆h∆

∆l
J−SΛ[ϕ] =

∫
Dϕ K0 −K

p2
δSΛ[ϕ]

δϕ
e
J

K0
K

ϕ− 1
2
J

∆h∆

∆l
J−SΛ[ϕ]

Thus
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[ϕ] =
∆

∆l
ϕl −∆h

δSΛ
δϕl

=
K0

K
ϕ− K0 −K

p2
δSΛ[ϕ]

δϕ
(61)

Proved without having to set J = 0.

What does the term ∆h
δSΛ
δϕl

mean intuitively?

Assume gϕ4 theory: ϕ = ϕl + ϕh So

ϕ4 = (ϕl + ϕh)
4 = ϕ4l + 4ϕhϕ

3
l + .....

ϕ→≈ ϕl + g⟨ϕhϕh⟩ϕ3l = ϕl + g∆hϕ
3
l

6. Number Operator: Acting on n field correlators it should give n. Thus∫
Dϕ(

∫
p
ϕ(p)

δ

δϕ(p)
eJϕ)e−SB [ϕ] = −

∫
Dϕ d

dϕ
(ϕe−SB )eJϕ

=

∫
Dϕ(ϕdSB

dϕ
− dϕ

dϕ
)e−SBeJϕ
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= J

∫
Dϕ ϕeJϕ−SB [ϕ] = J

∫
Dϕ[ϕ]e−SΛ[ϕ]+

K0
K

Jϕ− 1
2

K0−K

p2
K0
K

JJ

=

∫
Dϕe−SΛ[ϕ]− 1

2
K0−K

p2
K0
K

JJ
[ϕ](

K

K0

δ

δϕ
e

K0
K

Jϕ)

= −
∫

Dϕ (
K

K0

δ

δϕ
[ϕ]e−SΛ[ϕ])e

− 1
2

K0−K

p2
K0
K

JJ+
K0
K

Jϕ

So the number operator is

− K

K0
(
δ

δϕ
[ϕ]− [ϕ]

δSΛ
δϕ

)

Inserting (61) we get

[ϕ
dSB
dϕ

] = ϕ
δSΛ[ϕ]

δϕ
+
K

K0

K0 −K

p2
[
δ2SΛ
δϕ2

− (
δSΛ
δϕ

)2] = N +∞

= ϕ
δSΛ[ϕ]

δϕ
+

∆l

∆
∆h[

δ2SΛ
δϕ2

− (
δSΛ
δϕ

)2] (62)

and up to a field independent constant
∫
p
K0
K

Kδϕ(p)
K0δϕ(p)

= ∞ this is the number operator
N . Like a normal ordering constant.

5.2 A Conceptually Clearer Treatment: Number Operator

5.2.1

Consider the solution to Wilson’s RG:

ψ(x, t) = U(t, ti)ψ(x, ti) = e
∫ t
ti
dt′GRG(t′)

ψ(xi, ti)

U is an“evolution ” operator corresponding to the RG equation

dψ

dt
= GRG(t)ψ

It can be represented by an integration kernel:

ψ(x, t) =

∫
dxiK(x, t;xi, ti)ψ(xi, ti)

=

∫
dxie

1
2

(x−xi)
2

G−Gi
− 1

2
x2

G
+ 1

2

x2i
Gi ψ(xi, ti) (63)
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One can ask: What operator acting on ψ(x, t) has the same effect as xi
∂
∂xi

on ψ(xi, ti)?
Call it N . Let

N = Ax
∂

∂x
+B

∂2

∂x2

Nψ(x, t) = U(t, ti)x
∂

∂x
ψ(x, ti) =⇒ NU(t, ti)ψ(x, ti) = U(t, ti)x

∂

∂x
ψ(x, ti)

N = U(t, ti)x
∂

∂x
U(t, ti)

−1 (64)

In the integral kernel representation:

(Ax
∂

∂x
+B

∂2

∂x2
)

∫
dxiK(x, t;xi, ti)ψ(xi, ti) =

∫
dxiK(x, t;xi, ti)xi

∂

∂xi
ψ(xi, ti) (65)

RHS

= −
∫
dxi

∂

∂xi
(K(x, t;xi, ti)xi)ψ(xi, ti) = −

∫
dxi[(1 + xi

∂

∂xi
)K(x, t;xi, ti)]ψ(xi, ti)

= −
∫
dxi[(1 + xi(−

(x− xi)

G−Gi
+
xi
Gi

)K(x, t;xi, ti)]ψ(xi, ti)

= −
∫
dxi[(1 + (

x2i
Gi(G−Gi)

− xxi
G−Gi

)]K(x, t;xi, ti)]ψ(xi, ti)

Now LHS:

Ax
∂

∂x
K(x, t;xi, ti) = A[x2(

1

G−Gi
− 1

G
)− xxi

G−Gi
]

B
∂2

∂x2
K(x, t;xi, ti) = B[x2(

1

(G−Gi)2
+

1

G2
− 2

G(G−Gi)
)+

2xxi
G(G−Gi)

− 2xxi
(G−Gi)2

+
x2i

(G−Gi)2
]

Comparing the coefficients of x2i we get

B = −G(G−Gi)

Gi

Comparing the coefficients of xxi we get (on substituting for B):

A = 1

One can check that the coefficient of x2 is zero. Thus

N = U(t, ti)x
∂

∂x
U(t, ti)

−1 = −1 + x
∂

∂x
+
G(Gi −G)

Gi

∂2

∂x2
(66)

−1 is some kind of normal ordering constant - keeps cropping up.
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5.2.2 Another way

eaNU(t, ti) = U(t, ti)e
ax ∂

∂x

defines N .

U = e
A
2

∂2

∂x2
+sx ∂

∂x

∴ Ueax
∂
∂x = e

(ens−1)
ns

“xn”eax
∂
∂x esx

∂
∂x where “xn” =

A

2

∂2

∂x2
; n = −2

= eax
∂
∂x e

(ens−1)
ns

e2a A
2

∂2

∂x2 esx
∂
∂x = eax

∂
∂x e

(ens−1)
ns

(e2a−1)A
2

∂2

∂x2U

= e
(ens−1)

ns
2aA

2
∂2

∂x2
+ax ∂

∂xU = eaNU

=⇒ N =
(1− e−2s)

2s
2
A

2

∂2

∂x2
+ x

∂

∂x

What are A, s?

U = e
∫ g
gi

dg 1
2
[ ∂2

∂y2
+y ∂

∂y
]
= e

(g−gi)
1
2

∂2

∂y2
+(g−gi)

1
2
y ∂
∂y

A = (g − gi); s =
1

2
(g − gi); ns = −2s = gi − g; ens = e−2s = egi−g =

G

Gi

eaN = e
a[

Gi−G

Gi

∂2

∂y2
+y ∂

∂y
]

When acting on ψ(yf , t) ( xf =
√
Gfyf ). Writing x for xf ,

∂2

∂y2
= G ∂2

∂x2 . So acting on

ψ(x, t):

eaN = e
a[

G(Gi−G)

Gi

∂2

∂x2
+x ∂

∂x
]

(67)

5.3 Wilson’s scaling operator

Wilson defines a uniform scaling by

f(x) =

∫
dye

1
2

(x−e−ay)2

1−e−2a g(y)

This is obtained by

f(y) = e
a ∂
∂y

( ∂
∂y

+y)
g(y)

This is a smooth transformation, in contrast to

f(x) =

∫
dyδ(y − eax)g(y)

which is obtained by

f(y) = e
ay ∂

∂y g(y)
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Also Wilson’s scaling operator ∂
∂y (

∂
∂y + y), commutes with the ERG evolution, so it is

marginal. Also the constant “c” which is the p independent coefficient of the ERG equation
(12), multiplies precisely this operator and gives the dimension - including anomalous.

6 Fixed Points and Anomalous Dimension

6.1 What is a Fixed Point?

If we keep evolving RG for a long time one can expect that if a coupling constant is
restricted to be finite, then either it has to go to a fixed value after some time or it has to
enter some limit cycle. Fixed points are more common. (Though there are some examples
of limit cycles recently - due to an angular variable that keeps increasing with time - since
Physics is periodic in 2π we have an example of a limit cycle.)

At a fixed point physics is scale invariant - by definition. How can it be scale invariant
if there is a scale -the RG scale Λ? Answer: If there is no other scale in the problem,
then this scale has no physical meaning - everything is relative to this scale. So to see this
behaviour one has to work in dimensionless variables. Everything is in units of Λ. Thus

p = p̄Λ, ϕ = ϕ̄Λdϕ

where dϕ is the dimension of the field. In scalar field theory the dimension of ϕ(x) is D
2 −1.

[ϕ(x)] =
D

2
− 1, [ϕ(p)] = −D

2
− 1

Note that Λ keeps getting smaller as we evolve, so the dimensionless variable keeps changing
w.r.t the dimensionful variable - which is the original physical object.

So at the fixed point one finds that the action, written in terms of ϕ̄ and p̄ has dimension-
less coupling constants. At a fixed point, as you do RG transformation these dimensionless
coupling constants remain the same. Thus they are independent of Λ. As a simple example
take a mass parameter m. We define dimensionless m̄ by

m2 = m̄2Λ2

Normally, ie. when we do perturbation about the trivial fixed point or free theory, m2 is
fixed, so m̄2 being equal to m2/Λ2 will increase as Λ is decreased. This is the notorious
naturalness problem for light scalars. However at a non trivial fixed point this is not the
case. m̄2 is fixed. That means m2 = m̄2Λ2 has to “run” with Λ (due to interactions) in
such a way that m̄2 is fixed.

6.1.1 Rescaling and Dimensionless Variables

First we define dimensionless variables:
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ϕ(p) = Λdcϕ ϕ̄(p̄) ; p = Λp̄

The Wilson action is:

SΛ[ϕ] =
∑
n

∫
pi,..,pn−1

Vn(p1, p2, ..., pn,Λ)ϕ(p1)ϕ(p2)....ϕ(pn)

=
∑
n,m

∫
pi,..,pn−1

Vn,2m(Λ)(pi.pj)
2mϕ(p1)ϕ(p2)....ϕ(pn) (68)

Vn,2m(Λ) are the coupling constants - they can be dimensionful. The Λ dependence is due
to RG evolution.

We write the RG equation (39) as

∂S

∂t
= GRGS (69)

In terms of dimensionless variables:

SΛ[ϕ̄] =
∑
n

∫
p̄i,..,p̄n−1

Λ(n−1)DVn(p1, p2, ..., pn,Λ)Λ
ndcϕ ϕ̄(p̄1)ϕ̄(p̄2)....ϕ̄(p̄n)

=
∑
n,m

∫
p̄i,..,p̄n−1

Λ(n−1)DVn,2m(Λ)Λ2m(p̄i.p̄j)
2mΛndcϕ ϕ̄(p̄1)ϕ̄(p̄2)....ϕ̄(p̄n)

=
∑
n,m

∫
p̄i,..,p̄n−1

Λ(n−1)D+2m+ndcϕVn,2m(Λ)(p̄i.p̄j)
2mϕ̄(p̄1)ϕ̄(p̄2)....ϕ̄(p̄n)

≡
∑
n,m

∫
p̄i,..,p̄n−1

V̄n,2m(t)(p̄i.p̄j)
2mϕ̄(p̄1)ϕ̄(p̄2)....ϕ̄(p̄n) (70)

Thus we have defined dimensionless coupling constants

V̄n,2m(t) = Λ(n−1)D+2m+ndcϕVn,2m(Λ) (71)

A fixed point is characterised by V̄n,2m(t) being t-independent - they should not run.
Thus if there is a mass parameter for instance: m = m̄Λ, then m̄ should not change by
RG evolution. Normally when m is the mass parameter, it is m that is fixed and m̄ goes
as et. But at a fixed point, due to effects of interactions, m̄ should be independent of t.

dVn,2m(Λ)

dt
= [

∂V̄n,2m(t)

∂t
+ [(n− 1)D + 2m+ ndcϕ]V̄n,m(t)]Λ(n−1)D+2m+ndcϕ

The t dependence of the LHS is due to RG evolution. The RHS has two contributions:
One is the running of the dimensionless coupling due to tRG and the second is the effect
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of change of units as we evolve: all the factors of Λ which are used to make the coupling
dimensionless - Λ is the unit and it is changing.

Thus the LHS is given by Wilson’s (Polchinski’s) eqn and the fixed point condition is

for
∂V̄n,2m(t)

∂t to vanish. Let us concentrate on a particular term. The RG equation is:

dS

dt
=

∫
pi,..,pn−1

dVn,2m(Λ)

dt
(pi.pj)

2mϕ(p1)ϕ(p2)....ϕ(pn) = GRGS

LHS =

∫
pi,..,pn−1

[
∂V̄n,2m(t)

∂t
+[(n−1)D+2m+ndcϕ]V̄n,m(t)]Λ(n−1)D+2m+ndcϕ ](pi.pj)

2mϕ(p1)ϕ(p2)....ϕ(pn)

=

∫
p̄i,..,p̄n−1

[
∂V̄n,2m(t)

∂t
+ [(n− 1)D + 2m+ ndcϕ]V̄n,m(t)]](p̄i.p̄j)

2mϕ̄(p̄1)ϕ̄(p̄2)....ϕ̄(p̄n)

≡ ∂S[ϕ̄]

∂t
− Gc

dilS[ϕ̄]

So
Gc
dilS = −[(n− 1)D + 2m+ ndcϕ] = −[Nϕ(D + dcϕ) +Np −D] (72)

So now the RG eqn becomes

∂S[ϕ̄]

∂t
− Gc

dilS[ϕ̄] = GRGS[ϕ̄] (73)

∂S[ϕ̄]
∂t = 0 is the fixed point condition, modulo a subtlety: We must ensure that the kinetic

term has standard normalization before imposing this. Thus if we have two actions related
by a fixed rescaling of the field, these two are equivalent, even though the coupling constants
are all different.

6.1.2 A more formal way of doing the same thing:

Define dimensionless variables as before:

p = Λp̄ ; ϕ(p) = Λdϕ ϕ̄(p̄) = Λdϕ ϕ̄(
p

Λ
) (74)

From this one can undertand how a scaling changes the fields. Thus think of a transfor-
mation law:

p′ = λp ; ϕ′(p′) = λd
p
ϕϕ(p) = λd

p
ϕϕ(p′/λ) (75)

(Note that scalars under coordinate transf obey ϕ′(p′) = ϕ(p). In this case because
it has a scaling dimension it is not a scalar under these transformations - it transforms
multiplicatively by λdϕ .)

Thus
ϕ′(p′) = (1 + ϵ)d

p
ϕϕ(p(1− ϵ))
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= ϕ(p) + ϵ(dpϕ − p
d

dp
)ϕ(p)

So

δϕ(p) = ϵ(dpϕ − p
d

dp
)ϕ(p) (76)

Here dpϕ is the dimension of the scalar field in momentum space. Thus

[ϕ(x)] =
1

2
(D − 2) = dxϕ ; [ϕ(p)] = −1

2
(D + 2) = dpϕ

So when we have an action S[ϕ(pi)] we implement this by - note the sign convention
chosen to match (72):

δS[ϕ(pi)] =

∫
q
(q
d

dq
− dpϕ)ϕ(q)

δ

δϕ(q)
S[ϕ(pi)] (77)

Let us apply this to

S[ϕ(pi)] =

∫
p1,p2,...pn

u(p1, p2, ..., pn)ϕ(p1)ϕ(p2)...ϕ(pn)δ
D(p1 + p2 + ...+ pn)

δS =

∫
p1,p2,...pn

u(p1, p2, ..., pn)δ
D(p1 + p2 + ...+ pn)

n∑
i=1

(pi
d

dpi
− dpϕ)[ϕ(p1)ϕ(p2)...ϕ(pn)]

Integrate by parts on pi to get

=

∫
p1,p2,...pn

(
n∑

i=1

(−pi
d

dpi
− dpϕ −D)[u(p1, p2, ..., pn)δ

D(p1 + p2 + ...+ pn)]ϕ(p1)ϕ(p2)...ϕ(pn)

=

∫
p1,p2,...pn

{(
n∑

i=1

(−pi
d

dpi
− dpϕ −D)[u(p1, p2, ..., pn)]δ

D(p1 + p2 + ...+ pn)

+u(p1, p2, ..., pn)

n∑
i=1

(−pi
d

dpi
[δD(p1 + p2 + ...+ pn)]}ϕ(p1)ϕ(p2)...ϕ(pn)

The scaling dimension of the delta function is −D. So we get

=

∫
p1,p2,...pn

{(
n∑

i=1

(−pi
d

dpi
)[u(p1, p2, ..., pn)]δ

D(p1 + p2 + ...+ pn)

−ndpϕ − (n− 1)D[u(p1, p2, ..., pn)]δ
D(p1 + p2 + ...+ pn)}ϕ(p1)ϕ(p2)...ϕ(pn)

= [−Nϕ(D + dpϕ) +D −Np]S (78)

where we have set n = Nϕ and
∑n

i=1 pi
d
dpi

= Np which is (72).
So to conclude: a compact way is to write

GdilS =

∫
q
(q
d

dq
− dpϕ)ϕ(q)

δ

δϕ(q)
S (79)
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6.2 Rescaling or Wave Function Renormalization

Consider an illustrative example. Suppose the fixed point action has a form

SΛ =

∫
dDp̄

(2π)D
[
1

2
ϕ̄(p̄)p̄2ϕ̄(−p̄) + 1

2
m̄2ϕ̄2 +

λ̄

4!
ϕ̄4 + ...]

with ϕ = Λdϕ ϕ̄ And suppose after an evolution from Λ → 1
2Λ it becomes

SΛ/2 =

∫
dDp̄

(2π)D
[
1

2
(
√
2ϕ̄(p))p̄2(

√
2ϕ̄(−p̄)) + 1

2
m̄2(

√
2ϕ̄)2 +

λ̄

4!
(
√
2ϕ̄)4 + ...]

where now ϕ(p) = (Λ2 )
dϕ ϕ̄(p̄). Note that since ϕ is fixed, ϕ̄ is larger now by a factor of

2dϕ . This is just due to the engineering dimension of ϕ. The new action SΛ/2 is clearly
physically the same as the old one. One can see this by rescaling:

√
2ϕ̄ = ϕ̃

In terms of ϕ̃ the actions are identical. This for every factor of 2 (decrease) in Λ there is
a factor of

√
2 in ϕ̃. This is then over and above the factor of 2dϕ that is already there

for engineering dimensions. Net scaling factor is 2dϕ+
1
2 . Thus we can say that the scaling

dimension of ϕ has changed from dϕ → dϕ + 1
2 . And we can write:

ϕ(p) = Λdϕ(
Λ

Λ0
)
1
2 ϕ̃(p̄)

In terms of ϕ̃ the action is really fixed. Note that the engineering dimension of ϕ has not
changed - only the scaling dimension has changed - the change (in our example, 1

2) is called
the anomalous dimension. We have a dimensionless ratio of scales for the anomalous
dimension - so that the engineering dimension is unchanged.

Thus it makes sense to require time independent couplings only after we perform a
rescaling over and above that required to make the field dimensionless. We can then
impose a given normalization condition - say for the kinetic term. This in general will
require a continuous time dependent field rescaling as we evolve, because the kinetic term
will keep getting corrections. This additional time dependent rescaling of the field variable
effectively changes the scaling dimension of the field - this change is denoted by η

2 .
1

To summarize: When the evolution is continuous and parametrized by t one obtains a
factor of the form eηt multiplying the kinetic term. Thus if one wants a fixed point solution
one has to rescale the field by this factor before comparing coupling constants and deciding
whether they are fixed or not. Thus we define a new field by

ϕ̄ = e−
η
2
tϕ̃ = (

Λ

Λ0
)
η
2 ϕ̃ (80)

1Of course it is worth repeating that the engineering dimension cannot change.
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or

ϕ = Λdϕ(
Λ

Λ0
)
η
2 ϕ̃ (81)

The engineering dimension of ϕ̃ continues to be zero. The scaling dimension of ϕ is thus
said to be modified. Expressed in terms of ϕ̃, p̄ the fixed point action is really fixed and
does not change under RG evolution.

The parameter η
2 is the anomalous dimension of ϕ. Note that it is introduced in

order to be able to write down a fixed point action. So it is tied to the physics of a
particular fixed point - whatever scaling is necessary to keep the action invariant has to be
performed and the amount is decided by the interactions.

This is the same factor that is called “wave function renormalization” in renormalization

theory : ϕB = Z
1
2ϕR. and

d lnZ
1
2

d ln Λ = γ = η
2 is the usual terminology.

6.3 Effect of η on two point function

Suppose we calculate the two point function using the fixed point action:

⟨ϕ̃(p̄)ϕ̃(q̄)⟩

This is a dimensionless quantity and must be of the form p̄aδD(p̄ + q̄) for some a. Using
(81) we see that

⟨ϕ(p)ϕ(q)⟩ = Λ2dϕ(
Λ

Λ0
)η(

p

Λ
)aΛDδD(p+ q) =

Λ−2+η−a

Λη
0

pa

But LHS must be independent of Λ. Thus a = −2 + η. This gives

⟨ϕ(p)ϕ(−p)⟩ = 1

p2−ηΛη
0

6.4 Fixed Point equation

Use the above concepts to derive the fixed point equation. The fixed point equation can be
understood as an equation for an action where the kinetic term is kept always normalized
by a field redefinition.

We go back to the notation where x is the field and ψ(x, t) = e−S[x,t].
Imagine continuously redefinition of the starting bare field so that the kinetic term at

time t is always normalized. So ψ(xi, ti) we write as

e
axi

∂
∂xi ψn(xi, ti)

and choose a = η
2 t so that at time t, ψ(x, t) has a normalized kinetic term which fact we

indicate by writing ψn(x, t).
2

2In terms of ϕ(p) the operator is e
a
∫
p ϕ(p) δ

δϕ(p) .
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6.4.1 A property of number operator

Start with:
U(t, ti)e

ax ∂
∂xU(t, ti)

−1 = eaN (t)

∴ U(t+∆d, ti)e
ax ∂

∂xU(t+∆t, ti)
−1 = U(t+∆t, t)eaN (t)U(t+∆t, t)−1 = eaN (t+∆t)

Thus
(1 + ∆tGRG(t))e

aN (t)(1−∆tGRG(t)) = eaN (t+∆t)

So

∆t[GRG(t), e
aN (t)] = eaN (t+∆t) − eaN (t) = eaN (t)+a∆tN ′(t)) − eaN (t) (82)

Since N ′(t) and N (t) do not commute we have to retain them as exponentials.
Useful Result:
Lemma:

e[A(1+ϵ1),ϵ2B] − e[A,ϵ2B] = O(ϵ1ϵ2) = e[A(1+ϵ1),[A(1+ϵ1),ϵ2B]] − e[A,[A,ϵ2B]] = .... (83)

Because if either ϵ1, ϵ2 are zero the answer is zero.
Now the Baker Campbell Hausdorf formula gives

eA+B = eAeBec1[A,B]+c2[A,[A,B]+... (84)

where the dots denote various commutators involving A and B. Using these two results
we can say that to linear order in ϵ1 or ϵ2:

eA(1+ϵ1)+ϵ2B − eA+ϵ2B = eA(1+ϵ1)eϵ2Bec1[A(1+ϵ1),ϵ2B]+... − eAeϵ2Bec1[A,ϵ2B]+...

= eA(1 + ϵ1A)e
ϵ2Bec1[A(1+ϵ1),ϵ2B]+... − eAeϵ2Bec1[A,ϵ2B]+...

= eAeϵ2B [ec1[A(1+ϵ1),ϵ2B]+... − ec1[A,ϵ2B]+...]︸ ︷︷ ︸
O(ϵ1ϵ2)

+eAϵ1Ae
ϵ2B

Thus
eA(1+ϵ1)+ϵ2B − eA+ϵ2B = ϵ1Ae

Aeϵ2B +O(ϵ1ϵ2) (85)

6.4.2 Fixed Point ERG equation

ψ(t) = U(t, ti)ψ(ti)

Write
ψ(t) = e

η
2
tN (t)ψn(t)

where ψn(t) has a normalized kinetic term. This fixes η.
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LHS:

ψ(t+∆t)− ψ(t) = e
η
2
tN (t)+ η

2
∆tN (t)+ η

2
t∆tN ′(t)ψn(t+∆t)− e

η
2
tN (t)ψn(t)

= e
η
2
tN (t)+ η

2
∆tN (t)+ η

2
t∆tN ′(t)ψn(t)− e

η
2
tN (t)ψn(t) + e

η
2
tN (t)∆tψ′

n(t)

RHS:
= ∆tGRG(t)ψ(t) = ∆tGRG(t)e

η
2
tN (t)ψn(t)

= e
η
2
tN (t)∆tGRG(t)ψn(t) + ∆t[GRG(t), e

η
2
tN (t)]ψn(t)

= e
η
2
tN (t)∆tGRG(t)ψn(t) + [e

η
2
tN (t)+ η

2
t∆tN ′(t)) − e

η
2
tN (t)]ψn(t)

Equating LHS and RHS we get

e
η
2
tN (t)∆tψ̇n(t) = e

η
2
tN (t)∆tGRG(t)ψn(t)+[e

η
2
tN (t)+ η

2
t∆tN ′(t))−e

η
2
tN (t)+ η

2
∆tN (t)+ η

2
t∆tN ′(t)]ψn(t)]

Set

A =
η

2
tN (t), ϵ1 =

∆t

t
, B =

η

2
tN ′(t), ϵ2 = ∆t

Using (85) we see that to order ∆t the equation becomes

e
η
2
tN (t)∆tψ̇n(t) = e

η
2
tN (t)∆tGRG(t)ψn(t)−

η

2
∆tN (t)e

η
2
tN (t)ψn(t)

or finally

ψ̇n(t) = GRG(t)ψn(t)−
η

2
N (t)ψn(t) (86)

with η fixed by the requirement that ψn(t) have a normalized kinetic term.

6.5 Wilson’s Equation

In Wilson’s equation

∂

∂t
ψ[x(p), t] =

∫
p
ġ(p, t)

δ

δx(p)
(

δ

δx(−p)
+ x(p))ψ[x(p), t] (87)

there is a function

ġ = c+ 2p2e2t = c+
2p2

Λ2
, g(t) = ct+ p2e2t (88)

Wilson chose:
c = 1− η

2
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Thus η multiplies the operator 3

1

2

δ

δx(p)
(

δ

δx(−p)
+ x(p))

We have already seen that this implements a momentum independent scaling of xi

ψ(xf , tf ) =
1√

2π(1− eti−tf )

∫
dxie

− 1
2

(xf−e

ti−tf
2 xi)

2

1−e
ti−tf ψ(xi, ti) (89)

So we see that Wilson’s ERG equation already has incorporated in it the rescaling
necessary to find a fixed point.

6.6 Integral Representation for Wilson-Polchinski with Anomalous Di-
mension

The equation is really the fixed point equation (86) reproduced here:

∂ψn(t)

∂t
= GRG(t)ψn(t)−

η

2
N (t)ψn(t) = [

1

2
(−Ġ−ηG(G0 −G)

G0
)
∂2

∂x2
−(

Ġ

G
+
η

2
)x

∂

∂x
]ψn (90)

Change variables: (x, t) → (y, τ):

y =
x

G
e−

η
2
t; τ = t

∂

∂x
=
∂y

∂x

∂

∂y
+
∂τ

∂x

∂

∂τ
=
e−

η
2
t

G

∂

∂y
;

∂2

∂x2
=
e−ηt

G2

∂2

∂y2

∂

∂t
=
∂y

∂t

∂

∂y
+
∂τ

∂t

∂

∂τ
= −(

Ġ

G
+
η

2
)y
∂

∂y
+

∂

∂τ

LHS becomes
∂ψn

∂τ
− (

Ġ

G
+
η

2
)y
∂

∂y
ψn

RHS becomes
1

2
(−Ġ− η

G(G0 −G)

G0
)
e−ηt

G2

∂2

∂y2
ψn − (

Ġ

G
+
η

2
)y
∂

∂y
ψn

Thus we get (replacing t by τ)

∂ψn

∂τ
=

1

2

d

dτ
[(
1

G
− 1

G0
)e−ητ ]︸ ︷︷ ︸

H−1=h

∂2

∂y2
ψn

3The constant 1 denotes a specific choice of engineering dimension for the field and can be changed by
rescaling the field with powers of Λ.
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Thus the equation can be written as

∂ψn

∂h
=

1

2

∂2

∂y2
ψn

Thus the solution is easily written down:

ψn(y, τ) =

∫
dyie

− 1
2

(y−yi)
2

h−hi ψn(yi, τi)

Putting back the original variables:

ψn(xf , tf ) =

∫
dxie

− 1
2

(
xf
Gf

e
− η

2 tf − xi
Gi

e
− η

2 ti )2

H−1
f

−H−1
i ψn(xi, ti) (91)

with

H−1 = (
1

G
− 1

G0
)e−ηt (92)
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