
Algebra and Computation Course Instructor: V. Arvind

Lecture 2

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

1 Motivation

Last lecture we had a brush-up of group theory to set up the arsenal required
to study Graph Isomorphism. This lecture we shall see how group theory
motivates graph isomorphism, and some more theorems on group theory
that we will require for later lectures.

2 Graph Isomorphism and Automorphism Groups

Recall that two graphs G1 and G2 are isomorphic if there is a re-numbering
of vertices of one graph to get the other, or in other words, there is an
automorphism of one graph that sends it to the other.

And clearly, Aut(G) ≤ Sn, the symmetric group on n objects, which
represent the permutation group on the vertices. And since it is a subgroup
of the permutation group, |Aut(G)| ≤ n!

Of course, providing the entire automorphism group as output would
take exponential time but what about a small generating set? Which then
leads us to, does there exist a small generating set?

Lemma 1. For any group H of size n, there exists a generating set of size
log n.

Proof. Let H0 = {e}. If H0 = H we are done. Otherwise, let x = H \H0

and H1 = 〈H0, x〉. In general, let x ∈ H \ Hi and H = 〈Hi, x〉. Since x
forms at least two distinct cosets of Hi, |Hi+1| ≥ 2|Hi|. And hence, in at
most log n steps we will hit H.

Now we can ask the question: can we output a small generating set of
the automorphism group of a graph G? We shall refer to this problem as
Graph-Aut. We shall now show that Graph-Iso and Graph-Aut are polynomial
time equivalent.

Theorem 2. With Graph-Iso as an oracle, there is a polynomial time algo-
rithm for Graph-Aut and vice-versa.

1

Proof. First we shall show that we can solve Graph-Iso with Graph-Aut as an
oracle. We are given two graphs G1 and G2 and we need to create a graph
G using the two such that the generating set of the automorphism group
should tell us if they are isomorphic or not.

Let G = G1 ∪ G2. Suppose additionally we knew that G1 and G2 are
connected, then a single oracle query would be sufficient: if any of the
generators of Aut(G) interchanged a vertex in G1 with one in G2, then
connnectivity should force G1

∼= G2.

But what if they are not connected? We then have this very neat trick:
G1
∼= G2 ⇐⇒ G1

∼= G2. As either G1 or G1 has to be connected, one can
check for connectivity and then ask the appropriate query.

The other direction is a bit more involved. The idea is to see that any
group is a union of cosets. Suppose

H = a1K ∪ a2K ∪ · · · anK

then {a1, a2, . . . , an} along with a generating set for K form a generating
set for H. Hence once we have a subgroup K with small index, we can then
recurse on K.

Hence we are looking for a tower of subgroups

Aut(G) = H ≥ H1 ≥ H2 ≥ · · · ≥ Hm = {e}

such that [Hi : Hi+1] is polynomially bounded.

For our graphG, letAut(G) = H ≤ Sn. We shall use Weilandt’s notation
where iπ denotes the image of i under π. In this notation, composition
becomes simpler: (iπ)τ = iπ·τ .

Define Hi = {π ∈ H : 1π = 1, 2π = 2, · · · iπ = i}. And this gives the
tower

H0 = H ≥ H1 ≥ H2 ≥ · · · ≥ Hn−1 = {e}

with the additional property that [Hi : Hi+1] ≤ n− i since there are at most
n− i places that i+ 1 can go to when the first i are fixed.

We need to find to find the coset representatives.
Look at the tableau
Picture supposed to come here, needs to be completed

As H is Aut(G), we can find the coset representatives using queries to
the Graph-Iso subroutine: to find a representative for

[
H(i) : H(i+1)

]
, make

two copies of G, force the first i vertices to be fixed (by putting identical

2

gadgets on them in each copy), and for each place j′ that i+ 1 might go to,
force i + 1 to go to j′, test if a graph isomorphism exists, and continue till
an isomorphism is found.

3 The Set Stabilizer Problem

The Problem Statement: H ≤ Sn, given by a small generating set. Also
given is a subset ∆ ⊆ [n]. Find the stabilizer of ∆ in H, defined as

stab∆(H) = {π ∈ H : ∆π = ∆}

Though this problem has nothing to do with graphs directly, graph isomor-
phism reduces to this problem (which we shall call Set-Stab).

Theorem 3.
Graph-Iso ≤P Set-Stab

Proof. By our earlier theorem, it is enough to show that Graph-Aut reduces
to Set-Stab.

One simply needs to note that an automorphism can be thought of as
acting on the edges as well. Given a graph G = (V,E), a permutation of
the vertices induces a permutation of the edges. Hence,

φ : Sym(V)→ Sym(
(
V

2

)
)

is injective.
Thus, all we need to do is find the set of elements in Sym(V) that

stabilizes E. Taking the set H to be φ(Sym(V)) ⊆ Sym(
(
V
2

)
) and ∆ = E ⊆[(

n
2

)]
, the automorphism group is precisely stab∆(H).

4 More group theory: Sylow theorems

We will need some more tools for the lectures that follow, the Sylow theorems
in particular. Before that, we need the Orbit-Stabilizer theorem.

Definition 4. Let G act on a set S. Let s ∈ S

• The orbit of s (sG), is the set of all possible images of s under the
action of G.

sG = {t ∈ S : ∃g ∈ G, gs = t}

3

• The stabilizer of s (Gs) is the set of all elements of G that fix s.

Gs = {g ∈ G : gs = s}

Theorem 5 (Orbit-Stabilizer theorem). For any finite group G that acts
on a set S, for every s ∈ S,

|G| = |sG| · |Gs|

Proof. This is just Lagrange’s theorem; all we need to see is that the stabi-
lizer Gs is a subgroup of G and that [G : Gs] = |sG|.

Theorem 6 (Sylow theorems). Let G be a group, |G| = pmr, where p is a
prime and gcd(r, p) = 1. Then

1. there exists a subgroup P such that |P | = pm (p-Sylow subgroup)

2. for any p-subgroup1H of G, one of its conjugates is contained in P

3. the number of p-sylow subgroups of G is 1 (mod p)

Proof. We shall prove the subdivisions one after another.

Subdivision 1:
Let Ω be the set of subsets of G of size pm. Note that |Ω| =

(
pmr
pm

)
.

Lucas’ theorem tells us that
(
pmr
pm

)
is not divisible by p by our choice of r.

Let G act on Ω by left multiplication.
The action decomposes Ω into orbits, and since p - |Ω|, there exists A ∈ Ω

such that p - |AG|. And since pmr|G| = |AG||GA|, and by the choice of A,
pm | |GA|.

And since the elements ga ∈ A for a ∈ A are distinct under the action
of GA, it follows that |A| ≥ |GA| and hence forcing |GA| = pm. Hence GA
is our desired p-sylow subgroup.

Subdivision 2:
Let Ω be the set of left cosets of P , our p-sylow subgroup. And let H be

a p-subgroup of G, which induces an action on Ω by left multiplication.
Since |H| = pa, every non-trivial orbit of Ω is has cardinality a multiple

of p. Hence, the number of points of Ω that are fixed by H is modulo p is
the same as |Ω|. Hence in particular, since p - |Ω|, the set of points fixed by
H is non-zero. Hence, there exists a gP that is fixed by H.

1subgroup of order pa for some a

4

Hence hgP ⊆ gP or g−1hgP ⊆ P =⇒ g−1hg ∈ P for all h ∈ H. Thus
g−1Hg ⊆ P

Note that this also tells us that all p-sylow subgroups are conjugates of
each other.

Subdivision 3:
Let P be a p-sylow subgroup and let Ω be the set of p-sylow subgroups

of G on which P acts by conjugation. For any Q ∈ Ω, the stabilizer of Q
under conjugation is called the normalizer of Q, denoted by NG(Q).

Suppose Q ∈ Ω is fixed by P on conjugation, then P ≤ NG(Q). But
subdivision 2 tells us that P and Q are conjugate to each other in NG(Q),
which then forces P = Q. Hence the only fixed point is P itself and hence
|Ω| = 1 (mod p).

We also did the proof of Lucas’ Theorem, has to be TEX-ed out

5

Algebra and Computation Course Instructor: V. Arvind

Lecture 3: Divide-and-Conquer on Groups

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

5 Overview

Last lecture we studied automorphism groups motivated through graph iso-
morphism. This lecture we shall examine other techniques to study group
theoretic properties; we shall implement a ‘divide-and-conquer’ approach to
study groups.

6 Orbit Computation

Computing the orbit of an element is one of the basic questions in group-
theoretic algorithms.

We are given a group G that acts on a finite set Ω, and hence G can be
thought of as a subgroup of Sym(Ω). And of course since G could be very
large, a small generating set A of G is given as input. Given an element
α ∈ Ω, we would like to compute the G-orbit of α, denoted by αG. Recall
that

αG = {β ∈ Ω : ∃g ∈ G, β = αg}

The naive way is to try and ‘reach’ every element in the orbit using
elements of A acting on α, which is as follows:

1: ∆ = {α}
2: while ∆ grows do
3: for each a ∈ A and each δ ∈ ∆ do
4: ∆ = ∆ ∪ {δa}
5: end for
6: end while

The running time is at least quadratic in |Ω|. A reachability approach
is much better.

Algorithm: Define a graph X = (V,E) where V = Ω and (α, β) ∈ E if
αa = β for some a in A ∪ A−1. The connected components of this graph
correspond to the orbits.

6

This algorithm takes time n |A| where n = |Ω|. Note that this algorithm
in fact gives more: given any two elements of the same orbit, one can also
obtain a group element that takes one to another by looking at the path
from one to another and multiplying the edge labels.

This gives us a step forward towards a divide-and-conquer approach.
Once we have the orbit decomposition of Ω, we can study the action of the
group on each orbit separately. We would then have the additional property
of the action of G being transitive2 on the set.

7 Decomposition of Transitive Groups

In order to break down transitive groups we shall study “blocks”. In this
section, we shall assume that the action of G is transitive.

Definition 7. ∆ ⊆ Ω is called a block if for all g ∈ G, either ∆g = ∆ or
∆g ∩∆ = φ

Of course for any action, Ω and singletons of Ω are blocks, and are called
the trivial blocks.

Definition 8. G is said to be primitive if it has only trivial blocks.

Let us look at some examples.

1. When G is in fact the entire Sym(Ω), it’s easily seen that G is primi-
tive.

2. Even when G is the set of even permutations over Ω, denoted by A|Ω|,
it has enough permutations to still remain primitive. This also can be
easily checked.

3. Suppose G acts on itself, say by left multiplication, G ≤ Sym(G).
Every subgroup of G is a block since the cosets are either identical or
disjoint. In fact, any coset is also a block.

Thus, we have a tiling of Ω using such blocks. We shall refer to these
as a block system.

Definition 9. A block system is a partition of Ω such that each part
in the partition is a block with respect to the action.

2any element of the set can be pushed to any other by some element of the group

7

Note that if ∆ is a block, so is ∆g for every g ∈ G. And the tiling
gives a theorem very similar to Lagrange’s theorem on subgroups of a
group.3

Theorem 10. Let G act transitively on a set Ω and let ∆ ⊆ Ω be any
block. Then |∆| divides |Ω|

And this immediately leads to the following corollary.

Corollary 11. For any group G that acts on Ω transitively, if |Ω| is
a prime, then G is primitive.

4. Let X be the graph, a collection of some k triangles and look at its
automorphism group acting on it. First note that this action is tran-
sitive, and further, each triangle would be a block.

Thus the automorphism group is imprimitive.

This can of course be extended to any collection of k identical graphs
such that the automorphism group of the piece is transitive.

5. Look at the leaves of a complete binary tree of depth k, and let the
group be the automorphism group acting on them.

What are the blocks?

Take any internal node in the tree, and look at the set of all descendant
leaves of it, and this set of leaves form a block. In fact, all blocks are
precisely such sets of leaves.

The last example in fact gives a great motivation to a divide-and-conquer
approach.

If G is transitive and imprimitive, let ∆ be the smallest block. Now
group elements of Ω corresponding to the block-system generated by ∆.
Now notice that G in fact acts on this block system since G moves the
blocks in the system around. And let the block system be the new set Ω1

and the group being the projected version of G and we can now ask the
question “Is G′ primitive/transitive ?” with respect to the smaller set Ω.

Checking if the action is transitive can be done by orbit computation,
but we need to check if a group is primitive.

3note that you require the action to be transitive, otherwise such ∆g blocks needn’t
cover all of Ω

8

8 Blocks and Subgroups

Observation: If ∆1 and ∆2 are G-blocks, then so is ∆1 ∩∆2.
With this observation, we can now talk about the smallest block con-

taining a bunch of elements of Ω.

Lemma 12. G ≤ Sym(Ω) acting transitively on Ω, is primitive if and only
if Gα is a maximal subgroup of G.

Proof. Note that α needn’t be specified since Gα and Gβ are conjugates of
each other when G is transitive. It is easy to check that of g ∈ G such that
gα = β, then gGαg−1 = Gβ.

Suppose {α} < ∆ < Ω, a non-trivial block. LetH = {g ∈ G : ∆g = ∆}.
We will now show that Gα < H < G, thus proving one direction of the
lemma.

Clearly, since G acts transitively and ∆ < Ω, H has to be a proper sub-
group of G. Also, if g ∈ Gα, then α ∈ ∆ ∩ ∆g 6= φ. Since ∆ is a block,
this forces ∆ = ∆g and thus g ∈ H. Since {α} < ∆ there exists a β ∈ ∆
different from α. Let g be the element of the group that takes α to β. Then
since β ∈ ∆ ∩∆g, g ∈ H but g /∈ Gα. Thus Gα < H.

As for the other direction, let Gα < H < G. We shall show that αH = ∆
is our non-trivial block. Since Gα < H, ∆ 6= {α}. Showing ∆ < Ω is a bit
more involved. Since Gα is a subgroup of G, Gα and its cosets partition G:

G =
⋃

β∈Ω , gβ :α 7→β

Gαgβ

And note that if any gβ ∈ H, the the entire coset of Gαgβ is contained in
H. Hence since ∆ = Ω would imply H = G, our assumption H < G forces
∆ < Ω.

All that’s left to show is that ∆ is a block. Suppose ∆g ∩∆ 6= φ, then
for some h, h′ ∈ H, αhg = αh

′
which then forces h′gh−1 ∈ Gα < H. Hence

g ∈ H and therefore ∆g = ∆.

What the above lemma established is a one-to-one correspondence be-
tween subgroups of G and blocks of Ω.

One could also think of G as acting on {Gαg : α ∈ Ω}, by identifying
each point α ∈ Ω by the subgroup Gα and its cosets.

Lemma 13. Let N �G, a normal transitive subgroup of G. Then the orbits
of N form a block system.

9

Proof. We want to show that αN is a block. Suppose αNg ∩ αN 6= φ, then
for some n1, n2 ∈ N , αn1g = αn2 and hence n1gn

−1
2 ∈ Gα. By normality

of N , the above terms can be written as n3g for some n3 ∈ N . From this,
n1gn

−1
2 ∈ Ng and hence n2 ∈ Ng which collapses Ng and N , thus forcing

αNg = αN .

Corollary 14. If G is primitive, all its normal subgroups are transitive.

9 Finding Blocks

Problem: Given 〈A〉 = G ≤ Sym(Ω) a transitive group. Find a non-trivial
block system or report primitive.

Observe that if G is not primitive, for every α ∈ Ω, there exists a β 6= α
such thatG has a non-trivial block containing {α, β}. And hence it is enough
to solve the following MINBLOCK problem efficiently.
MINBLOCK: Given {α, β} ⊆ Ω, find the minimum block containing α and
β.

The algorithm is very clever and neat. Define an undirected graph X =
(V,E) such that V = Ω and E = {(α, β)}G = {(αg, βg) : g ∈ G}.

Claim 15. The connected component C containing α is the minimum block.

Proof. Note that G ≤ Aut(X) and also G is transitive on Ω. Hence con-
nected components have to move as a whole, and thus connected components
are blocks and hence C is a block.

Suppose C was not minimal, let C1 (C be a block. Since the contain-
ment is strict, there exists an edge (γ, δ) = (αg, βg) such that γ ∈ C1 and
δ ∈ C \ C1. Now γ ∈ Cg1 ∩ C1 but δ ∈ Cg1 \ C1 which contradicts that C1 is
a block. Hence C has to be the minimal block containing α and β.

One can now run over all β for a given α to find solve the non-trivial
block problem.

10 Membership Testing

Problem: Given 〈A〉 = G ≤ Sym(Ω) and g ∈ Sym(Ω), check if g ∈ G.

This problem clearly reduces to the problem of computing the order of
the group given by a set of generators (to check for membership of g, throw

10

g into the generating set and check if the order changes). We are looking
for a divide and conquer approach to solve membership.

A promising avenue is the orbit-stabilizer formula |G| = |Gα||αG|. We
know to compute αG efficiently, and hence can recurse on the smaller sub-
group Gα. But how do we get hold of a small generating set for Gα? The
following marvellous idea of Schreir gives the answer.

Theorem 16 (Schreir). Let 〈A〉 = G and H ≤ G. Let R be the set of
distinct coset representatives of H, (i.e)

G =
⊔
r∈R

Hr

Then
B =

{
r1ar

−1
2 : a ∈ A; r1, r2 ∈ R

}
∩H

generates H

Proof. For any given r1 ∈ R and a ∈ A, there exists a unique r2 such that
r1ar

−1
2 ∈ H (because Hr1a = Hr2).

RA ⊆ BR (r1a = (r1ar−1
2)r2)

⊆ 〈B〉R
=⇒ RAA ⊆ 〈B〉RA

⊆ 〈B〉〈B〉R = 〈B〉R
∴ ∀t ≥ 0, RAt ⊆ 〈B〉R

=⇒ G = 〈B〉R

Now since G can be partitioned into cosets of H and there are distinct
representatives of every coset in R, unless 〈B〉 = H, 〈B〉R cannot cover the
group. Hence 〈B〉 = H.

One could then look at H = Gα and the coset representatives are gβ :
α 7→ β and can be found in the orbit computation itself. But this still doesn’t
quite solve the problem since the size of the generating set is growing rapidly
(|B| = |R||H|) and would get to exponential size in n steps.

This can also be tackled in a very clever way. We shall just see the sketch
here, the details will be worked out next class.
Idea: For any two elements π and ψ in B, if 1π = 1ψ (both π and ψ
map 1 to the same element), replace {π, ψ} by {π, π−1ψ}. This would then
ensure that the two elements map 1 to different images now. Repeating this

11

replacement process, we can ensure that the elements of B are never larger
than n2.

The details shall be worked out in the next lecture, the interested reader
could take this as an easy exercise though.

12

Algebra and Computation Course Instructor: V. Arvind

Lecture 4: Membership Testing in Permutation Groups

Lecturer: V. Arvind Scribe: Shreevatsa R and Ramprasad Saptharishi

11 Overview

In the previous lecture, we began studying the problem of testing member-
ship in permutation groups. In this lecture, we describe its solution and
explore related problems.

12 The problem

Given a subgroup G (given by a small generating set, say G = 〈A〉) of
the permutation group Sn, and a permutation g ∈ Sn, the membership
testing problem is to decide whether g ∈ G. If the answer is yes, we might
also want a representation of g in terms of the generators.

If the output has to be a product g = ai1ai2 . . . aiN , how large might N
have to be, in the worst case? It is easy to see that we can ensure N is at
most by |G|−1: consider the prefix products s1 = ai1 , s2 = ai1ai2 , . . . , sN =
ai1ai2 . . . aiN . If N > |G|−1, either some sj is the identity, in which case we
can write g = aij+1 . . . aiN , or sj = sk for some j and k, in which case we can
write g = ai1 . . . aijaik+1

. . . aiN , so in either case N can be made smaller.
However, N might have to be very large. As an example, write n as

n = p1 + p2 + · · · + pm where the pis are distinct primes, and look at the
cyclic group generated by

a = (1 2 . . . p1)(p1 + 1 . . . p1 + p2)(. . .) . . . (. . .) = C1C2 . . . Cm.

The Cis are disjoint cycles with lengths pi, so the order of a is M =
p1p2 . . . pm. The group is G = 〈{a}〉 = 1, a, a2, . . . , aM−1, in which the
element aM−1 can be written only as the product of M−1 as. So here, N =
p1p2 . . . pm − 1 ≥ 2m − 1, and we know by the prime number theorem that
m = Ω(pm

ln pm
). Further, as n = p1+p2+ · · ·+pm ≤ 1+2+3+ · · ·+pm ≤ pm2,

we have that pm ≥
√
n, so N ≥ 2

c
√

n
log n − 1 for some c. This is not polynomial

in n.

13

Thus, we cannot hope to solve the problem in polynomial time if the re-
quired output is an explicit product; the “representation” has to be a circuit
on A. In the example above, aM−1 can easily be expressed (or computed) in
terms of the a through repeated squaring. Our algorithm will give a similar
good representation.

13 Idea

Membership testing reduces to the problem of order computation, as
g ∈ G ⇐⇒ |G| = |G ∪ g|. The idea for solving the latter, as we saw in the
previous lecture, is to find a tower of subgroups

G = G(0) ≥ G(1) ≥ · · · ≥ G(n−1) = {1}

such that the index
[
G(i−1) : G(i)

]
is easy to calculate, for each i. Then, as

|G| =
∏n−1
i=1

[
G(i−1) : G(i)

]
, we can easily compute it.

Consider the pointwise stabilisers, and look at the tower of subgroups

G(i) = {g ∈ G : jg = j for all j, 1 ≤ j ≤ i}

Here,
[
G(i−1) : G(i)

]
≤ n− i for every i(why? since fixing i− 1 leaves n− i

choices for the ith index), and our algorithm will compute it by computing
a system of coset representatives for this. The algorithm will also give us a
new generating set for G; thus it can be used to decide many membership
queries without recomputing it.

14 Algorithm

14.1 Finding the cosets at each level of the tower

How do we find the coset representatives of G(1) in G? Let X1 be the orbit
of 1 under the action of G, and for any k ∈ X1, let g1k be the element that
maps 1 to it (i.e., 1g1k = k). Then

G =
⋃
k∈X1

G(1)g1k

We shall see shortly (in subsection 14.3) how to find a small generating set
for G(1). Assuming that we can do it, we can similarly find X2, the orbit of
2 under the action of G(1), find the g2ks such that k = 2g2k , and similarly
find representatives for the cosets of G(2) in G(1).

14

In general, for each i from 1 to n, we find the orbit Xi of i under the
action of G(i−1), and also, for each element k ∈ Xi, the element gik such
that igik = k. Then G(i−1) =

⋃
k∈X G

(i)gik
Taking the union of the sets of coset representatives we get for each[

G(i−1) : G(i)
]

gives us a generating set for G. What we have just found has
a name:

Definition 17. Let Ω be an ordered set {ω1, ω2, . . . , ωn} and let G ≤ Sym(Ω).
A strong generating set with respect to this ordering is the union of
the sets of right-coset representatives (or the right-transversals) for G(i) in
G(i−1), for 0 ≤ i ≤ n− 1.

14.2 Testing membership of a given g

Given a g ∈ G, let k1 = 1g. If k /∈ X1, we can immediately conclude
that g /∈ G. Else, let g(1) = gg−1

1k . By construction, g(1) ∈ G(1). Next,
letting k2 = 2g

(1)
, if k2 /∈ X2, we can abort and report that g /∈ G; else

we let g(2) = gg−1
1k1
g−1
2k2

and continue similarly. In other words, for each i

from 1 to n, we let ki = ig
(i−1)

, abort if ki /∈ Xi, and set g(i) = g(i−1)g−1
iki

otherwise, in which case it is guaranteed to be in G(i). If at any time
g(r) = gg−1

1k1
g−1
2k2

. . . g−1
rkr

= 1 then we have g as a product of elements of G.
If g ∈ G, it is guaranteed that this will eventually happen, for if we have
not aborted by the time i takes the value of n, then it is guaranteed that
g(n−1) ∈ G(n−1) = 1.

14.3 Finding generating sets for the subgroups

Our algorithm above for finding the strong generating set depends on being
able to find a generating set for G(i) when we know one for G(i−1). This is
made possible by Schreier’s lemma, as we saw in the previous lecture.

Theorem 1 (Schreier’s lemma). If G = 〈A〉 and R is a set of distinct right
coset representatives for the subgroup H in G, then

B =
{
r1ar

−1
2 : a ∈ A, r1, r2 ∈ R

}
∩H

generates H.

For every r1 and a, there is a unique r2 such that r1ar−1
2 = h, for any

h in H, so we know that |B| ≤ |R| |A|. However, this alone is not sufficient
for us to complete our algorithm, as it does not ensure polynomial time —
the size of the generating set might increase by Θ(n) each time. To avoid

15

this, we need to make sure we can keep the generating set small. We now
show that it can be done.

14.4 The reduce Algorithm

Theorem 2. Given a group G ≤ Sn, we can find a generating set for it of
size at most n2.

The idea is to remove collisions as you see them. Suppose π and ψ
are two elements of your generating set such that they map 1 to the same
element, (i.e) 1π = 1ψ. What we do then is replace {π, ψ} by

{
π, ψπ−1

}
.

This then ensures that one of the elements fix 1, and is taken care in the
following levels. A better way to look at it would be to think of a table
where row i represents G(i).

Start with the bottom row, representing G(0) = G. For each element
π ∈ B, if 1π = 1, move it to the row G(1), else place it in column 1π.
Whenever you have collisions, do the pruning process and send the element
that fixes 1 and send it to the next row. Once row 1 is done (no more
collisions), move to the next and repeat this process.

The complete algorithms for reduce and membership can be found at
the end of this file.

15 Other Problems

Using the technique of using group towers, there is a whole pool of problems
we could inspect. We shall see a few of them now, which will be very useful
for the lectures to follow.

subgroup: Given H = 〈B〉 and G = 〈A〉, subgroups of Symn. Check if
H ≤ G.

The solution is extremely simple, for every element b ∈ B, check if b ∈ G
using the membership algorithm.

normal: Given H = 〈B〉 and G = 〈A〉, subgroups of Symn. Check if H is
a normal subgroup of G, denoted by H �G.

This is also easy, for each a ∈ A and each b ∈ B, check if aba−1 ∈ H
using membership.

16

Definition 18. For any subgroup H of G, normal closure of H is defined as
the smallest normal subgroup of G that contains H. It is denoted by

〈
HG
〉

H ≤
〈
HG
〉

�G

The normalizer of H, denoted by NG(H), is the largest subgroup of G in
which H is normal.

H �NG(H) ≤ G

normal closure: Given H = 〈B〉 and G = 〈A〉, subgroups of Symn, find〈
HG
〉

This is easy too, look at
{
aba−1 : a ∈ A, b ∈ B

}
. If something of this

set is not in H, throw it into B and repeat. Everytime, the size of the group
doubles and hence you will definitely hit the normal closure quickly.

15.1 The Group-Intersection Problem

group-inter: Given G = 〈A〉 and H = 〈B〉, subgroups of Symn. Find
G ∩H.

There is no known polynomial time algorithm for this problem in general,
and we don’t expect one to exists even because of the following theorem.

Theorem 19. set-stab is polynomial time equivalent to group-inter

Proof. set-stab ≤P group-inter:
Suppose ∆ is the set we want to stabilize, all we need to do is to com-

pute G ∩
{

Sym∆×SymΩ\∆

}
. One could just choose transpositions as a

generating set for the product.
The intersection of the two sets precisely yields stab∆(G).

group-inter ≤P set-stab:
Look at the product G × H ≤ SymΩ×SymΩ ≤ SymΩ×Ω and let the

action be just the coordinate wise action, (g, h)(i, j) = (ig, jh). All we need
to do now is stabilize the diagonal, Ω×Ω = {(i, i) : i ∈ Ω} and this would
yield G ∩H.

And since we say that graph isomorphism reduced to set-stab, it is
unlikely that we have a polynomial time algorithm for the intersection prob-
lem.

However, for a special case when G normalizes H (i.e G ≤ NSymΩ
(H)),

we can solve the intersection problem in polynomials time.

17

Claim 20. If G normalizes H, then we can compute G ∩H in polynomial
time.

Proof. Again, we are looking for a tower of subgroups with “nice” properties.
And sinceG normalizesH, the central idea is thatGH = {gh : g ∈ G, h ∈ H}
is a subgroup of Symn. And hence, for all i, G(i)H is also a subgroup. Fur-
ther, G normalizes H =⇒ H �GH.

The tower we are looking for is

G ∩H = G ∩G(n−1)H ≤ G ∩G(n−2)H ≤ · · · ≤ G ∩GH = G

And since the generating set for G(i)H is just the union of the generating
set for G(i) and H, we can check for membership in G∩G(i)H. Thus, using
Schreier’s lemma and the reduce algorithm, we can descend the tower
computing generating sets.

An additional property we need is that the index between consecutive
elements of the tower is small. We leave it as an exercise to show that[
G ∩G(i−1)H : G ∩G(i)H

]
≤ n− i.

18

Algorithm 1 reduce

1: B0 = B
2: A[][], an empty n× n array
3: for i = 0 to n− 1 do
4: for all ψ ∈ Bi do
5: j = iψ

6: if A[i][j] is empty then
7: if j = i then
8: Bi+1 = Bi+1 ∪ {ψ}
9: else

10: A[i][j] = ψ
11: end if
12: else
13: π = A[i][j]
14: Bi+1 = Bi+1 ∪

{
π · ψ−1

}
15: end if
16: end for
17: end for
18: discard all trivial elements from

⋃
Bi

19: return
⋃
Bi

19

Algorithm 2 membership

Input: g ∈ Symn and a generating set A for G(i) ≤ Symn and the index i
1: if g = id then
2: return true
3: end if
4: Xi = (i+ 1)G

(i) {use the orbit algorithm}
5: compute the set R of distinct coset representatives of G(i+1) in G(i)

6: k = (i+ 1)g {image of i+ 1 under the action of g}
7: if k /∈ Xi then
8: return false
9: else

10: compute generating set B for G(i+1) using Schreier’s lemma
11: reduce B
12: pick gik from R, the coset representative of G(i)

13: g′ = g · g−1
ik

14: return membership(g′,B, i+ 1)
15: end if

20

Algebra and Computation Course Instructor: V. Arvind

Lecture 5: More on Subgroups and group-inter

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

16 Overview

Last lecture we saw that membership in a permutation subgroup can be
done efficiently and inspected the recognizability of some group properties.
This lecture we shall look at other properties of groups that can be detected
efficiently.

17 The General Setting

Over all examples that we have seen, there is a central structure to all
recursive algorithms that we are doing; we want small generating sets for
recursive calls. In general, we are provided a group G = 〈A〉 and a subgroup
H that is only given as a black box, and we wish to find a generating set
for H to inspect its properties. The general idea was to find a tower of
subgroups between G and H, like

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gr = H

and we want certain “nice” properties to be satisfied. This can infact be
generalized to non-permutation groups as well. Assume that our groups are
embedded into a larger group, where multiplication, inverses etc are known.

1. Given a generating set for Gi, we should be able to obtain a generating
set for Gi+1 quickly

2. The index [Gi : Gi+1] ≤ m is not too large

3. Quick membership algorithms in Gi

4. A reduce procedure to bring down the generating set.

The quick membership algorithm requirement has a definition by its own.

Definition 21. A group H is said to be polynomial time recognizable if there
exists a polynomial time algorithm that solves membership in H.

21

Though H is not explicitly given, this is a very reasonable definition. For
example, look at H being the automorphism group of some graph. Finding
what H is very unlikely, but certainly given a permutation of vertices, one
can easily check if it is infact an automorphism or not.

The properties stated before are precisely what we required for the re-
cursion to go through.

Claim 22. With the four properties, we can find a generating set for H
quickly

Proof. The first step is to find coset representatives of H in G.

G = Hx1 ∪Hx2 ∪ · · · ∪Hxr r ≤ m

In the permutation group case, just the orbit of {1} would have finished it,
but what about this case? Note that G acts transitively on the set of right
cosets! Hence one can find a set of unique coset representatives by makign G
act on the id ∈ G and checking of two elements x and y of the orbit belong
to the same coset of H (this happens if and only if xy−1 ∈ H).

Once we have the coset representatives, Schreier’s lemma gives a gener-
ating set for the next element of the tower and recursion happens. Crowding
of generators around H can be prevented by the reduce algorithm. Putting
them all together, we would have a small generating set for H.

18 Subnormality and group-inter

Definition 23. A subgroup H of G is said to be subnormal in G if there
exists a tower of subgroups chained by normality (i.e)

H = Gr �Gr−1 � · · ·�G0 = G

This is denoted by H��G.

subnormal: Given H = 〈B〉 and G = 〈A〉. Check if H��G.

The following claim is the core of the algorithm to detect subnormality.

Claim 24. H��G⇐⇒ H��
〈
HG
〉

Proof. One way is obvious, if H��
〈
HG
〉
, then immediately we have the

tower H��
〈
HG
〉

�G.

22

The other direction is also fairly straightforward. Suppose we had a tower
for H��G,

H = Gr �Gr−1 � · · ·�G0 = G

then clearly, just intersecting the entire tower with the normal closure
〈
HG
〉
,

we get

H = H ∩
〈
HG
〉

�Gr−1 ∩
〈
HG
〉

� · · ·�G ∩
〈
HG
〉

=
〈
HG
〉

which is a tower for H��
〈
HG
〉
.

Hence if H were subnormal, you are guaranteed to find a series through
the normal closure. Hence the algorithm is then immediate:

Compute the normal closure
〈
HG
〉
. If

〈
HG
〉

= H, then we are done
since H � G is our tower. If

〈
HG
〉

= G, then we know that H cannot be
subnormal in G since there is no way by which you can obtain the tower if〈
HG
〉

= G. Hence if
〈
HG
〉

was a strict subgroup of G, recurse on this.

1: K1 = G;
2: while

〈
HK1

〉
6= H do

3: if
〈
HK1

〉
= K1 then

4: output false
5: else
6: K1 =

〈
HK1

〉
7: end if
8: end while
9: output true

We will now go on to show that if H��G, then we can compute G ∩H
efficiently.

Theorem 25. Let H = 〈B〉 and G = 〈A〉 be subgroups of Symn. Given the
promise that H�� 〈G,H〉, we can compute a small generating set for G∩H
in polynomial time.

Proof. Using the subnormality algorithm, we can infact compute the normal
series of H. Let

H = Gr �Gr−1� · · · �G0 = 〈G,H〉
G ∩H �G ∩Gr−1� · · · �G ∩G0 = G ∩ 〈G,H〉 = G

Now there are two questions to ask before we apply the recursion procedure,
is the index between adjacent indices small? Given a generating set for
G ∩Gi, can we find a generating set for G ∩Gi+1?

23

As for the second question, note that G∩Gi normalizes Gi+1! And hence
we can use the previous algorithm to get a generating set for the intersection
(G ∩Gi) ∩Gi+1 = G ∩Gi+1

As for the first question, exercise!

18.1 Recognizing Solvability

Definition 26. For any group G, the commutator subgroup G′ of the group,
also denoted by [G,G], is defined as

[G,G] =
{
g1g2g

−1
1 g−1

2 : g1, g2 ∈ G
}

Also, it’s easy to see that G′ � G and G/G′ is abelian, infact it’s the
smallest group that satisfies this property!

Definition 27. A group G is said to be solvable if we can find a tower

G�G1 �G2 � · · ·� {1}

such that for each i, Gi/Gi+1 is abelian.

Equivalently, a group G is solvable if the you can hit {1} by looking at
successive commutator subgroups.

solvable: Given a group G = 〈A〉, check if G is solvable.
Here’s the solution: Take [A,A] =

{
a1a2a

−1
1 a−1

2 : a1, a2 ∈ A
}

and con-
sider its normal closure. The claim is that, this is is the commutator sub-
group of G! Once we prove this, we can descend by computing successive
normal closures, and if we get stuck, then G can’t be solvable.

We leave the proof of the claim and details of this algorithm as an exer-
cise.

19 Jerrum’s Filter

Recall the membership algorithm, the reduce procedure was crucial in
keeping the generating set in control through the recursion. Our algorithm
made sure that the generating set does not grow beyond n2. However, there
are much stronger results, and reduce algorithms.

Theorem 28 (Neumann). For n > 3, every subgroup of Symn can be gen-
erated by atmost

⌊
n
2

⌋
elements.

24

Infact, the above theorem is tight. Consider Ω = {a1, a2, · · · , am, b1, · · · , bm}
and letG be the group generated by the transpositions {(ai, bi) : 1 ≤ i ≤ m}.
This is a generating set for G and has size n

2 . And since G is isomorphic to
Fm2 , this matches the lower bound as well.

However, to algorithmically compute the generators, we need slightly
weaker bound.

Theorem 29 (Jerrum). Any subgroup G of Symn has a generating set of
size (n − 1). Infact, given G = 〈A〉, we can compute an (n − 1) sized
generating set in polynomial time.

Proof. Define the graph XA = ([n], EA) as follows: For each g ∈ A, let
ig ∈ [n] be the least point moved by g. Add the edge eg = (ig, i

g
g) to EA.

We now have an undirected graph on n vertices. We shall go on to show
that we can keep modifying A to get to get to a graph XA′ that is acyclic
(and of course, G = 〈A′〉), and hence the theorem follows.

Before we go into the algorithm, we need one more terminology. For
any T ∈ Symn, the weight of the graph XT (denoted by w(T)) is defined as∑

g∈T ig. An obvious upper bound on w(T) is |T |n.

The algorithm is an online algorithm, it maintains a set A such that
XA is acyclic and as a new element g comes in, it changes A a little to
accomodate g and still maintain an acyclic graph.

At any stage assume that we have a set S such that XS is acyclic; enter
g. If even on addition of eg, the graph remains acyclic, there is nothing to
be done, just add that edge and add g to the set S.

Otherwise, in XS∪{g}, there exists a unique cycle containing the edge eg.
Now each edge of the cycle is labelled with an element of S (the direction
gives an ambiguity of whether it is gk or g−1

k , this will be usually denoted
by gεk where ε can be 1 or −1).

Let i be the least point on this cycle. Since i is a part of the cycle, one
of the two edges incident on i in the cycle must be labelled as g0 such that
i = ig0 . In that direction, walk from i round the complete cycle back to
i; this naturally corresponds to a product of the form g0g

ε1
1 g

ε2
2 · · · g

εk
k = h.

Replace g0 by h in the set S (unless h is trivial, in which case just discard
it).

Note that this transformation doesn’t change the group generated by
the set, but on the other hand, the choice of h demands that jh = h for all
1 ≤ j ≤ i and hence fixes sometime beyond i. And since we chose i to be
the least element of the cycle, the weight of the graph increases when we
replace g0 by h.

25

The size of our set remained the same, but the choice of h forced the
weight to go up. Hence in a polynomially many steps, we are sure to hit
the upper bound and hence will end up with an acyclic graph (with some h
becoming trivial in the process).

Repeating the process with all elements of A, we have a generating set
A′ with an acyclic graph XA′ , and hence |A| ≤ n− 1.

Let us revisit the original reduce algorithm that restricted our generat-
ing set to n2, infact that can also be seen in this setting. In that algorithm,
we were looking at collisions and doing modifications based on that, those
precisely correspond to 2 cycles in XA.

Hence Jerrum’s filter can also be thought of as the original reduce
algorithm but being more mindful about the entire graph rather than just
2 cycles.

26

Algebra and Computation Course Instructor: V. Arvind

Lecture 6,7: Special Cases of graph-iso

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

20 Overview

It is unlikely that we have an efficient algorithm for graph-iso, but certain
special cases of it can be solved in polynomial time. In this lecture, we shall
inspect two such cases, coloured graphs with bounded colour classes and
trivalent graph. 4

21 Bounded Colour Multiplicity graph-iso: BCGIb

Instead of general graph isomorphism instances, BCGIb adds an extra struc-
ture to the graphs by associating with each vertex a colour. Further, assume
that each colour class5 has its size bounded by a constant b. Given two
graphs X1 and X2 with such a promise, can check if they are isomorphic
efficiently?

Without loss of generality, we can assume that X1 and X2 are connected
(otherwise consider their complements). Consider the graph (V,E) = X =
X1∪X2 and from our earlier lectures, checking isomorphism can be reduced
to checking the automorphism group of X. The additional colour structure
imposes the constraint that Aut(X) ≤

⊗
Sym(Ci) where Ci is the colour

class for colour i. The idea is that we use the set-stab reduction in this
scenario and show that we can compute the necessary stabilizer efficiently.

Let Ei = E ∩
(
Ci
2

)
for each colour i (the set of intercolour edges) and

Eij = E ∩ (Ci × Cj) for colour pairs i 6= j (cross edges). Clearly, any
π ∈

⊗
Sym(Ci) is a colour preserving automorphism if and only if , Eπi = Ei

and Eπij = Eij . Thus we now have got it to a set-stab form.
Let G =

⊗
SymCi = 〈A〉, by choosing transpositions as generators.

Now define Ω = (
⋃
Ci) ∪

(⋃
2(Ci

2)
)
∪
(⋃

2Ci×Cj
)
, which is just identifying

the subsets Ei and Eij as points. The bound on the colour classes tell us

4We also discussed a partial solution to the solvability exercise he gave in the last class,
but I’m not putting it here

5set of vertices of a given colour

27

that |Ω| ≤ n+ r2(b
2) +

(
r
2

)
2b

2
, if r is the number of colour classes, and since

b is a constant |Ω| = poly(n).
G can be naturally extended to act on Ω (extension in the most obvious

sense, if i is sent to something and j is sent to something, Eij should go
to the right thing). And now, Aut(X) is just finding the subgroup that
pointwise stabilizes the Ei clusters and the Eij cllusters and this can be
done using our strong generating set tower discussed in lecture 3.

The running time is poly(|Ω|) and hence poly(|X|).

22 Bounded Degree graph-iso

Another restriction that we can impose on graphs is the degree of each
vertex, suppose we are given the promise that the degree of each vertex is
bounded by a constant d, can we solve graph-iso?

The case when d = 1 is trivial, just a bunch of independant edges and
so is the case when d = 2. The first interesting case is when d = 3, which is
also called trivalent graph isomorphism.

We are given two graphs X1 and X2 with the promise that their degrees
are bounded by 3, and we need to check if they are isomorphic. Firstly
note that we can assume that both of them are connected, since if not
we can just look at the connected components and work with all possible
pairs6. Checking if they are isomorphic is equivalent to computing their
automorphism group.

Further, suppose had a distinguished edge, and we are only intereseted
in automorphisms that fix that edge, is that good enough? Yes it is. Fix
some edge euv ∈ X1, for each epq ∈ X2, add a new edge that ’connects’ euv
and epq (add the midpoints as another vertex and join the two midpoints).
Thus if an isomorphism swapped euv and epq, that isomorphism will fix e.
And since we are doing this over all edges epq, the two problem are clearly
equivalent. Hence we shall restrict ourselves to finding Aute(X) for some
graph X where e is a distinguished edge we want to fix.

The algorithm works by building the automorphism groups by approxi-
mations, Aute(Xr) where each Xr is a subgraph of X. For each r, define Xr

to be the consisting of all vertices and edges that appear in paths of length
≤ r passing through e. This layers X with respect to distance from e.

picture needed
6note that the complement idea won’t work since graph will no longer be trivalent

28

And clearly, since e is a distinguished edge, any π ∈ Aute(X) must
preserve layers. And infact we have the following crucial theorem by Tutte.

Theorem 30 (Tutte). If X is a connected trivalent graph and e is any edge
in X, then Aute(X) is a 2-group (a group of order 2m).

Proof. The basic idea is that the automorphism groups are successive ap-
proximations and each expansion is through a 2-group.

The proof will be an induction on i, assume that Aute(Xi) is a 2-group.
Since any automorphism that preserves e has to respect the layers, we have
a natural homomorphism φ : Aute(Xi+1) −→ Aute(Xi), which is just the
projection function (Aute(Xi+1) preserves layers till Xi+1).

Hence |Aute(Xi+1)| = |φ(Aute(Xi+1))| · | kerφ| and since φ(Aute(Xi+1))
is a subgroup of Aute(Xi), it is a 2-group. Hence all that’s left to do is to
check that kerφ is a 2-group as well.

We are interested in counting π ∈ Aute(Xi+1) that fixes Xi pointwise.
If V = V (Xi+1) \ V (Xi), then any non-trivial π have to do something on
V alone. But note that the graph X is trivalent, and hence any u ∈ V (Xi)
can be connected to atmost 2 vertices in V (since degree of u is bounded
by 3) and hence any automorphism of Xi+1 that fixes Xi can atmost swap
the two neighbours of u. Thus any π ∈ kerφ satisfies the constraint that
π2 = id and hence kerφ is also a 2-group.

22.1 A Road Map

We want to compute Aute(X), and we shall do it using the tower induced
by the different layers Xr. The general philosophy is the following:

If φ : G −→ H is a group homomorphism and if we had a generating set
for kerφ = {k1, k2, · · · , kn} and φ(H) = {φ(g1), φ(g2), · · · , φ(gm)}, then we
can find a generating set for G efficiently.

We are going to use the homomorphisms φ : Aute(Xr+1) −→ Aute(Xr)
to ascend the tower and finally get to a generating set for Aute(X). We
need to find

1. A generating set for kerφ

2. A generating set for φ(Aute(Xr−1))

22.2 A generating set for ker φ

The proof of Tutte’s theorem infact gave us the algorithm. Observe that for
every vertex v ∈ Xr is attached to atmost two vertices of Xr+1 \Xr and an
automorphism could possible swap these two neighbours of v.

29

When would this not be possible? Precisely when the neighbourhoods of
the two vertices are different! Thus if w1, w2 ∈ Xr+1 \Xr are neighbours of
v ∈ Xr, a transposition (w1, w2) would be a valid automorphism fixing Xr

if and only if Γ(w1) = Γ(w2). And this can be easily checked by inspection.
Thus in linear time, we can infact get a generating set (a set of disjoint
transpositions) for kerφ.

22.3 A generating set for φ(Aute(Xr+1))

This is the harder part. Since we’ll be referring to vertices of Xr+1 \Xr, we
shall refer to this set as Vr. Note that every vertex v ∈ Vr is connected to
1 or 2 or 3 neighbours of Xr. Hence, let A be the collection of all subsets
of Xr of size 1 or 2 or 3. Then we have the following neighbourhood map
Γr : Vr → A which takes each vertex to the set of neighbours in the graph
Xr+1.

Note that for every automorphism σ ∈ Aute(Xr+1), Γr(σ(v)) = σ(Γr(v)),
and further if it were in the kernel, then Γr(v) = σ(Γr(v)). Call two vertices
v1, v2 ∈ Vr as twins if Γr(v1) = Γr(v2).

Hence, any σ ∈ φ(Aute(Xr+1)) has to stabilize the set of fathers with
just 1 son.

A1 = {a ∈ A : a = Γr(v) for some unique v ∈ Vr}

σ must also stabilize the set of fathers of twins,

A2 = {a ∈ A : a = Γr(v1) = Γr(v2), vi 6= vj}

And apart from reaching out to vertices of Vr, the next layer also induces
edges between vertices ofXr, and any automorphism must certainly preserve
these as well.

A3 = {{w1, w2} ∈ A : (w1, w2) ∈ Xr+1}

Infact, these are all we need to ensure so that σ ∈ Aute(Xr) is infact in
φ(Aute(Xr+1)).

Claim 31. The image is precisely those automorphisms σ ∈ Aute(Xr) which
stabilize the sets A1, A2 and A3.

Proof. We need to show that if σ stabilizes the three sets, then we can
extend it to an automorphism of Xr+1. The extension is built as follows:

• For each single child v, Γr(v) ∈ A1, since σ(Γr(v)) ∈ A1, map v to the
only child of σ(Γr(v)).

30

• For each pair of twins v1, v2, Γr(v1) = Γr(v2) ∈ A2, since σ(Γr(v)) ∈
A2, map {v1, v2} to the sons of σ(Γr(v1)) in any order.

The constructions enforces that it respects edges between Xr and Vr.
And since it also stabilizes A3, σ also respects the edges between vertices
of Xr that were newly formed. Hence σ is indeed can be extended to an
automorphism of Xr+1.

Now we have reduced the isomorphism problem to a set-stabilizer prob-
lem for 2-groups. We shall discuss how to deal with it in the next class.

31

Algebra and Computation Course Instructor: V. Arvind

Lecture 8,9: General Bounded Degree graph-iso

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

23 Recap

In the last few classes, we saw that we could reduce trivalent graph iso-
morphism to set-stab for 2-groups. The algorithm is identical to a more
general problem, which could be used to solve graph-iso with degree of
each vertex bounded by a constant d.

The idea is more or less the same, we have two graphs with max degree
bounded by a constant d. We shall, in polynomial time, reduce this problem
to a restricted set-stab problem that could be solved in polynomial time.

24 Generalization to (≤ d)-degree graphs

Given two graphs X1 and X2 with the additional promise that the max
degree in both of them is bounded by a constant d.

Just as in the trivalent case, add a new bridge between two edges of
the graph. Then problem the reduces to finding the automorphism group
of the graph that fixes this distinguished edge e. Let Xi be the subgraph
consisting of edges that are reachable by paths of length atmost i through
e. As before, any e-automorphism must preserve these layers and hence we
have a natural map πi : Aute(Xi+1) −→ Aute(Xi). Using these maps, we
are going to find a generating set for Aute(Xn) = Aute(X).

The claim is that the groups in discussion are special, all their composi-
tion factors are ≤ d. We shall prove this by induction just as in the trivalent
case (where each of the factors were atmost 2, thus giving us a 2-group).

24.1 ker πi has small factors

The kernel is the set of e-automorphisms of Xi+1 that fix Xi. And since
the degree is bounded by d, every vertex in Xi can reach out to atmost d
vertices in Xi+1, and all automorphisms in the kernel can only permute the
vertices with common parents.

Let A be the set of subsets of V (Xi) of size atmost d. Then we have
the neighbourhood map Γ : V (Xi+1) \ V (Xi) −→ A such that Γ(u) = a if a

32

is the set of neighbours of u. Note that
{
Γ−1(a)

}
partitions the vertices in

Xi+1 \Xi and |Γ−1(a)| ≤ d.
Thus clearly, kerπi =

⊗
Sym

(
Γ−1(a)

)
and thus has composition factors

atmost d.

This hence proves the claim that each of the automorphism has small
factors. The above argument also yields a generating set for the kernel.
Once we have a generating set for the image as well, we can construct the
automorphism group of Xi+1 from Xi.

24.2 Image of πi reduces to restricted set-stab

Similar to the trivalent case, the image is just the set of all automorphisms
that stabilize the following sets.

Edges within Xi:

A′ = {2-subsets of A that are new edges inside Xi}

Parent with same number of siblings:

As =
{
a ∈ A : |Γ−1(a)| = s

}
1 ≤ s ≤ d

Claim 32. The image is precisely the subgroup of automorphisms of Aute(Xi)
that stabilize each of the As and A′.

The proof is identical to the trivalent case, we shall hence skip it.

25 The restricted set-stab

Given a group G = 〈A〉 ≤ Sym(Ω) and ∆ ⊆ Ω. We are interested in finding
G∆ = {g ∈ G : ∆g = ∆} .

We do not hope to solve the general problem in polynomial time. How-
ever, a restricted version where G is a group with small compositional factors
can be done efficiently. Divide-and-conquer is the method adopted in the
algorithm.

Definition 33. A finite group G ∈ Bd if every composition factor is iso-
morphic to a subgroup of Sd.

From the earlier sections, we saw that Aute(X) ∈ Bd if the degree of X
is bounded by d. Hence, we need to solve the set-stab problem for groups
in Bd.

33

Firstly, if Ω1,Ω2, · · · ,Ωm are the G orbits then it is equivalent compute
the stabilizer of Ωi∩∆ for all i. Thus, we can assume that G acts transitively
on Ω.

How do we further divide? Consider the block structure! Recall that
blocks (∆) are subsets of Ω such that they move as a whole (∆g ∩∆ 6= φ⇒
∆ = ∆g). A block system naturally induces a tree structure on Ω. We shall
call this the structure forest of G. And since we’ve already broken down Ω
into G-orbits, we infact have just a structure tree.

picture might be useful

Each node is labelled by a block, that is the union of its children. The
leaves are the trivial singleton blocks.

Now consider the top-most level, the root is labelled by Ω, which is the
union of its children say Γ1, · · · ,Γm. Now, considering each Γi as a point,
G’s action on them is primitive (there are no non-trivial blocks). The kernel
of this action is the group H = {g ∈ G : Γgi = Γi ∀i} .

Let G =
⋃r
i=1Hτi, then G∆ =

⋃
(Hτi)∆. But in order to talk about a

stabilizer in a coset, we need to generalize the stabilizer problem.

25.1 Generalized set-stab

One could think of ∆ as a 2-colouring of the set Ω. Thus a natural general-
ization would be the following.

Given a colouring C of Ω, we wish to find

GC = {g ∈ G : ag has the same colour as a ∀a ∈ Ω}

Let us extend this a little further to capture the coset structure as well.
Given a coloured Ω , G ≤ Sym(Ω) , σ ∈ Sym(Ω) and Ω′ ⊆ Ω that is

G-stable7, we wish to find

stab(Ω′, Gσ) =
{
g ∈ Gσ : ωg ∼ ω ∀ω ∈ Ω′}

Then we have the following easy claim, the proof is left to the reader
(simple though)

Claim 34. stab(Ω′, Gσ) is a right coset of stab(Ω′, G).

We can hence ask the following question: Given G = 〈A〉 ≤ Sym(Ω) that
is coloured and a Ω′ that is a G-stable set and a σ ∈ Sym(Ω). How do we
compute stab(Ω′, Gσ)?

With this generalization, we can do the divide and conquer.
7stable under action of G, union of orbits

34

26 The Divide and Conquer

Given a group G ∈ Bd, we want to solve the stabilizer problem. The first
step is to break Ω into orbits and work on each of them separately. Once
we do that, we look at the block structure of G and at the topmost level.

We have a single tree, with Ω at the root with Γ1,Γ2, · · · ,Γm as the prim-
itive blocks on whichG acts. The kernel of this action isH = {g ∈ G : Γgi = Γi ∀i}.
Let

Gσ =
r⋃
i=1

Hτiσ

Now all that we need to do is compute stab(δ∩Γi,Hτjσ) for all i and j and
we have a recursive algorithm.

The catch here is that we need to know how many recursive calls to make.
It would be completely useless if r (the index of H in G) was exponential;
we need a decent bound on r. Fortunately, we do have such a bound.

Theorem 35 (Babai, Cameron, Pálfy). If G ≤ Sn belongs to Bd and is
primitive, then |G| ≤ ncd where c is an absolute constant.

Thus, r ≤ mcd and the algorithm would then go through. It can be
shown that we then have an O(nd) algorithm for the restricted set-stab,
and hence a O(nd

2
) algorithm for bounded degree graph isomorphism.

35

Algebra and Computation Course Instructor: V. Arvind

Lecture 10: General graph-iso

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

27 Overview

In the last few classes, we solved some special cases of the graph isomorphism
problem. Now we shall use those ideas to give an algorithm for the general
graph-iso problem. This, of course, is not a polynomial time algorithm
but is interesting nevertheless.

Since any graph on n vertices has degree bounded by n, just a naive
simulation of the bounded degree graph-iso would only give us a nn

2
which

is worse than the brute-force approach (which is a O(n!) = (cn)n algorithm).
We shall see a O(nn

2/3
) algorithm for graph-iso

28 Colourings of Graphs

A colouring of a graph is just associating a colour to every vertex of the
graph. Formally, it is a map f : V −→ {1, 2, · · · , |V |}. And we can further
assume that the range of f is an initial segment of {1, 2, · · · , |V |}.

A colouring f1 is said to be a refinement of f , denoted by f ≤ f1, if
f1(x) ≤ f1(y) =⇒ f(x) ≤ f(y) for all vertices x, y. A refinement f ′ of f is
said to be proper if f ′ 6= f.

28.1 Colour-Degree Refinement

For this lecture, this is the refinement that we would be dealing with. Let
(X, f) be a coloured graph. The new refinement is defined as follows:

Define g(x) =
(
f(x), k1(x), k2(x), · · · , k|V |(x)

)
where ki(x) is the num-

ber of neighbours of x that are coloured i. Since we need to map these
tuples to {1, 2, · · · , |V |}, lexicographically sort the tuples and map them to
{1, 2, · · · , |V |} . Let us call this induced colouring as f ′.

The choice of the tuple, whose first coordinate is f(x), it is clear that f ′

is a refinement of f .

One can continuously keep refining a colouring, and it spreads out ver-
tices with more refinements. Hence, we can properly refine at most n times.

36

A colouring that cannot be properly refined by the colour-degree refinement
is said to be a stable colouring.

28.2 Propagating Refinements

The central idea is to keep propagate refinements as much as possible. The
problem is that the colour-degree refinements may not be able to spread the
vertices enough, it might get stuck in a stable colouring much earlier.

But how does refinements help? Where are we heading?

Proposition 36. Let (X1, f1) and (X2, f2) are two coloured graphs with f1

and f2 their corresponding refinements. Then

(X1, f1) ≡ (X2, f2)⇐⇒ (X1, f
′
1) ≡ (X2, f

′
2)

Proof. Of course!

The idea is to get to a stage where we can effeciently solve the problem.
But, as remarked earlier, what do we do when we get stuck up at a stable
colouring? We individualize a vertex.

• Keep refining until stable refinement

• Pick some vertex, and give it a colour that has not been assigned to
any vertex.

• Repeat

The trick is to find a good a good vertex to individualize in order to
propagate the refinements. We shall see that there is a small sequence of
vertices, which on the ’refine until stable, individualize, repeat’ gets us where
we want.

29 Colour Valence and graph-iso

Definition 37. A coloured graph (X, f) is said to have colour valence d if
for all vertices x and colours i, either x is adjacent to at most d neighbours
of colour i (valence of x is bounded by d) or it is not adjacent to atmost d
vertices of colour i (covalence of x is bounded by d).

The following theorem shows that there exists a small sequence of ver-
tices that can get us to a constant colour valence.

37

Theorem 38. If (X, f) has colour valence d, then there exists a sequence of
nodes {x1, x2, · · · , xk} with k ≤ 2n/d such that (X, f ′), (colouring obtained
by stabilizing and individualizing these vertices) has colour valence d/2.

Proof. The proof is a greedy algorithm to pick up the vertices. Let Si =
{x1, · · · , xi−1}. If (X,Si) has colour valence ≤ d/2, then we are already
done, hence stop.

Else, there exists an x ∈ V (X) and a colour m such that both valence
and covalence of x in f−1(m) is > d/2. Let N(x) be the neighborhood or
co-neighbourhood of x (whichever violates the valence bound). Hence we
have d/2 < |N(x)| ≤ d. Pick x as xi and continue.

Claim: The sets {N(xi)} are pairwise disjoint.

Once we prove the claim,

kd

2
≤

k∑
i=1

|N(xi)| ≤ n

which then forces k ≤ dn/2.
Proof of claim: Suppose N(xj) ∩N(xi) 6= φ for some j < i. If m is the

colour class that xi violates, then N(xj) ∩ f−1
Si

(m) 6= 0.
Now, i is a refinement further away from j, and hence would have further

spread the colours of the vertices. Therefore, N(xj) has to be a union of
colour classes in Si.

Therefore, if N(xj) ∩ f−1
Si

(m) 6= φ =⇒ f−1
Si

(m) ⊆ N(xj).
Now, since the entire colour class is contained inside N(xj), both the

valence and covalence is contained in N(xj). And since each of them is
atleast d/2, forces |N(xj)| > d contradicting the colour valence of X being
bounded by d.

Hence, {N(xj)} are pairwise disjoint, thus proving the claim and the
theorem.

We can now start with a trivial colouring (every vertex given the same
colour, and with k ≤ 8n/d get to (X, f ′) with colour valence bounded by d.

29.1 Enter Luks

Let T (n) be the worst case time bound for graph-iso and T (n, d) be the
worst case time bound for d-colourvalence-graph-iso.

The natural algorithm is the following:

1. Put trivial colouring on both graphs

38

2. Refine until stable.

3. Pick the set of vertices to individualize on one graph. Try all possibil-
ities on the other.

4. If at any try, if x was the vertex picked with valence greater than d/2,
but valence ≤ d/2 on the other graph, stop that try.

5. Once you get to bounded colour valence, do the corresponding algo-
rithm.

Hence, clearly T (n) ≤ n8n/dT (n, d).
The claim is that, Luks’ algorithm for bounded degree graphs work here!
Let (X, f) be the graph with a stable colouring and colour valence d. Let

C1, · · · , Cr be the colour classes. Define X(Ci) be the induced subgraph on
this colour class (only edges within that class) and X(Ci, Cj) as the induced
bipartite graph (only edges from one class to another).

The choice of the stable colouring then forces X(Ci) to be a regular
graph (since the colour-degree-refinement would give a proper refinement)
and also X(Ci, Cj) is a semi-regular8 graph.

Now in X(Ci), either the degree is bounded by d or codegree. We can
assume that it is the degree, by complementing otherwise (and checking if the
other graph also has the same property, they necessarily have to if they are
isomorphic). And similarly for X(Ci, Cj), complement if |E(X(Ci, Cj))| >
|Ci||Cj |/2.

(X, f) now has the property that for all vertices x and colours i, degree
of x in Ci is bounded above by d. Hence we now have two graphs (X, f) and
(Y, g) with the above property. As in the Luks algorithm, add a distinguished
edge, and additionally a vertex on the edge with a new colour. Now layer
the graphs based on edges obtained by paths from the new vertex.

Here, the kernel is again
⊗

Sym(·) since the colour classes can’t move!
And each element of the product is bounded since the degree is bounded!
Hence the automorphism group is infact in Bd and hence can be solved by
a O(nd

2
) algorithm.

Now T (n) ≤ n8n/d+d2 and an optimal choice for dwould give us aO(nn
2/3

)
algorithm for graph-iso.

8degree of all vertices on left are the same, the same on the right

39

Algebra and Computation Course Instructor: V. Arvind

Lecture 11: Factorisation over finite fields

Lecturer: V. Arvind Scribe: Kazim Bhojani and Shreevatsa R

30 Crash course in Field theory

Definition, size is prime power, the generating function counting, cyclic,

Xqn −X =
∏

deg f |n
f monic and irreducible in Fq [X]

f(X) (1)

the equality with the product of irreducible polynomials, uniqueness

31 Algorithms

We now have enough understanding of fields to look at various problems.
In general, we will be given as input a field Fq, where q = pm for some

prime number p. It is unreasonable to expect to be given Fq as a list of
elements and addition/multiplication tables. As Fq = Fp[X]/(h(X)) for
some irreducible polynomial h(X) of degree m, it can be specified by p and
the coefficients of h(X), and that is what we are given. (This contributes
m log p = log q to the input size, and a particular element of Fq can be
written down using log q bits).

31.1 Testing Irreducibility

Given a polynomial f(X) of degree n over Fq, we want to test whether it is
irreducible.

The input needs to specify the coefficients of f(X), each of which is an
element of Fq, so the input size is (deg f)(log q).

We observe that by Equation 1, if f(X) is irreducible, it must divide
Xqn − X, i.e., gcd(f(X), Xqn − X) = f(X). Conversely, if f(X) is not
irreducible, there exists some d less than n such that gcd(f(X), Xqd−X) 6= 1.

Thus we have reduced testing irreducibility to finding the gcd of two
polynomials, which is simply Euclid’s algorithm. Note here that although
the polynomialsXqd−X are of exponentially large degree, we only need them
modulo f(X), and we can easily compute Xr modulo f(X) for exponential r
in polynomial time by using the repeating squaring algorithm for powering.

40

31.2 Factorisation: Cantor–Zassenhaus algorithm

The next thing we would like to do is to actually factorise f(X) into its
irreducible factors. In this subsection, we describe an algorithm due to
Cantor and Zassenhaus which is randomised and is in Las Vegas polytime.

Firstly, note that any repeated factors of f are factors of gcd(f, f ′) as
well. In fact, if f = gl11 g

l2
2 . . . g

lr
r , then f

gcd(f,f ′) = g1g2 . . . gr, and once we
have the factorisation of the latter, we can easily find each li as the highest
power of gi that is present in f . So we can assume f is square-free.

Further, we can use the gcd idea (Equation 1) to separate out the irre-
ducible factors of degree d, for every d. That is, let

f1 = gcd(f,Xq −X) f ← f

f1

f2 = gcd(f, f,Xq2 −X) f ← f

f2

and so on, then f1(X) is the product of all the linear factors, f2(X) is the
product of all the quadratic factors, and in general, fd(X) is the product of
all the irreducible factors of f(X) of degree d. We can deal with each the fds
separately. So we can assume f = g1g2 . . . gr where all the gi are irreducible
and of (known) degree d.

By the Chinese Remainder Theorem,

Fq[X]
(f(X))

∼=
Fq[X]

(g1(X))
× · · · × Fq[X]

(gr(X))
∼= Fqd × · · · × Fqd

Proof of the CRT. Consider the map

φ : a(X) 7→ (a(X) mod g1, . . . , a(X) mod gr)

This is a homomorphism, is injective (the kernel is only the zero polynomial),
and is surjective (the left- and right-hand sides have the same size), hence
is an isomorphism. To invert it, let Gi =

∏
j 6=i gj . There exist (ui, vi) such

that uigi + viGi = 1, and viGiai ≡ ai (mod g)i, so a =
∑r

i=1 vigiai is the
inverse image of (a1, . . . , ar).

An element (a1, a2, . . . , ar) is a unit in Fq [X]
(f(X)) (has gcd 1 with f(X)) iff

each of the ais is nonzero. There are a large number — (qd−1)r — of units,
out of the qn = qdr total. What we would like to get, for factorisation, are
the (nonzero) zero divisors (those with nontrivial gcd with f(X)).

Depending on whether the characteristic of the field is odd or even, we
will use different tricks to get some.

41

31.2.1 If q is odd

For each x ∈ F∗
qd , xq

d−1 = 1, and x
qd−1

2 is +1 or −1 with probability

1
2 each. This means that the map a(X) 7→ a(X)

qd−1
2 − 1 takes a(X) to

(±1− 1,±1− 1, . . . ,±1− 1), which is zero only when every “co-ordinate”
is 0 and a unit only when each of them is −2, each of which happens with
probability 1

2r . Thus, with probability 1 − 2
2r , we get a zero divisor, whose

gcd with f(X) gives us a factor. (And as 1 − 2
2r > 1

2 , we can repeat this
until we get such a factor; this runs in Las Vegas polytime.) We can now
remove this factor, test for irreducibility, and recurse.

31.2.2 If q is even

When q is even (the characteristic is 2), the above does not work as 1 and
−1 are the same. q is a power of 2, say q = 2k.

The mth trace polynomial is defined as

Tm(X) = X +X2 +X22
+X23

+ · · ·+X2m−1

Consider

Tm(X)(Tm(X) + 1) = Tm(X)2 + Tm(X)

= Tm(X2) + Tm(X) characteristic 2

= X2m
+X everything else occurs twice

Thus in F2m , Tm(Tm+1) is 0 for every element, and hence splits as
∏
α∈F2m

(x− α).
For a random element α ∈ F2m ,

Pr[Tm(α) = 0] = Pr[Tm(α) = 1] =
1
2
.

We have
Fq[X]
(f(X))

∼= F2kd × · · · × F2kd

so for m = kd, Tm(a(X)) is a zero divisor with probability 1− 2
2r . As before,

we can get a factor, remove it, and recurse.

31.3 Factorisation: Berlekamp’s algorithm

The Cantor–Zassenhaus algorithm is randomised. Berlekamp’s algorithm is
a deterministic algorithm, which runs in polynomial time when the size q of
the field is small.

42

As before, we can remove repeated factors of f , so we can assume that
f = g1g2 . . . gr where all the gis are distinct irreducible factors.

Now consider the map

φ :
Fq[X]
(f(X))

→ Fq[X]
(f(X))

defined as a 7→ aq − a. This is a linear map (check).
Let B = ker(φ) =

{
a ∈ Fq [X]

(f(X)) : aq = a
}

.

Let ψ : Fq [X]
f → Fq [X]

g1
× · · · × Fq [X]

gr
be the isomorphism given by the

Chinese Remainder Theorem. ψ((B)) = Fq × · · · × Fq.
We want to find B – that is, find a basis for it. This is easy; we can

find out for each Xj its image Xqj −Xj mod f , and hence write down the
matrix for the linear map φ.

Note that the elements of B are precisely the zero divisors. So we can
sample from B, and use the zero divisors to get factors of f , remove them
and recurse, as before.

43

Algebra and Computation Course Instructor: V. Arvind

Lecture 12: The AKS Primality Test

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

32 Overview

We shall take a small detour before we go into factorising polynomials.
In this class we shall look at the AKS primality test, an unconditional,
deterministic polynomial time algorithm for primality testing.

33 Preliminaries

Given a number n ∈ N, we wish to test whether the number is prime or not.
And since n is given in binary (hence input size is O(log n)), the running
time is to be polynomial in log n.

The AKS algorithm uses the following proposition to distinguish between
primes and composites.

Proposition 39. If (a, n) = 1, then (X + a)n = Xn + a (mod n) if and
only if n is prime.

Proof. If n is a prime, then we have already seen in the earlier class that
(X + a)n = Xn + an = Xn + a (mod n).

Suppose n was composite and p was a prime divisor of n. Let the largest
power of p that divides n be pk. The coefficient of xp in (X+a)n is

(
n
p

)
an−p.

a anyway is coprime to n, and hence can be ignored. But it is easy to see
that pk does not evenly divide

(
n
p

)
(since a power of p is knocked off from

the n) and hence that term would survive modn.

There are however two problem with this, firstly being computing (X +
a)n efficiently, but that we saw last class (using repeated squaring and the
binary representation of n). A more serious problem is that n is exponential
in the input size, and the polynomial would be too large to compare and
check if it is Xn + a.

Getting around this difficulty was gave the AKS test.

44

34 The Primality Test

The idea to get around the difficulty of exponential degree is to check it
modulo polynomials of “small” degree, a “small” number of times.

We shall give the algorithm first and then show that it is infact correct
and that it runs in time polynomial in log n.

Algorithm 3 AKS Primality Test:
Input: n in binary
1: Check if n is of the form ab for b ≥ 2. If yes, output composite
2: Find the least r such that the order of n modulo r (denoted by Or(n))is

at least 4 log2 n
3: If (a, r) 6= 1 for 1 ≤ a ≤ r, output composite
4: If n < r, output prime

5: for a = 1 to
⌊
2
√
φ(r) log n

⌋
do

6: if (X + a)n 6= Xn + a (mod n,Xr − 1) then
7: output composite
8: end if
9: end for

10: output prime

Apart from step 2, it is clear that the algorithm will run in time polyomial
in the input length. As for step 2, the following lemma would tell us that
we can indeed find such an r quickly.

Lemma 40. If m is an odd number, then the lcm of 1, 2, · · · ,m is atleast
2m−1.

Proof. Let m = 2n+ 1. Consider the following integral:∫ 1

0
xn(1− x)ndx

Since x(1 − x) < 1/4, this integral is upper bounded by 22n. But if we
were to expand (1− x)n using the binomial theorem, we have

2−2n ≤
∫ 1

0
xn(1− x)ndx =

∫ 1

0

n∑
k=0

(−1)k
(
n

k

)
xn+k

=
n∑
k=0

(−1)k
(
n

k

)
1

n+ k + 1
=
M

N

45

Clearly, the denomiantor is atmost the lcm (L) of the numbers 1, 2, · · · 2n+
1 and M is atleast 1. Hence L2−2n > N2−2n ≥ 1 and hence L ≥ 22n.

Lemma 41. There exists an r ≤ 16 log5 n such that Or(n) ≥ 4 log2 n.

Proof. Suppose all r’s till T were bad, that is, for all 1 ≤ r ≤ T the order of n
modulo r was less than 4 log2 n. Then, for every r there exists a j < 4 log2 n
such that r divided nj − 1. Therefore, each 1 ≤ r ≤ T divides the product∏4 log2 n
j=1 (nj − 1) < n16 log4 n = 216 log5 n. And therefore, the lcm of the first

T numbers divide the product. The bound from the earlier lemma will now
force T < 16 log5 n.

It is now clear that the algorithm runs in time polynomail in log n, each
step is clearly a polylog operation. With some work, one can see that this
is roughly a O(log11 n) algorithm.

35 Proof Correctness

One way is clear, if the number was a prime then the algorithm would
certainly output prime. We need to show that if the algorithm outputs
prime, then it is indeed prime.

Suppose not, let p be a prime divisor of n. And from our initial tests, we
know that p > r. And further for a = 1, 2, · · · l where l =

⌊
2
√
φ(r) log n

⌋
,

(X + a)n = Xn + a (mod n,Xr − 1) = Xn + a (mod p,Xr − 1)

Note that from Fermat’s little theorem, we have

(X + a)p = Xp + a (mod p,Xr − 1)

We shall use a small notation here.

Definition 42. For any function f , a number m is called introspective for
f if f(X)m = f(Xm) (mod p,Xr − 1).

We then have the two simple lemmas.

Lemma 43. If m and m′ are introspective for f , so is mm′.

46

Proof.

f(X)m = f(Xm) (mod p,Xr − 1)
=⇒ f(Xm′

)m = f(Xmm′
) (mod p,Xm′r−1) (substitute Xm′

for X)
= f(X)mm

′
(mod p,Xr − 1) (Xr − 1 divides Xrm′ − 1)

=⇒ f(X)mm
′

= f(Xmm′
) (mod p,Xr − 1)

Lemma 44. If m is introspective for f and g, then m is introspective for
fg.

Proof. Obvious!

Let I =
{
nipj : i ≥ 0, j ≥ 0

}
and P =

{∏l
a=1(X + a)ea : ea ≥ 0

}
.

Then, from the two lemmas, every element of I is introspective for every
element in P .

Let G be the subgroup of Z?r , of size t, generated by n and p. Since
Or(n) ≥ 4 log2 n, |G| = t ≥ 4 log2 n. To do a similar thing for the polyno-
mials, we first need to move from the ring (Fp/(Xr − 1)) to a field. Let
Xr−1 = h1(X)h2(X) · · ·hk(X) be the factorization into irreducible factors.
Since the primitive r-th root of unity generates all the roots of unity (since
we are going mod Xr − 1), the primitive root of unity is a root of some ir-
reducible polynomial. Hence we shall look at Fr/(h(x)), which is essentially
Fr[η] where η is a primitive r-th root of unity.

Now in the field Fr/(h(x)), look at the multiplicative group. Let G be
the subgroup generated by {(X + a)}1≤a≤l, the set of polynomials in P that
are non-zero in Fp/(h(x)).

Lemma 45. |G| ≥
(
t+l−2
t−1

)
Proof. Since l =

⌊
2
√
φ(r) log n

⌋
< 2
√
r log n < r < p, each of {(X + a)}1≤a≤l

are distinct in Fp/(h(x)). At worst h(x) can be equal to one of them, hence
at least l − 1 of them are non-zero and distinct.

Let f and g be two polynomials from P of degree less than t. Suppose
f(x) = g(x) in Fp/(h(x)), then we also have fm(x) = gm(x) in the field.
If we choose m ∈ G, then since m is introspective for f and g, we have
f(Xm) = g(Xm) in the field.

Since we can identify X with a primitive r-th root of unity, each of
the Xm are distinct. And infact, each of them is a root of the polynomial
H(Y) = f(Y)− g(Y). The size of the group G is t but the degree of f and

47

g is less than t, which gives an absurd situation of the polynomial f − g
having more roots than its degree in the field.

Hence, if two polynomials of degree less than t are chosen from P , they
are mapped to different elements in Fp/(h(x)).

|G| ≥

∣∣∣∣∣∣
 ∏

1≤a≤l
(X + a)ea :

∑
ea ≤ t

∣∣∣∣∣∣

As we remarked earlier, there can be at most one X + a0 that becomes zero
in the field. So essentially, we just need to find the different integer solutions
to
∑
ea ≤ t, summing over all a 6= a0, and this is equal to

(
t+l−2
t−1

)
. Hence

|G| ≥
(
t+l−2
t−1

)
.

Lemma 46. If n is not a power of a prime, |G| < n2
√
t

Proof. Consider the subset I ′ =
{
nipj : 0 ≤ i, j ≤

√
t
}
. Hence each ele-

ment in I ′ is bounded by n
√
tp
√
t < n2

√
t. And further, if n is not a power of

a prime, |I ′| = (1+
√
t)2 > t. Since |G| = t, there exists two distinct m,m′ of

I ′ such that m = m′ (mod r), and hence Xm = Xm′
(mod r,Xr− 1). Also,

for any f ∈ G, f(X)m = f(X)m
′
. Therefore, if you consider the polynomial

Y m − Y m′
, every element of G is a root. And since the degree is bounded

by n2
√
t, this forces |G| < n2

√
t.

With the choice of l, it is easy to see that the above two lemmas give
conflicting bounds (lower bound greater than upper bound), which gives us
the desired contradiction to the assumption that n is composite.

Hence, summarizing it in a theorem:

Theorem 47. The algorithm returns prime if and only if the input is a
prime.

36 A short note on identity testing

I haven’t taken notes here... would be nice if someone could fill this part.

48

Algebra and Computation Course Instructor: V. Arvind

Lecture 13: More on Univariate Factorization over Fq
Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

37 Overview

(the initial part of this lecture has been appended to lecture 11 for continuity.)
In the earlier lectures we saw univariate polynomial factoring when the

characteristic of the field is small. Before we get into bivariate polynomial
factoring (which has all the essentials needed for general multivariate fac-
toring), we shall look at some problems closely related to the things we have
seen.

38 Factoring ≤P Root-Finding

In the earlier lectures, we saw factorization of univariate polynomials over
a finite field of small characteristic. What about the case when p is large,
polynomially many bits long? In this section, we shall show that the problem
can be reduced that of finding a root of a polynomial over the prime field
Fp.

The polynomial has an additional promise that it splits over Fp (all its
roots are contained in Fp). We will show that finding a non-trivial factor of
a polynomial reduces to finding a root of such a polynomial over the prime
field. The rest of the section will be a proof of this theorem.

Theorem 48. Given f ∈ Fq[x], q = pm, we can, in polynomial time, reduce
it to the problem of finding a root of a polynomial g ∈ Fp[x] with the promise
that all its roots are in Fp.

The following simple proposition is the core of the reduction.

Proposition 49. For any f, g ∈ F [x], polynomials over some field, gcd(f, g) 6=
1 if and only if there exists s, t ∈ F [x] such that deg s < deg f,deg t < deg g
and fs+ gt = 0.

Proof. Obvious! (take s = f/ gcd(f, g) and t = −g/ gcd(f, g))

49

Pm = {s ∈ F [x] : deg s < m} and Pn = {t ∈ F [x] : deg t < n}, the set
of all possible s and t for the Let the deg f = n and deg g = m. Look at the
following sets proposition; they form a vector space over F . Once we fix f
and g, we have the following linear map:

θ : Pm × Pn −→ Pn+m

(s, t) 7→ sf + gt

The proposition tells us that the above linear map is invertible if and
only if gcd(f, g) = 1. Let us fix a basis for the two spaces so that we can
find the matrix for the linear map.

The natural basis for Pm × Pn is{
(Xm−1, 0), (Xm−2, 0), · · · , (1, 0)

}
∪
{
(0, Xn−1), (0, Xn−2), · · · , (0, 1)

}
and that for Pm+n as just{

Xm+n−1, Xm+n−2, · · · , 1
}

Suppose f = f0 + f1x+ f2x
2 + · · · fnxn and g = g0 + g1x+ · · · gmxm, it

is easy to see that the matrix for θ is the following:

S =

fn 0 · · · 0 gm · · · 0

fn−1 fn · · · gm−1
. . .

...

fn−2 fn−1
. . .

...
...

... gm
...

... · · · fn
...

. . .
...

...
... · · ·

... g0
...

...

f0 f1 · · ·
... 0

...
...

0 f0 · · ·
...

...
...

...
...

...
. . .

...
...

. . .
...

0 0 · · · f0 0 · · · g0

(m+n)×(m+n)

The matrix is called the Sylvester Matrix, named after the mathemati-
cian. The determinant of the matrix is called the resultant of f, g (denoted
by Res(f, g)). The proposition tells us that Res(f, g) = 0 if and only if
gcd(f, g) 6= 1.

From Berlekamp’s algorithm, if a ∈ kerφ (the Berlekamp kernel), then
f =

∏
α∈Fp

gcd(f, a−α). We want to convert this to a polynomial with roots

50

whenever gcd(f, a − α) 6= 1. The idea is to look at α as an indeterminate.
Now Resx(f, a− Y) will now be a polynomial in Y with a root α whenever
gcd(f, a− α) 6= 1.

The roots we are looking for are certainly in Fp, but we need the extra
property that it infact splits in Fp. But that can be done easily, all that we
need to do is take P (Y) = gcd(Y p−Y,Resx(f, a−Y)) since the polynomial
Y p − Y as

∏
α∈Fp

(Y − α).
Clearly, whatever we have done is a polynomial time computation (deter-

minant by just gaussian elimination, gcd trick as done in the earlier lectures,
finding an element in berlekamp kernel by gaussian elimination, etc) and re-
duces finding a non-trivial factor to finding a root of a special polynomial.

39 How to Share a Secret

This problem arises in the context of secure multiparty computations. In-
formally, the problem is the following: You have a secret x chosen randomly
from a set S of secrets and it is to be split up into n parts and given to n peo-
ple (one piece each). You want the pieces to satisfy the following property
that the secret can be found if and only if all of them get together.

Formally, S ⊆ Fq. An element χ chosen from S uniformly at random.
There are n people (n < q), and the problem is to assign each of them pieces
such that

• For any proper subset of shares, no information about χ is lost.

• If all of them are together, χ can be found.

The following scheme, Shamir’s Secret Sharing Scheme, is a beautiful
application of the chinese remaindering theorem.

Choose a polynomial a(x) = a0 + a1x + · · · an−1x
n−1 such that a0 = χ

and every other ai is chosen at random from Fq. Pick a polynomial f(x) =
(x−α1)(x−α2) · · · (x−αn) where the αis are distinct non-zero elements of
Fq. By the chinese remaindering theorem, we the isomorphism

ψ :
Fq[x]
(f(x))

−→ Fq[x]
(x− α1)

× · · · Fq[x]
(x− αn)

Thus ψ would send a(x) to the tuple 〈a(α1), · · · , a(αn)〉. Give the ith

person a(αi).

51

It is clear that when everyone gets together, they can invert the map
ψ and recover a and hence a(0) = χ. We need to argue that no proper
subset can be able to recover any information about χ. Without loss of
generality, we can assume that the first n − 1 get together, and say they
recover 〈a1, · · · , an−1, ?〉 .

The set of possible polynomials is

A =
{
a(x) ∈ Fq[x]

(f)
: a(x) 7→ 〈a1, a2, · · · , an−1, ?〉

}
If a(x) was the actual polynomial, it is clear that A = a(x) + S where

S =
{
c(x) ∈ Fq[x]

(f)
: c(x) 7→ 〈0, · · · , 0, ?〉

}
The set S is precisely the set of polynomials c = α

∏n−1
i=1 (x− αi) where

α can be any scalar. And it is easy to see that c(0) = α
∏n−1
i=1 (−αi) which

can again take any possible value in Fq and hence a(0) + c(0) also takes all
possible values in Fq, thus reveals nothing about χ.

40 Towards Bivariate Factoring

We shall next look at bivariate factoring. This does not mean we would look
at trivariate factoring next; bivariate factoring contains all the essentials of
multivariate factoring.

Before we go into it, we need a crash course in ring theory, definitions
and useful theorems at least.

40.1 A Crash Course in Ring Theory

1. Ring: A set R with two operations ?,+ such that (R,+) is an abelian
group, and ? distributes over +. We’ll denote a ? b by just ab.

2. Zero divisors: Elements x ∈ R such that there exists a y such that
xy = 0.

3. Integral Domains: Commutative rings with a multiplicative identity
element called 1 that does not have any non-trivial zero divisors.

4. Irreducible elements in an integral domain: An element x is said to be
irreducible if x = yz implies either y or z is a unit.

52

5. Prime elements in an integral domain: p | ab =⇒ p | a or p | b.

6. The field of fractions of an integral domain: The field of formal frac-
tions, ordered pairs (x, y) interpretted as x/y with addition and mul-
tiplication defined naturally.

7. Unique Factorization Domain: An integral domain where factorization
into irreducible factors is unique (up to units and rearrangements)

8. Ideal: A subset I ∈ R such that it is a subgroup under +, and satisfies
the property that for all x ∈ I and r ∈ R, rx ∈ R. They are useful
for defining homomorphism (kernel of any ring homomorphism is an
idea) and quotient rings.

9. Ideal generated by a a1, · · · , an: The smallest ideal containing a1, · · · , an.
This is just the set of all elements of the form

∑
ri∈R ria.

10. Prime Ideal: An ideal satisfying the property that xy ∈ I =⇒ x ∈ I
or y ∈ I.

Some properties:

Fact 1. prime =⇒ irreducible

The converse, however, is not true in general. For example, consider
Q[X2, X3]. There X2 is irreducible, but not prime since X2 | X3 · X3.
Nevertheless, they are the same over an UFD.

Fact 2. If R is a UFD, prime ⇔ irreducible.

Fact 3. In an integral domain, if I is a maximal ideal, the quotient R/I is
a field.

Fact 4. If I is a prime ideal of R, then R/I is an integral domain.

Fact 5. If R is a UFD, then so is R[x].

The last fact is an important theorem. In particular, since any field is a
UFD, F [X1, · · · , Xn] is a UFD.

53

40.2 Towards Bivariate Factorization

The idea is to look at F [x, y] as F [x][y], thinking of F [x, y] as a univariate
polynomial extension over F [x] through the variable y. The question is
that, can we somehow use the univariate factorization in this context? If
we can factorize efficiently in F [x], can we do that in F [x][y] through some
bootstrapping?

One possibility is trying to substitute values and factorize, but that
would case factors that were initially irreducible to split after substitution.
Is there a way by which we can get around this difficulty? We shall explore
these problems in the following lecture.

54

Algebra and Computation Course Instructor: V. Arvind

Lecture 14: Bivariate Factorization

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

41 Overview

In the next two lectures, we shall discuss bivariate factorization. We shall
look at the major parts of the algorithm, and fill up the missing ends next
class.

42 The Idea

We saw last time that for any field F , F [x, y] is a unique factorization do-
main. And since we know how to factorize univariate polynomials, thinking
of F [x, y] as F (y)[x] might be useful.

Assume that f is square-free and that f(x, 0) is square-free as well. Since
f(x, 0) is a polynomial in x alone, we know to factorize it. Suppose, f(x, 0) =
g0(x, 0)h0(x, 0), this can be thought of as a factorization (mod y), i.e

f(x, y) = g0(x, 0)h0(x, 0) (mod y)

The questions now are, can we lift this to a factorization modulo higher
powers of y? After we lift it sufficiently, would be able to clean up to get
the actual factor of f?

43 Hensel Lifting

The following lemmas form the core of the algorithm. The following notation
would make things simpler.

Definition 50. For two elements f, g ∈ R, and I an ideal of R, we say the
pseudo-gcd of f, g is 1 (mod I) if there exists a, b ∈ R such that

af + bg = 1 (mod I)

Lemma 51 (Hensel’s Lifting Lemma). Let R be an arbitrary commutative
ring with identity with an ideal I. If f ∈ R can be written as f = gh (mod I)

55

such the pseudo-gcd of g and h is 1 modulo I, we can lift this factorization
in the following sense: There exists g′ and h′ and a′, b′ such that

f = g′h′ (mod I2)
a′g′ + b′h′ = 1 (mod I2)

g′ = g (mod I)
h′ = h (mod I)

And further, the following also holds

• Given a, b, g, h, we can easily compute a′, b′, g′, h′.

• The solution g′, h′ is unique in the sense that if g′′ and h′′ also satisfy
the equations, then

g′′ = g′(1 + u) (mod I2)
h′′ = h′(1− u) (mod I2)

for some u ∈ I.

Proof. Define g′ = g + bm and h′ = h + am, where f − gh = m (mod I2).
Now,

f − g′h′ = f − (g + bm)(h+ am)
= f − gh+m(ag + bh) (mod I2)
= m(1− (ag + bh)) (mod I2)
= 0 (mod I2)

As for the pseudo-gcd, let a′ = a + am′ and b = b + bm′ where m′ =
1− (ag′ + bh′) ∈ I.

a′g′ + b′h′ = (a+ am′)g′ + (b+ bm′)h′ (mod I2)
= (ag′ + bh′) +m′(ag′ + bh′) (mod I2)
= 1−m′ +m′(1−m′) (mod I2)
= 1−m′ +m′ −m′2 (mod I2)
= 1 (mod I2)

Now for the uniqueness, suppose g′′ and h′′ also satisfy the equations,
and hence let g′′−g′ = m1 ∈ I and h′′−h′ = m2 ∈ I. Let u = m1a

′−m2b
′ ∈ I

since both m1 and m2 are in I.

56

f = g′′h′′ = g′h′ (mod I2)
(g′ +m1)(h′ +m2) = g′h′ (mod I2)
=⇒ m1h

′ +m2g
′ = 0 (mod I2)

=⇒ m2g
′ = −m1h

′ (mod I2)
a′m2g

′ = −a′m1h
′ (mod I2)

m2(1− b′h′) = −m1a
′h′ (mod I2)

m2 = h′(m2b
′ −m1a

′) (mod I2)
m2 = h′(−u)

=⇒ h′′ = h′(1− u)

and similarly for g′′.

In our context, when R = F [x, y] and I =
〈
yk
〉
, if we force g to be monic

in x, then we can force the u in the above lemma to be zero.

Lemma 52. When R = F [x, y] and I =
〈
yk
〉
, if f = gh (mod yk) such

that g is monic in x. Then we can hensel lift this to g′, h′ such that the
conditions hold and that g′ is monic. Infact, g′ is unique modulo y2k.

Proof. By the earlier lemma, there exists a lifting f = g′h′ (mod y2k). And
since g′− g is a multiple of yk, let a = (g′− g)/yk. Since g is monic in x, we
can apply the division algorithm to divide a by g to obtain

a = gq + r

with degx r < degx g. Now let g0 = g + ryk, another monic polynomial.
It is easy to see that g0 = g′(1 + u) where u = −ykqg′ ∈ I and hence
g0, h0 = h′(1− u) is a solution wiht a monic g0.

As for uniqueness, any solution looks like g′′ = g′(1 + vyk) for some v,
and hence the only way g′′ can be monic is when v is zero, and hence g′ is
unique.

44 The Factoring Algorithm

1. Preprocess such that f and f(x, 0) are square free. Let the total degree
of f be d.

57

2. Using the univariate factoring algorithm, factorize

f(x, y) = g0(x, y)h0(x, y) (mod y)

where g0 is monic in x and irreducible.

3. Do a hensel lift k times where k is chosen such that 2k > 2d2. Let
f(x, y) = gk(x, y)hk(x, y) (mod y2k

)

4. Solve, as a system of linear equations, for

g′ = gk(x, y)lk(x, y) (mod y2k
)

where degx g′ < degx f and degy lk,degy g′ ≤ degy f.

5. Compute gcdx(f, g′), as polynomials in F (y)[x], and find a non-trivial
factor using Gauss’s Lemma if the gcd is non-trivial.

We need to argue that step 4 will have a non-trival solution, and also
that hence 5 will happen.

44.1 Step 4 will have a non-trivial solution

Note that when we start with f = g0h0 (mod y), g0 need not correspond to
a factor of f but will certainly divide a factor modulo y. Let this irreducible
factor was called g, and f = gh in F [x, y]. Then g = g0l0 (mod y), where
g0 is monic in x. Hensel lift this k times to obtain g = g′kl

′
k (mod y2k

) with
g0 = g′k (mod y2k

) and g′k monic. We will show that g′k = gk, the polynomial
got by hensel lifting f = g0h0 for k times.

f = gh = g′kl
′
kh = g′kh

′ (mod y2k
)

where h′ = l′kh (mod y2k
). But since g′k is also monic, the hensel lifting

is unique and hence g′k = gk. Thus, g′ = g and lk = l′k form a non-trivial
solution to step 4.

44.2 Step 5 will happen

Suppose gcdx(f, g′) = 1, then there exists polynomials u, v in F (x) such
that

uf + vg′ = 1

Note that the u, v are from F (x), elements from the fraction field. We
shall now see how to clear the denominators. Recall that the Sylvester

58

matrix is the transformation that takes (s, t) to sf+tg′. Hence The sylvester
matrix would take (u, v) to uf + vg′ = 1. Now, we can use Cramer’s rule to
hence solve for S(u, v)T = (0, 0, · · · , 0, 1)T . And notice that the denominator
for each coordinate in (u, v) would be Resx(f, g′) and hence multiplying each
coordinate by that value would completely clear the denominators.

Hence, we can get
u′f + v′g = Resx(f, g′)

where u′, v′ ∈ F [x, y]. Going mod y2k
, we have

Resx(f, g′) = u′gklk + v′gkhk = gk(u′lk + v′hk)

Note that the left hand side is of degree atmost 2d2 by the choice of k
and would remain unchanged when we go modulo y2k

. But the right hand
side on the other hand, gk is monic. The resultant is a polynomial in y alone,
and hence the only way the top x in gk can be killed is when u′lk + v′hk = 0
but that would force Resx(f, g′) = 0, which contradicts the assumption that
gcd(f, g′) = 1.

Hence step 5 would give us a non-trivial factor of f.

45 Missing Pieces

The algorithm relies on the assumption that f = gh where g and h are
coprime, similarly f = g0h0 (mod y). Hence, we need the assumption that
f and f(x, 0) are square free.

We shall fill in these missing ends in the next lecture, and also some
interpretations of Hensel Lifting to Newton’s method for finding roots.

59

Algebra and Computation Course Instructor: V. Arvind

Lecture 15: Bivariate Factorization: Missing Pieces

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

46 Overview

Last class we did bivariate factorization, but we made some assumptions in
the beginning. The hope was that with some preprocessing, the assumptions
can be guarenteed. This class we shall see what those preprocessing steps
are.

After that, we shall discuass a Hensel Lifting take on Newton’s root
finding algorithm.

47 The Missing Pieces

The algorithm relies on the assumption that the factorization of f and f(x, 0)
is square free since we want the pseodo-gcd of factors to be 1. We need to
make sure that we can pull out repeated factors in the beginning.

47.1 f is square free

In the univariate case, this was trivial since we just had to take the derivative
and do it. Multivariate cases are a little tricky. The first step is to remove
the content of each variable from the polynomial.

Think of the polynomial f as one over F [y][x], a univariate polynomial
with coefficients coming from F [y]. The y-content of f is defined as the gcd
of the coefficients of the polynomial when considered as one in F [y][x].

The x-content and y-content are clearly factors of f and hence we can
factorize them using univariate factorization. Hence we can assume that

f = fe11 fe22 · · · f
ek
k

where each fi is an irreducible factor with x-content and y-content being 1.
Let us look at this as f = fe1h. Then,

∂f

∂x
= efe−1

1 h
∂f1

∂x
+ fe1

∂h

∂x

60

Suppose both ∂f
∂x and ∂f

∂y are zero, then the only way this can happen if
each power of x and y is a multiple of p. Hence f(x, y) = g(xp, yp) and this
can be checked easily and it now just amounts to factorizing g.

We can now assume without loss of generality that ∂f
∂x is non-zero. Now

suppose that ∂f1
∂x was non-zero, then clearly from the above equation the

largest power of f1 that divides ∂f
∂x is fe−1.

Let u = ∂f
∂x , v = ∂f

∂y , u
′ = f/ gcd(f, u) and v′ = f/ gcd(f, v), whenever

they are non-zero. The bad news is that, since some of the ∂fi

∂x could be
zero, it misses out the factors that are xp polynomials. The good news is
that, these are the only things that u′ and v′ would miss.

Hence, factorize u′ and v′, then divide f by the collection of factors. We
are then assured that the remaining factors have to be polynomials of xp

and yp. We can them make the transformation and recurse.
Thus, we can ensure that f does not have any repeated factors.

47.2 f(x, 0) is square free

Though we have f(x, y) to be square free, substituting 0 for y would case
certain factors to collapse; f(x, 0) could have repeated roots. The trick is
to make a small change of variables to ensure that it is square free.

Replace f(x, y) by fβ(x, y) = f(x, y + β). We need to show that there
exists a β such that f(x, β) = fβ(x, 0) is square free.

If f ′ = 0, then reverse the roles of x and y (if both are zero, then it
is a polynomial of xp and yp). Note that gcd(f, f ′) 6= 1 if and only if
Resx(f, f ′) = 0. And since the resultant is a polynomial of degree 2d2, this
can have atmost 2d2 roots of F. Hence if |F | > 2d, we can just substitute
2d2 + 1 values for y and we would get a polynomial where the residue is
non-zero, and thus fβ(x, 0) would be square free.

Hence, all that’s left to do is the case when |F | ≤ 2d2. The trick is to
go to a larger field and work there. Suppose F = Fq, choose a prime t such
that qt > 2d2 and t > deg f. Replace F by Fqt (just find an irreducible
polynomial of degree t and work in Fq modulo that polynomial). In this
larger field, the irreducible factors could split even further.

f = f ′1f
′
2 · · · f ′k′

where bunches of these factors correspond to the original factors. To study
these bunches, we need an important map known as the Frobenius map.

61

σ : Fqt −→ Fqt

a 7→ aq

Note that the map fixes every element of Fq pointwise, and is an auto-
morphism. This can be naturally extended to the ring Fq[x, y].

And since f1 ∈ Fq[x, y], the frobenius map will fix it. We are interested
in finding the bunch of f ′i that correspond to f1. Suppose f ′1 | f1, then by
the automorphism, σ(f ′1) | f1, σ2(f ′1) | f1 and so on.

Since σt(f ′1) = f ′1, for any r such that σr(f ′1) = f ′1 will force r to divide
t. Since t is chosen to be a prime, either r = t or r = 1. If r = t, then
each of the t elements of the form σi(f ′1) would be a factor of f1. But since
t > deg f , all of them cannot fit inside f .

Hence r = 1, and thus the factorization does not fit further in Fqt . We
can now hunt for a β here to make it square free.

48 Hensel Lifting and Newton Rhapson

Suppose we are given a polynomial f(x) ∈ Z[x], we want to find a root of
f efficiently by successive approximations. We shall do this using Hensel
lifting.

Pick a small prime p such that f(x) is square free.

f(x) = f0 + f1x+ f2x
2 + · · · fnxn

f(x+ h) =
n∑
i=1

fi(x+ h)i

=
n∑
i=1

fi(xi + ihxi − 1 + · · ·)

= f(x) + hf ′(x) + h2P (x, h)

Now using Berlekamp’s algorithm, find an x such that f(x) = 0 (mod p).
Suppose there exists an x̂ such that x̂ = x (mod p) and f(x̂) = 0 then
x̂ = x+ ap. And hence

f(x̂) = f(x) + apf ′(x) + a2p2P (x, ap)
=⇒ 0 = f(x̂) = f(x) + apf ′(x) (mod p2)

62

Since f(x) = 0 (mod p), it makes sense to talk about (f(x)/p) . Thus,
if we were to choose a = (−f(x)/p) [f ′(x)]−1, the above equation would be
satisfied.

a =
(
−f(x)
p

)[
f ′(x)

]−1 (mod p)

=⇒ x̂ = x− f(x)
[
f ′(x)

]−1 (mod p)

Thus, from a factorization modulo p, we have gone up to p2 with x̂ as
our next approximation.

Newton-Rhapson also has the similar expression. You are given a func-
tion f , you choose a random point x. The next approximation is given by
drawing the tangent to the curve f at (x, f(x)) and taking the point where
this tangent meets the x-axis as its next approximation.

The following picture would make it clear.

If the coordinate of C was x̂, our next approximation,

f ′(x) =
f(x)
x− x̂

=⇒ x̂ = x− f(x)
f ′(x)

which is exactly what we got in the Hensel Lifting method.
Newton’s method however require floating point arithmetic (since divi-

sion by f ′(x) is actual division, unlike inverse modulo p in the hensel lifting
case), while it enjoys the ease of not having to find the inverse modulo a
number.

63

Algebra and Computation Course Instructor: V. Arvind

Lecture 16 and 17: Linear Diophantine Equations

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

49 Overview

Our route now is towards factorization of polynomials over Q. This require
a lot of machinery to be built and we shall do it over the next few lectures.

In this class, we shall look at solving a system linear diophantine equa-
tions and its connection to lattices.

50 Linear Diophantine Equations

A linear diophantine equation is of the form a1x1 + a2x2 + · · · anxn = b and
we are interested in integer solutions {xi} . A system of linear diophantine
equations is a bunch of such equations. This can be written in a matrix
notation as follows:

Given a rational m × n matrix (matrix with rational entries) A, and a
rational m-vector b, we are looking for integral vectors x that satisfy Ax = b.

We are looking for a polynomial time algorithm to give us all possible
solutions to this equation. Getting all solutions is simple once we have a
single solution x̂. All we need to do get the solution space S to Ax = 0 and
and the solutions to the diophantine system is just x̂+ S.

Firstly, we can assume that A is of full rank (row rank is equal tom) since
even otherwise we can drop the other rows since they are linear combinations
of the independent rows. Another thing we can assume is that the entries are
integral (we can just scale the matrix up by the LCM of the denominators
and rescale it in the end).

The hermite normal form is the key to finding solutions to the diophan-
tine equations.

51 Hermite Normal Form

A full rank matrix A is said to be in hermite normal form if

64

• The matrix A is of the form [B 0] where B is a m×m matrix that is
invertible.

• B is lower triangular.

• The diagonal entries of B are strictly greater than zero.

• Other entries are non-negative.

• For every row, the unique maximum of that row is attained at the
diagonal entry.

An example is the following: 2 0 0 0 0
1 3 0 0 0
2 1 3 0 0

We will now see that every matrix can be converted into one in HNF

with simple operations.

51.1 Converting to HNF

We want to start with a full rank matrixA and convert it to one in HNF using
simple operations called modular column operations. These are operations
of the form

• exchange two columns

• multiply a column by −1

• Replace a column Ci by Ci + kCj where j 6= i and k ∈ Z.

Note that each of the above operation just amounts to post multiplying
by a matrix of determinant ±1. And any sequence of of modular column
operations would just be multiplying A by a single unitary matrix U.

Theorem 53. Every full rank rational matrix can be converted into a matrix
in HNF using modular column operations

Proof. The proces will be row-wise. Assume we have got it to the form[
B 0
C D

]
where [B 0] is already in HNF.

65

First, multiply the columns of D by −1 to make the top row of D with
just non-negative entries. Then, rearrange the columns to make sure that
the entries are non-decreasing down the row, that is, δ1 ≥ δ2 ≥ · · · ≥ 0.
Note that all of them can’t be zero since we have assumed that A is of full
rank (thus forces D to also be full rank).

Suppose the gcd of the δi was d, then implementing euclid’s algorithm
using modular column operations, one of the δi can be made equal to d.
Once this is done, since every other element is a multiple of d, they can be
killed. Thus we can make sure that δ1 = d and δi = 0 for all i > 1.

Now to ensure the unique maximum property, let the first row of C be
c1, c2, · · · , ck. Use the division algorithm to write ci = md + r where r < d
and replace Ci by Ci − mD1 to change every ci to its positive reminder
modulo d. Thus δ1 would be the unique maximum in that row and every
entry to its left is non-negative.

Proceeding this way, we can convert the matrix to one in HNF.

The following characterizition is extremely powerful since it takes us
from an existential quantifier to a universal quantifier.

Theorem 54. Let A be a full rank rational matrix and b be a rational vector.
The following are equivalent:

1. ∃ an integral x such that Ax = b.

2. ∀ rational y, yA is integral implies yb is rational.

Proof. One direction is clear, if Ax = b has an integral solution, then yAx =
yb. Since x is integral, yaA integral would clearly force yb to be integral.

The converse is slightly tricky. We know that there exists a unimodular
matrix that converts A to the HNF. And more over, the conversion preserves
the equivalence in the theorem and hence we’ll work with that.

[B 0]x = b

Clearly, x =
(
B−1b

0

)
is a solution to the above equation; the only trouble we

could have is that this matrix need not be integral since B−1 could have
fractional entries.

Now consider the matrix B−1 [B 0] row-wise. B−1
i [B 0] is integral

would imply B−1
i b is integral. But B−1 [B 0] = [I 0] and hence forces

B−1b to be integral. Hence the solution x =
(
B−1b

0

)
is indeed an integral

solution.

66

52 HNF and Lattices

Let a1, a2, · · · , am be a spanning set for Rn. The lattice created by them is
the set of all integral combinations of these vectors.

L (a1, a2, · · · , am) =
{∑

λiai : λi ∈ Z
}

When each ai has only rational entries, this will form a discrete subset
in Rn. The HNF of a matrix A completely determines the lattice generated
by the columns of A. An immediate corollary is that the HNF is unique.

Theorem 55. For any two matrices A and A′, their columns generate the
same lattice if and only if the non-zero part of their HNFs are identical.

Proof. Of course, if the HNFs are identical we can just invert the unitary
tranformation and hence the lattices are equal. Suppose A and A′ give the
same lattice, let the invertible of the HNF be B and B′ respectively. Let i
be the first row where B and B′ differ and let the column index be j.

Without loss of generality, assume that 0 ≥ bij < b′ij ≤ b′ii. Now look
at the vector b′j − bj , this is cleary in the lattice formed by B′ since we are
assuming tht both lattices are the same. And more over, the first i − 1
coordinates of this vector is zero since we have chosen i to be the first row
where it differs. Hence if b′j − bj =

∑
λkb

′
k, then λ1, λ2, · · · , λi−1 = 0. But

since b′ij−bij < b′ii, an integer sum of {bk}k≥i can never create the coordinate
b′ij − bij , giving us the contradiction.

Hence the invertible parts of the HNFs are identical.

53 Bounding Sizes

In order to talk about efficient algorithms for the linear diophantine equa-
tions, we first need to see if HNFs help at all. What if the entries of the
HNF are huge? What if the unitary matrix has massive numbers in it? Do
we have good bounds for them?

The answer is yes!

53.1 Bounds on HNF size

The following fact makes the bound possible.

Fact 6. detB is equal to the gcd of all m×m subdeterminants of A.

67

Proof. Pretty simple, just need to show that the gcd is unaltered in the
conversion process. We leave it to the reader to complete the proof.

A geometric way to look at this is through the lattice. The determinant
gives the volume of the principle parallelopiped in the lattice and that is the
gcd of m-parallelopipeds by the columns.

With this, we then have detA ≤ n!(max |Aij |)n but this is still polyno-
mially many bits. And since our final matrix is upper triangular with integer
entries, each of the diagonal entries is bounded by this and hence the entire
matrix.

Thus, the size of B is polynomially bounded.

53.2 Bounds on U

Without loss of generality, we can assume that the first m columns of A
are linearly independent. Hence let A = [A′ A′′] where A′ is an invertible
m×m matrix.

Just replace A by the invertible matrix

Â =
(
A′ A′′

0 I

)
Suppose this had its HNF as

B =
(

B 0
B1 B2

)
then clearly U = ÂB and is polynomially bounded.

Hence, the size of U is not too large.

54 Keeping Numbers Small

Though we know that the numbers at the end would be small, we need to
make sure that they do not blow up in any intermediate step. The following
really clever trick was given by Bachem-Kannan.

Assume that A = [A′ A′′] where A′ is a non-singular square matrix.
Let |detA′| = M. Replace A by the matrix

Ā =

 A

M
M

. . .
M

68

Claim 56. The matrices A and Ā generate the same lattice.

Proof. We know that A′ · adjA′ = detA′ · I and since adjA′ is an integer
matrix, M · I is generated by the columns of A′. And hence, both matrices
generate the same lattice.

Since the lattices are the same, computing the HNF of this matrix would
be the same as computing the HNF of A. The good thing in Ā is that you
can use its columns to make sure that numbers don’t blow up; whenever
they do, just use the appropriate column to drive it smaller than M.

But notice that these columns help only till the triangulation of the
matrix. How do we drive the diagonal to the unique maximum? What if
numbers blow up there?

The good news is that it won’t. We have made sure that every entry
of the matrix is atmost M. The operation of converting every non-diagonal
entry to it’s remainder modulo M can atmost blow indices by a factor of
(M + 1). Hence, at the end of it, we would have atmost M(M + 1)m and
this is still not large in terms of bit complexity!

Therefore we are in good shape. Since we now know to get the HNF,
this solve the linear diophantine equation.

55 Arithmetic circuits with bounds on final an-
swer

Suppose we have an arithmetic circuit, a circuit with multiplication and
addition gates, with inputs provided and the circuit evaluating some poly-
nomial.

Suppose we are given the promise that the final answer is upper bounded
by some M , we could try the following thing:

• replace every multiplication gate by a multiplication (mod M) gate

• replace every addition gate by an addition (mod M) gate

This modification will not change the output of the circuit at all! The
modification ensures that the numbers never get too large in the middle.

This howeever cannot be directly used in the HNF setting since it is not
just a circuit we are looking at. There are branches based on comparisons
and (mod M) gates need not preserve them.

Nevertheless, this is a great trick.

69

Algebra and Computation Course Instructor: V. Arvind

Lecture 18 and 19: LLL and Factorization over Q
Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

56 Overview

Another problem very essential for factoring univariate polynomials over Q
is the shortest vector problem. Of course, finding the optimum solution is
NP -hard and we only want an approximation algorithm to this.

We shall discuss the LLL algorithm for the shortest vector and then give
the algorithm for factorizing univariate polynomials over Q.

57 The Shortest Vector Problem

We are given a basis {bi}0≤i≤n in Rn and we want to find a vector v =
∑
aibi,

where ai ∈ Z, whose norm (the usual euclidian norm) is minimum.
Solving this problem in full generality is NP-hard and we do not expect

to find the optimal solution. LLL however allows us to find an approximate
solution, the approximation factor depending only on the dimension.

The basic idea is in mimicking the Gram-Schmidt orthogonalization
method on a lattice.

57.1 The Gram-Schmidt Orthogonalization

We are given a basis {b1, b2, · · · , bn} and we want to convert it into a new
orthogonal basis {b?1, b?2, · · · , b?n} .

The GS algorithm is as follows:

b?1 = b1

∀1 < i ≤ n b?i = bi −
∑
j<i

µijb
?
j where µij =

〈
bi, b

?
j

〉
∥∥∥b?j∥∥∥2

The GS basis satisfies the following properties, which are easy to check:

• Different ordering of the basis vectors could give different GS orthog-
onal bases.

70

• The basis vectors are mutually orthogonal.

• For each i, ‖b?i ‖ ≤ ‖bi‖ .

• Fore each i, the span of {b1, · · · , bi} is the same as the span {b?1, · · · , b?i }.

• If B is the matrix whose columns are the vectors {bi} and if B? is
the matrix with columns {b?i }, then the tranformation is given by the
following unimodular triangular matrix:

1
µ21 1
...

. . .
µn1 µn2 · · · 1

B? = B

and therefore detB = detB?, the volume of the fundamental paral-
lelopiped of the lattice is preserved.

• If L(B) is the lattice generated by B,

|detL(B)| := |detB| = ‖b?1‖ ‖b?2‖ · · · ‖b?n‖ ≤ ‖b1‖ ‖b2‖ · · · ‖bn‖

And if B is the largest value in the matrix B, then we have the famous
hadamard inequality

|detB| ≤ nn/2Bn

57.2 Reduced Basis

The following observation is the key to LLL.

Observation 57. Let b = λibi be the shortest vector in the lattice. Then

‖b‖ ≥ min ‖b?i ‖

Proof. Let k be the largest index such that λk 6= 0. Since the GS tran-
formation matrix has 1s on the diagonal, even after we write b =

∑
λ′ib

?
i ,

λk = λ′k.
Hence,

‖b‖ =
∑
|λ′i|2 ‖b?i ‖ ≥ |λk| ‖b?k‖ ≥ ‖b?k‖ ≥ min ‖b?i ‖

71

With this as the motivation, we have the following concept of a reduced
basis.

Definition 58. A basis {bi} is said to be a reduced basis if it satisfies the
condition that for all i, ‖bi‖2 ≤ 2 ‖bi+1‖2 .

From the earlier observation, it is clear that once we have a reduced
basis,

‖b1‖ ≤ 2
n−1

2 ‖opt‖

And hence, if we can find a reduced basis for the lattice, then we have
achieved our goal of finding a constant factor (only a function of degree)
approximation of the shortest vector problem.

58 LLL Algorithm

The LLL algorithm finds a reduced basis for the lattice. The idea is to
mimic GS but tranform vectors to those within the lattice. At the same
time, we need to keep in mind that vectors don’t become too short (to form
a reduced basis). The algorithm is very mysterious, we shall first present
he algorithm then argue that it halts quickly and also that it works correctly.

Input: A basis {bi} .
1: Find the GS basis {b?i } .

(Reduction Step)
2: for i = 2 to n do
3: for j = i− 1 to 1 do

4: bi = bi − αijbj where αij =
⌊
〈bi,b?j〉
‖b?j‖

2

⌉
5: end for
6: end for
7: (Swap Step) If there exists an i such that

3
4
‖b?i ‖

2 >
∥∥b?i+1 + µi+1,ib

?
i

∥∥2

then swap bi and bi+1 and go to step 1.
8: output b1, b2, · · · , bn.

72

58.1 The Reduction Step

The reduction step is basically an approximation to the GS orthogonaliza-
tion, but staying on the lattice. We shall show that we actually get pretty
close to the orthogonal basis.

For the basis {bi}, let the GS basis is {b?i } . If we were to consider the
matrix with columns as {bi} as vectors over the GS basis as the standard
basis, then B would look like an upper triangular matrix with 1s on the
diagonal.

The reduction step makes the other non-diagonal entries small (bounded
by 1/2). We shall see how this is achieved.

The two for loops are designed cleverly so that you never undo something
that you have already done. The key point to note is that in the reduction
step, the GS basis is maintained. Look at an intermediate step, say at i, j.
By induction, assume that all columns whose index is less than i has already
been taken care of.

And since we have gone up to j, the i-th column is fixed from bottom to
top. Since the GS basis is fixed, if we had removed the roundoff in αij when
we did bi = bi − αijbj we would have actually got a vector orthogonal to b?j
and hence bij would have become 0. But since we are just rounding off, we
will atleast reduce that value to 1/2. Note that this works only because the
GS basis stays the same throughout.

Now we have fixed the index bij and we can go on to bi,j−1. Thus by
induction, we have proved that at the end of the reduction step, we have an
uppertriangular matrix with 1s on the diagonal and every non-zero entry is
bounded by 1/2.

58.2 The Swap Step

The swap step is like a ’check if reduced basis, else rectify’ step. The crucial
point is that this step will happen for atmost polynomially many steps.
To show this, we will develop a certain value (exponential sized) and show
that decreases by a constant factor (3/4) and hence can happen atmost
polynomially many times.

73

For a basis B, define

DB,i =
i∏

j=1

‖b?i ‖
2

DB =
n∏
i=1

DB,i

It is easy to see that DB is a value that is at most exponential. We will
show that it goes down by 3/4 each time we swap.

Recall that

MB? =

1
µ21 1
...

. . .
µn1 µn2 · · · 1

B? = B

We could do the same by restricting the above equation to just the first i
rows and columns. As a notation, we will write this as

Bi = MiB
?
i

Since Mi is a unimodular matrix,

det(BiBT
i) = det(B?

i (B
?
i)
T) = DBi

Consider the case when you are to do the swap operation between i and
i+ 1. Then the basis B = {b1, · · · , bi−1, bi, bi+1, · · · , bn} will now change to
B̂ = {b1, · · · , bi−1, bi+1, bi, bi+2, · · · , bn} . The only place where the GS basis
will differ will be at the i-th index.

In the original basis B, we would have just b?i . But in the other basis B̂,
it is easy to check that b̂?i = b?i+1 + µi+1,ib

?
i . The other vectors would be the

same in both cases.
Thus, clearly,

DB̂

DB
=
DB̂,i

DB,i
=

∥∥b?i+1 + µi+1,ib
?
i

∥∥2

‖b?i ‖
2 ≤ 3

4

And hence the swap step is executed only polynomially many times.

74

58.3 Correctness

The next thing we need to show is that at the end of the algorithm, we do
have a reduced basis. This is an easy observation. Since for all indices

3
4
‖b?i ‖

2 ≤
∥∥b?i+1 + µi+1,ib

?
i

∥∥2

=
∥∥b?i+1

∥∥2 + µ2
i+1,i ‖b?i ‖

2

≤
∥∥b?i+1

∥∥2 +
1
4
‖b?i ‖

2

=⇒ ‖b?i ‖ ≤ 2
∥∥b?i+1

∥∥
And therefore, we indeed have a reduced basis, and hence solves the

approximation of the shortest vector problem.

58.4 Sizes of Numbers

Using the matrices that appeared in the reduction step section, we can show
using cramer’s rule that the numbers do not become very large.

We leave this as an exercise.

59 Factoring over Q

We will see a sketch of the factoring algorithm, and gaps are left as an
assignment. The working is very similar to the bivariate hensel lifting.

The algorithm is as follows:

1. Assume f(x) ∈ Z[x] is square free.

2. Pick a small (O(log n) bits long) prime such that f(x) is square free
modulo p.

3. Factor f = gh (mod p). where g is irreducible and monic.

4. Hensel lift the factorization k times to obtain f = gkhk (mod pk).

5. Solve the linear equation g̃ = gklk (mod pk) for polynomials g̃ and lk
such that their degree is less than deg f.

6. Output gcd(f, g̃), if trivial output irreducible.

First catch is the following, does a polynomial necessarily have only small
factors? Can there be factors with huge numbers in them? The following
bound tells us that we are safe in this area.

75

Lemma 59 (Mignotte’s Bound). If f(x) = a0 + a1x+ · · ·+ anx
n, then any

root α of f is such that |α| < nmax |ai|.

Since all coefficients are symmetric polynomials over the roots, we are
in good shape.

For the proof of correctness, we need a suitable bound on k to push the
proof of the bivariate case through the same this. But the issue is that, we
do not have any bounds on the coefficients of lk, g̃ to make it work. How do
we make sure that the solution to the system of equations is small? Enter
LLL.

Look at g̃ = gklk + pkrk for any polynomial r. We can easily induce a
lattice structure on this by choosing a natural basis. Over this lattice, we
can now ask for a short vector. Note that LLL will not give us the shortest
vector but a 2

n−1
2 is good enough!

Using that, a bound on k can be fixed and the same proof of bivariate
factorization will go through. The gaps are left to the readers to fill in.

76

Algebra and Computation Course Instructor: V. Arvind

Lecture 22: Simon’s Problem and towards Shor

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

60 Overview

Last lecture we saw a toy problem that showed that the quantum model
could be more efficient than the turing machine model, query complexity in
the last example.

In this lecture, we shall inspect one more problem, which in a way is a
true separation from the classical and quantum model since it beats even
randomized algorithms on classical turing machines. The techniques used
here will be essential in Shor’s algorithms for integer factoring and discrete
logarithm, whci hwe shall see in the following lectures.

61 Simon’s Problem

We are given a function f : {0, 1}n → X with the promise that f is a 2-
to-1 function (exactly two strings in {0, 1}n mapping to an element of X).
Further, f satisfies the additional property that there exists a λ 6= 0n such
that f(x⊕ λ) = f(x) for all x. The goal is to find the period λ with as few
probes as possible.

We could make X canonical by enforcing an order on X. We can think of
strings in {0, 1}n as ordered pairs {(x, x⊕ λ)} where x is lexicographically
smaller than x⊕λ. These pairs can now be identified with {0, 1}n−1 by just
sorting the pairs, and hence fixes the set on the right. Thus, the number of
such functions is exactly equal to the number of possible λs which is 2n− 1.

61.1 Lower Bounds on Classical Deterministic Computation

An adversial argument showsn an exponential lower bound for the query
complexity in the determistic model. As an adversary, the point is to keep
giving different answers for queries as long as it is possible. If k strings have
been queried, the number of λs that we eliminate by giving different answers
to each is

(
k
2

)
. Thus the adversary can go on giving different answers till 2n/2

queries have made.
Thus, the deterministic query complexity is atleast 2n/2.

77

61.2 Lower Bounds on Classical Randomized Computation

Suppose there was a procedure such that with just q(n) queries the proce-
dure will find λ with error probability atmost 1/3. We can amplify this by
repeating this experiment suitably many times and ge the error probability
down to less than 2−n.

Now we can use the same idea as we did in showing BPP ∈ P/poly. There
are only 2n − 1 possible λs and the error probability is less than 2−n. The
randomized algorithms makes some random choices in the case of each λ.
Suppose there was atleast 1 error in every possible λ, then the overall error
probability would be more than 2−n. Hence there has to be a sequence of
choices such that it works for all possible values of λ.

But we have just shown earlier that the determistic computation has
an exponential lowerbound, which gives a contradiction. Hence there is no
probabilistic algorithm in the classical model that can find λ error bounded
by a constant.

61.3 A Quantum Algorithm

Again, the hadamard code plays the major role here. Start with the uniform
superposition

Hn |x〉 =
1

2n/2
∑

u∈{0,1}n

(−1)u·x |u〉

=⇒ Hn |0m〉 =
1

2n/2
∑

u∈{0,1}n

|u〉

By giving it input x and 0m, it would return x and 0m⊕ f(x) = f(x) on
the other side.

Hence, if we make x the uniform superposition, on applying f we get:

|ψ〉 =
1

2n/2
∑

x∈{0,1}n

|x〉 ⊗ |0m〉 −→ 1
2n/2

∑
x∈{0,1}n

|x〉 ⊗ |f(x)〉

Now on just measuring the qubit |f(x)〉, it would collapse to a uniformly
random element in the image say f(x0). And on a measurement, since every
other coordinate dies, the state would now collapse to:

|ψ〉 =
1√
2

(|x0〉+ |x0 + λ〉)

78

On applying Hn to this, we get

|ψ〉 → c

 ∑
u∈{0,1}n

(−1)x0·u |u〉+
∑

u∈{0,1}n

(−1)(x0⊕λ)·u |u〉

= c

∑
u∈{0,1}n

(
(−1)x0·u + (−1)x0·u⊕λ·u

)
|u〉

=
∑
u·λ=0

αu |u〉 , αu =
1

2(n−1)/2

But this is just a uniform superposition on the orthogonal space of the
span of α, and thus measuring u would now give a random sampling in the
orthogonal space. We will now show that once we have a random sampling
of the space, we can get a basis.

Lemma 60. Let G be a finite group. The probability that a uniform sample
of size 4 log |G| generates G is at least 1

3 .

Proof. Let g1, g2, · · · , gm be the sample. Define Gi to be the group generated
by {gj}j≤i . Let X be the indicator random variable that something bad
happens:

Xi =

{
0 if Gi−1 = G or gi /∈ Gi−1

1 otherwise

and let X =
∑m

i=1Xi then

Pr[Xi = 0] = Pr[Gi−1 = G] + Pr[Gi 6= G] Pr[gi /∈ Gi−1|Gi−1 6= G]

= pi + (1− pi)
1
2

=
1
2

+
pi
2
≥ 1

2

=⇒ E[Xi] = Pr[Xi = 1] ≤ 1
2

=⇒ E[X] =
m∑
i=1

E[Xi] ≤
m

2

By Markov’s inequality,

Pr[X ≥ a] ≤ E[x]
a
≤ m

2a

Choosing a = 3m
4 would get give Pr[X ≥ 3m

4] ≤ 2
3 .

79

But notice that if we haven’t got a generating set already, Xi = 0 can
happen atmost log |G| many times. Thus if we were to choose m = 4 log |G|,
at most log |G| of the Xi can be zero and hence will force Gm = G with
probability atleast 1

3 .

Now that we have a generating set for the orthogonal set, all we need to
do right now is solve a system of linear equations to get the orthogonal space
of this, which is the space of λ. Thus we would find λ with just polynomially
many queries since log |G| ≤ n.

The same idea can be used to solve a general problem as well. We are
given a function f such that there is a subspace such that f(x⊕H) = f(x).
The goal is to find a subspace. The same ideas can be used to do this as
well. (exercise to the reader)

62 Towards Shor’s Algorithms

The techniques used in the quantum solution to Simon’s problem is essen-
tial for Shor’s algorithms for integer factoring and the discrete logarithm
problem. Shor’s algorithm is a quantum algorithm for order finding (given a
numbers a and n, find ordn(a)). But the following lemma would show that
this is good enough.

Lemma 61. Order finding is as hard as integer factoring.

Proof. We will show a probabilistic reduction from factoring to order finding.
Without loss of generality, we can assume that n is odd. Pick an x at
random from Zn \ {0} . We would be extremely lucky if gcd(x, n) 6= 1, we
then immediately have a non-trivial factor of n. Hence, we can assume that
x is randomly picked from Z?n.

Suppose ordn(x) is even, and it further satisfies the property that xordn(x)/2 6=
−1 (mod n), then we have non-trivial square root of unity and hence gcd(n, xordn(x)/2−
1) or gcd(n, xordn(x)/2 + 1) will be non-trivial. This is the reduction. Once
we show that we find a good x with high probability, we are done.

Assume that n = pα1
1 pα2

2 · · · p
αk
k . By the chinese remaindering theorem,

Z?n = Z?
p

α1
1
× Z?

p
α2
2
× · · ·Z?

p
αk
k

This map would take x 7→ (x1, x2, · · · , xk) . Let r = s2t = ordn(x) and
ri = si2ti = ordpαi

i
(xi). Clearly, s = lcm si and t = max ti. Thus if r is odd,

then t = 0 which means t1 = t2 = · · · = tk = 0.

80

Suppose r was even, we shall analyze the probability that xr/2 = −1
(mod n). By the chinese remaindering theorem, xr/2 = −1 7→ (−1,−1, · · · ,−1) .
But suppose some ti 6= t, then ti ≤ t − 1 and hence ri | r/2 and therefore
the i-th coordinate in the tuple will have to be a 1 instead of a −1.

Therefore, the probability that r is odd and xr/2 = −1 (mod n) is
bounded above by Pr[t1 = t2 = · · · = tk] ≤ 2k−1 since each ti is inde-
pendent.

Therefore Pr[r is even and xr/2 6= −1 (mod n)] ≥ 1− 2k−1.

Over the next few lectures, we will see how we can find the order of
an element using a quantum algorithm, and this would solve the integer
factoring problem.

81

Algebra and Computation Course Instructor: V. Arvind

Lecture 20: Introduction to quantum computation

Lecturer: V. Arvind Scribe: Vipul Naik

63 Physical systems and computational models

63.1 Computers as physical systems

A computer program takes certain input data, manipulates it using certain
rules, and produces some output. If we assume that this manipulation is
subject to “physical laws” we can consider the loose analogy:

• The computer is a physical system, or lab apparatus

• Running the program is like conducting an experiment

• The output is like the observations made from the experiment

For any computational model to be of practical interest to us, it should be
implementable as a physical system. The interesting question is the reverse
one: given any physical system, can we turn it into a useful computational
model?

63.2 Feynman’s question

Feynman wanted to know if quantum mechanics could be used to provide a
useful computational model. There are the following questions:

• How can we describe an abstract computational model whose corre-
sponding physical system is subject to the laws of quantum mechanics?

• How does the computational power of such a model compare with that
of physical systems subject to the laws of classical mechanics?

63.3 The situation before quantum mechanics

Turing and Church had considered various computational models, such as
Turing machines, random-access machines, and so on. All these computa-
tional models could be implemented through physical systems subject to
the laws of classical mechanics. While studying many such computational
models, computer scientists came up with the following Holy Grails:

82

1. Church-Turing thesis: This states that any computational model
is as powerful as the Turing machine. In other words, given any com-
putational model, we can simulate computations on that model using
the Turing machine. The simulation may of course involve a blow-up
in time taken as well as in space used.

2. Strong Church-Turing thesis: This states that for any computa-
tional model, a polynomial-time algorithm for a decision problem in
that computational model can be simulated by a polynomial-time al-
gorithm in the Turing machine model. In looser language, if we think
of polynomial time as the notion of tractability, then tractability in
any computational model is equivalent to tractability in the Turing
machine model.

3. Strong Church-Turing thesis (randomized version): This states
that for any computational model, a bounded-error probabilistic poly-
nomial time algorithm for a decision problem in that computational
model can be simulated by a bounded-error probabilistic polynomial
time algorithm for the problem in the Turing machine model. In looser
language, if we think of BPP as the notion of tractability, then BPP
is any computational model is equivalent to tractability in the Turing
machine model.

While (1) remains unchallenged, quantum computation challenges (2)
and (3) – if we can think of the quantum computation model as sufficiently
reasonable.

64 The two-slit experiment

64.1 The two-slit experiment with particles

Suppose a gun is placed behind a wall with two slits – with the gun firing
bullets uniformly in all directions. There is a screen behind the wall that
“picks up” those bullets which pass through the slits.

Now, we have the following intuitively clear fact: Suppose p denotes the
total number of particles hitting per unit time at a point on the screen when
both slits are open, p1 denotes the number when one slit is open, and p2

denotes the number when the other slit is open. Then p = p1 + p2.
In other words, every particular passes either through one slit or the

other.

83

64.2 The two-slit experiment with waves

In the waves version of the two-slit experiment, the “source” is a light source
rather than a gun, and light is radiated uniformly in all directions. Now, if
A denotes the amplitude of light received at a point on the screen behind
when both slits are open, and A1 denotes the amplitude when only the first
slit is open, and A2 denotes the amplitude when only the second slit is open,
then:

A2 = A2
1 +A2

2

In other words, it is not true thatA = A1+A2 – there is a cancellation due
to interference. What gets added is the total energy and not the amplitudes.

64.3 The dual nature of matter and waves

The surprising thing about quantum theory is that the same thing could
behave both as particle and as wave – it behaves as a particle when the
amplitudes simply add, and it behaves like a wave when the squares of the
amplitudes add.

65 The setup of quantum theory

65.1 Basic axioms

In quantum theory, we have the following regarding the state of a physical
system:

1. The possible outcomes form a basis of a C-vector space, called the
state space.

2. The current state of the system is an element in the state space, viz
a C-linear combination of the outcomes. If ψi denotes the component
of this state along outcome i, then we have

∑
i |αi|

2 = 1

The current state of the system is termed a quantum superposition of
the states i for which αi 6= 0.

3. Given the current state of the system, if we try to “measure” the
outcome, we will get outcome i with probability |αi|2.

We can express the state vector as a column vector with the ith entry
being αi.

84

65.2 Hermitian inner product

Let V be a C-vector space. An inner product is a map 〈|〉 : V × V → C
satisfying the following conditions:

1. It is conjugate-linear in the first variable, viz:

〈a+ b|c〉 = 〈a|c〉+ 〈b|c〉
〈αa|b〉 = α 〈a|b〉

2. It is linear in the second variable, viz:

〈a|b+ c〉 = 〈a|b〉+ 〈a|c〉
〈a|αb〉 = α 〈a|b〉

3. It is Hermitian-symmetric, viz:

〈a|b〉 = 〈b|a〉

4. It is positive definite, viz:

〈a|a〉 > 0

whenever a 6= 0

We will follow Dirac’s notation. The basis vector corresponding to out-
come i will be denoted as |i〉. This is also called the ket vector.

Given any state A we denote by 〈A|ψ〉 the Hermitian inner product of
A and ψ, and we also call this the probability amplitude of ψ in A.

65.3 The way quantum states evolve

A unitary operator is an invertible linear operator from the state space to
itself under which the Hermitian inner product evolves. When we apply a
unitary operator, we essentially switch from the original orthonormal basis
to a new orthonormal basis. This means that when we now make a mea-
surement in the new basis, we will get one of the new basis vectors, with
probability equalling the square of the modulus of its amplitude.

85

The power of quantum theory lies in the following fact: in discrete time,
the evolution of the quantum state of a system is given by a unitary operator.
That is, there is a unitary operator U on the state space that maps the initial
state to the final state.

In matrix terms, we can view U as a unitary matrix which takes a state
written as a column vector in the original basis, and outputs the column
vector for it in the new basis.

65.4 Different quantum states giving the same probability

Note that if (α1, α2, . . . , αn) and (β1, β2, . . . , βn) are two different states such
that βi/αi has norm 1 for every i, then they give rise to the same probability
distribution.

In the particular case where βi/αi is the same for all i, we say that the
two quantum states differ by a phase of φ (where the common ratio is eiφ).

Here are two points:

• The quantum states that we are interested in are those on the unit
sphere (that is, those of norm 1) upto phase. That is, we identify two
quantum states if they differ by a multiplicative factor of a phase.

In mathematical lingo, this is the projective complex space of n − 1
dimensions.

Note that if two quantum states differ only by phase, then applying
the unitary operator to both of them again gives quantum states that
differ by the same phase.

• It may be possible for two inequivalent quantum states to give the
same probability distribution – this happens when the ratios for each
coordinate are complex numbers.

However, it is not true that if two quantum states give the same proba-
bility distribution, then applying any unitary operator to both of them
also yields quantum states giving the same probability distribution. In
other words, the quantum state carries more information than simply
the associated probability distribution.

86

66 Quantum superposition versus random sam-
pling

66.1 Probability distribution versus quantum superposition

A probability distribution over a set {1, 2, · · · , n} is an association of a
nonnegative real number pi to each i such that

∑
i pi = 1. Suppose we

sample randomly from this probability distribution, and associate a reward
ai to picking i. Then the expected reward is:∑

i

aipi

A quantum superposition over a set {1, 2, · · · , n} of states, on the other
hand, is an association of a complex number ψi to each i such that the
corresponding probability distribution associates, to each i, the value |ψi|2.
In other words, given a quantum superposition, the probability of measuring
the value i from that superposition is |ψi|2.

This immediately raises some questions:

• If two quantum superpositions give rise to the same probability distri-
bution, how are they physically distinguishable?

• What are the ways in which we can transform one quantum superpo-
sition into another?

66.2 Transforming probability distributions

Suppose we are given a probability distribution. Then, to transform the
probability distribution, we could do the following: consider a transition,
which, if starting at state j, goes to state i with probability qij . Then if the
current probability distribution vector is p = (p1, p2, . . . , pn)t, and Q is the
matrix of qijs, the new probability distribution vector is Qp.

The matrix Q here has the property that every column sum is exactly
one; such a matrix is termed a stochastic matrix.

Note that since we are multiplying with a stochastic matrix, and all the
entries of a stochastic matrix are nonnegative, it is not possible to make
probabilities cancel, or kill, each other.

66.3 Transforming quantum states

The fundamental difference between the classical probabilistic model and the
quantum model is that in the quantum model, we perform the operator, not

87

on the probability distribution, but on the underlying quantum state. That
is, we pick on a unitary operator, and transform the quantum superposition
according to the unitary operator. Here are some important points to note:

• The entries of a unitary operator can be both positive and negative (in
fact, they can even be complex). Hence, it is possible to use a unitary
operator to make terms cancel each other

• Note that we are making the unitary operator act on the underlying
quantum state. Hence, two quantum superpositions that start off by
giving the same probability distribution could end up giving separate
probability distributions once we apply the unitary operator.

67 Quantum theory and Boolean circuits

67.1 Boolean circuits

Instead of looking at the Turing machine model (a model of variable-length
computation) let us look at the Boolean circuit model (a model of fixed-
length computation). The reason for choosing the Boolean circuit model to
compare with quantum theory is that in quantum theory, we need to work
in a state space of fixed dimension.

There are two aspects to the Boolean circuit:

• The values taken by a finite set of variables at any given time. These
correspond to the classical “state” of the system.

• The gates themselves, which perform Boolean functions on some values
and output the results.

At any stage in the evaluation of a Boolean function using a Boolean
circuit, we have some Boolean variables and some values associated with
those Boolean variables. To convert this to the quantum setting, we need
to consider a state space where each possible assignment of values to the
Boolean variables constitutes an outcome. In other words, if there are n
Boolean variables, there are 2n possible outcomes, and the state space is the
space C2n

. The set of feasible states is the unit sphere in this space, and if
we go upto phase, then the set of feasible states is the projective space.

Having converted the current state of the system to a quantum outcome,
the next step is to view the gates in terms of unitary operators which can
thus be simulated in a quantum system. There are the following immediate
problems:

88

• The Boolean gates we have seen have more inputs than outputs, so
they don’t even preserve the number of states

• The Boolean functions for AND and OR are far from invertible, whereas
any unitary operator must be invertible.

We shall see how to overcome both these problems at once, by associating
to any Boolean function f a unitary operator Uf with approximately the
same number of variables, such that computing f is classically the same as
computing Uf .

67.2 Unitary operator for a Boolean function

Suppose f : {0, 1}n → {0, 1}m is a Boolean function. Then consider first
the following Boolean function: it takes as input (m+ n) Boolean variables
(x1, x2, . . . , xn, z1, z2, . . . , zm) and outputs (m+n) Boolean variables, namely
(x1, x2, . . . , xn, u1, u2, . . . , um) where u = z ⊕ f(x).

First of all note that this Boolean function is involutive – it equals its
own inverse. Thus, in particular, it is also invertible.

Now, this Boolean function is a permutation (in fact, an involutive per-
mutation) on the set of all possible elements in {0, 1}m+n. Thus, it can be
viewed as a permutation matrix sitting inside C{0,1}m+n

. Since permuta-
tion matrices are unitary matrices, we obtain a unitary operator Uf that
computes this function.

67.3 Boolean circuit in the quantum language

In the classical picture of building a Boolean circuit, we start off with a
Boolean function {0, 1}n → {0, 1}m and try to express it as a composite of
the AND, OR and NOT functions in various ways.

Note that each of these AND, OR and NOT functions take in only a
small number of variables and output only a small number of variables –
they don’t touch the other variables at all. Thus, even if they transform the
state of the entire system, their actual effect is only in some small part of
the system.

The parallel in the case of unitary operators would be: Write the unitary
operator Uf as a short-length product of unitary operators each of which
“affects” only a small number of variables. To make these notions rigourous,
we need to introduce the notion of tensor products of operators.

89

67.4 Tensor product of vector spaces

Given two vector spaces V and W with bases ei and fj , the tensor product
V ⊗W is defined as the vector space with basis bij , with a map

V ×W → V ⊗W
that sends

(∑
i viei,

∑
j wjej

)
to
∑

i,j viwjbij .
The tensor product acquires a natural significance for state spaces. Namely,

if V = Cm is the state space spanned by outcomes ei of experiment I and
W = Cn is the state space spanned by outcomes fj of experiment J , then
the tensor product V ⊗W is the state space for possible outcomes of the
combined experiment I, J .

In other words, each outcome for V ⊗ W gives both the outcome for
experiment I and the outcome for experiment J .

Further, the amplitude of the outcome (i, j) for the combined experiment
is the product of the amplitude of outcome i for experiment I and outcome
j for experiment J .

Now, given a tensor product V ⊗W , it makes sense to talk of the tensor
product of operators A and B where A is a linear operator on V and B is
a linear operator on W . The idea is roughly to map each bij to the vector
Aei ⊗Bfj .

67.5 A quantum circuit

We can now see that if the “memory” stores n variables at any given time,
then the state space is the n-fold tensor product of C2 where C2 is the state
space for one quantum bit (or qubit).

Further, suppose the current state has n variables and there is a quantum
gate that inputs r variables and outputs r of them (by applying a unitary
operator). Then, if Ug denotes the unitary operator for that quantum gate
(when acting only on those r variables), the overall unitary operator is:

Ug ⊗ I

where Ug is viewed as acting on the space C2r
of those r variables, and

I is acting on the space of C2n−r
for the remaining n− r variables.

This helps tell us what the notion of a good quantum circuit should be:
A quantum circuit for Uf is an expression of Uf as a product of unitary

operators, each of which can be expressed as the tensor product of a unitary
operator acting on a small number of variables, with the identity map.

90

When the quantum circuit arises from a Boolean circuit, each of those
small unitary operators will be the unitary operators corresponding to that
Boolean circuit.

67.6 Particular cases: controlled NOT and controlled AND

The controlled NOT gate is obtained as a special case of the general con-
struction.

67.7 Solovay’s theorem

91

Algebra and Computation Course Instructor: V. Arvind

Lecture 21: Quantum simulation of Boolean circuits and more

Lecturer: V. Arvind Scribe: Vipul Naik

68 Postulates of quantum mechanics

68.1 The state space postulate

The state space of an isolated physical system is a C-vector space (equipped
with inner product) and the possible outcomes form an orthonormal basis
for this space.

Note that we require the physical system to be isolated. In fact, one of
the concrete problems with implementing quantum computers in reality is
the inability to sufficiently isolate the quantum computer from the outside
world.

68.2 The evolution postulate

The state space of an isolated physical system evolves under the action of a
unitary operator.

In other words, if |ψ〉 is the state at time t1 and |ψ′〉 is the state at time
t2, then there exists a unitary operator Ut1,t2 that maps |ψ〉 to |ψ′〉.

The unitary operator can thus be viewed as acting in discrete time,
according to a “clock” whose clock pulse is t2 − t1.

Continuous-time evolution, if we are interested in that, is governed by a
Hermitian operator, called the Hamiltonian of the system. That is:

ih
d

dt
|ψ〉 = H |ψ〉

This is obtained by differentiating the unitary operator with respect to
time.

When we only assume the physical system to be closed and do not assume
it to be isolated, then we get a time-varying Hamiltonian, and hence the
evolution is not given by a unitary operator.

92

68.3 The measurement postulate

Definition 62. A measurement is a collection of linear operators Mm such
that: ∑

m

M∗
mMm = I

The measurement is said to be measurement(projective) if it measures
components with respect to an orthogonal direct sum decomposition.

The measurements we have talked of so far are projective measurements
where we look at a complete orthogonal direct sum decomposition, that is, a
decomposition as a sum of pairwise orthogonal one-dimensional subspaces.

69 The Deutsch-Josza problem

69.1 Statement of the problem

The Deutsch-Josza problem is a somewhat artificial problem that illustrates
that in the query model, deterministic quantum computation can be far
faster than deterministic classical computation. By query model, we mean
a model where the complexity is measured by the number of queries that
need to be made to an oracle, to answer a question about something hidden
within that oracle.

Here is the precise statement:
Problem:

f : {0, 1}n → {0, 1} is a Boolean function with the “promise” that f is
either constant (that is, f(x) = f(y) for all x, y ∈ {0, 1}n) or balanced (that
is,
∣∣f−1(0)

∣∣ =
∣∣f−1(1)

∣∣). We have a query oracle for f , that can take in
x ∈ {0, 1}n and output f(x). We need to use this query oracle to find where
f is constant or balanced. The complexity of our procedure is determined
by the number of queries (calls) made to the oracle.

69.2 Classical deterministic and randomized complexities

The deterministic complexity of the Deutsch-Josza problem is 2n−1+1. This
is because if the function is actually constant, then we need to know its value
at at least that many points to be sure that it is constant.

The randomized complexity of the Deutsch-Josza problem is constant,
in the sense that we can, given any ε, make a constant number of queries

93

dependent only on ε such that the probability of error is bounded above by
ε (note that in this case the error is one-sided).

69.3 Rules for the quantum algorithm

In the quantum algorithm, what we want to do is to use the fact that
there are an equal number of 0s and 1s, to get the 0s and 1s to cancel one
another. First, however, we need to be clear as to what exactly is given in
the quantum algorithm. The quantum algorithm does not oracle-query f ,
rather it oracle-queries Uf , the unitary operator associated to f .

Further, the “input” that we send to Uf need not be a “pure” outcome,
it could be a state with any mix of amplitudes of the various outcomes.

69.4 The Hadamard gate

Consider a qubit (state space is C2). The Hadamard gate takes this as input
and outputs another qubit, and its action on the basis |0〉 , |1〉 is defined as
follows:

|0〉 7→ |0〉+ |1〉√
2

|1〉 7→ |0〉 − |1〉√
2

The Hadamard gate (called H) can be thought of as a particular instance
of what we will later see as a rotation gate – it rotates the basis by an angle
of π/4.

The Hadamard gate acts on each qubit. Hence, if the state space has n
qubits, we can consider the nth tensor power of the Hadamard gate. This is
a unitary operator that does the Hadamard on each gate. This tensor power
is often denoted as H⊗n.

Let’s see what happens if we apply H⊗n to |0〉⊗n. We’ll get:

H⊗n(|0〉⊗n) =
(
|0〉+ |1〉√

2

)⊗n
=⇒ H⊗n(|0〉⊗n) =

1
2n/2

∑
x∈{0,1}n

|x〉

Note that applying the inverse of the Hadamard gate again retrieves for
us the origina |0〉⊗n.

94

69.5 The solution

The idea is to use the Hadamard gate to cancel the effect of the 0s and the
1s.

1. Start with a state where all qubits are |0〉

2. Apply the Hadamard transform H⊗n to get a state where all qubits
are |0〉+|1〉√

2
. By the calculation done above, the new state is 1/2n/2

times the sum of all possible outcomes (classical states) of the state
space.

3. Tensor with the state |0〉−|1〉√
2

.

4. Now apply the operator Uf . Note that Uf applied to a pure outcome
x is:

x⊗ |f(x)〉 − |1 + f(x)〉
2(n+1)/2

which simplifies to:

x⊗ (−1)f(x) |0〉 − |1〉√
2

Hence the effect of Uf on the current state is:

∑
x∈{0,1}n

x⊗ (−1)f(x) |0〉 − |1〉
2(n+1)/2

69.6 For a constant function

In the case that f is constant, the second term in the tensor product becomes
constant, and pulling the (−1)f(x) out (which after all only controls the
phase), we’ll get:

(
∑
x

∈ {0, 1}n x)⊗ |0〉 − |1〉√
2

Now, applying the inverse Hadamard transform to the first n qubits, we
retrieve |0〉⊗n ⊗ |0〉−|1〉

2(n+1)/2 . Thus, performing a measurement on the first n
coordinates yields |0〉⊗n with certainty.

95

69.7 For a balanced function

In the case that f is balanced, we get exactly half the x’s added with a
positive sign, and half the x’s added with a negative sign. Now, when we
apply the inverse Hadamard transform to this state, we will get a quantum
state that will have nonzero coefficients for all the places where the function
takes the value 1.

69.8 The upshot

The upshot is as follows:

• We use the Hadamard transform to obtain a uniform superposition of
all the possible input states, and then apply the unitary operator to
this, tensored with |0〉−|1〉√

2

• We then again apply the inverse Hadamard transform to the output
qubit and obtain the “aggregate” value of the function, hence any
measurement gives us the answer.

96

Algebra and Computation Course Instructor: V. Arvind

Lecture 22: Simon’s Problem and towards Shor

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

70 Overview

Last lecture we saw a toy problem that showed that the quantum model
could be more efficient than the turing machine model, query complexity in
the last example.

In this lecture, we shall inspect one more problem, which in a way is a
true separation from the classical and quantum model since it beats even
randomized algorithms on classical turing machines. The techniques used
here will be essential in Shor’s algorithms for integer factoring and discrete
logarithm, whci hwe shall see in the following lectures.

71 Simon’s Problem

We are given a function f : {0, 1}n → X with the promise that f is a 2-
to-1 function (exactly two strings in {0, 1}n mapping to an element of X).
Further, f satisfies the additional property that there exists a λ 6= 0n such
that f(x⊕ λ) = f(x) for all x. The goal is to find the period λ with as few
probes as possible.

We could make X canonical by enforcing an order on X. We can think of
strings in {0, 1}n as ordered pairs {(x, x⊕ λ)} where x is lexicographically
smaller than x⊕λ. These pairs can now be identified with {0, 1}n−1 by just
sorting the pairs, and hence fixes the set on the right. Thus, the number of
such functions is exactly equal to the number of possible λs which is 2n− 1.

71.1 Lower Bounds on Classical Deterministic Computation

An adversial argument showsn an exponential lower bound for the query
complexity in the determistic model. As an adversary, the point is to keep
giving different answers for queries as long as it is possible. If k strings have
been queried, the number of λs that we eliminate by giving different answers
to each is

(
k
2

)
. Thus the adversary can go on giving different answers till 2n/2

queries have made.
Thus, the deterministic query complexity is atleast 2n/2.

97

71.2 Lower Bounds on Classical Randomized Computation

Suppose there was a procedure such that with just q(n) queries the proce-
dure will find λ with error probability atmost 1/3. We can amplify this by
repeating this experiment suitably many times and ge the error probability
down to less than 2−n.

Now we can use the same idea as we did in showing BPP ∈ P/poly. There
are only 2n − 1 possible λs and the error probability is less than 2−n. The
randomized algorithms makes some random choices in the case of each λ.
Suppose there was atleast 1 error in every possible λ, then the overall error
probability would be more than 2−n. Hence there has to be a sequence of
choices such that it works for all possible values of λ.

But we have just shown earlier that the determistic computation has
an exponential lowerbound, which gives a contradiction. Hence there is no
probabilistic algorithm in the classical model that can find λ error bounded
by a constant.

71.3 A Quantum Algorithm

Again, the hadamard code plays the major role here. Start with the uniform
superposition

Hn |x〉 =
1

2n/2
∑

u∈{0,1}n

(−1)u·x |u〉

=⇒ Hn |0m〉 =
1

2n/2
∑

u∈{0,1}n

|u〉

By giving it input x and 0m, it would return x and 0m⊕ f(x) = f(x) on
the other side.

Hence, if we make x the uniform superposition, on applying f we get:

|ψ〉 =
1

2n/2
∑

x∈{0,1}n

|x〉 ⊗ |0m〉 −→ 1
2n/2

∑
x∈{0,1}n

|x〉 ⊗ |f(x)〉

Now on just measuring the qubit |f(x)〉, it would collapse to a uniformly
random element in the image say f(x0). And on a measurement, since every
other coordinate dies, the state would now collapse to:

|ψ〉 =
1√
2

(|x0〉+ |x0 + λ〉)

98

On applying Hn to this, we get

|ψ〉 → c

 ∑
u∈{0,1}n

(−1)x0·u |u〉+
∑

u∈{0,1}n

(−1)(x0⊕λ)·u |u〉

= c

∑
u∈{0,1}n

(
(−1)x0·u + (−1)x0·u⊕λ·u

)
|u〉

=
∑
u·λ=0

αu |u〉 , αu =
1

2(n−1)/2

But this is just a uniform superposition on the orthogonal space of the
span of α, and thus measuring u would now give a random sampling in the
orthogonal space. We will now show that once we have a random sampling
of the space, we can get a basis.

Lemma 63. Let G be a finite group. The probability that a uniform sample
of size 4 log |G| generates G is at least 1

3 .

Proof. Let g1, g2, · · · , gm be the sample. Define Gi to be the group generated
by {gj}j≤i . Let X be the indicator random variable that something bad
happens:

Xi =

{
0 if Gi−1 = G or gi /∈ Gi−1

1 otherwise

and let X =
∑m

i=1Xi then

Pr[Xi = 0] = Pr[Gi−1 = G] + Pr[Gi 6= G] Pr[gi /∈ Gi−1|Gi−1 6= G]

= pi + (1− pi)
1
2

=
1
2

+
pi
2
≥ 1

2

=⇒ E[Xi] = Pr[Xi = 1] ≤ 1
2

=⇒ E[X] =
m∑
i=1

E[Xi] ≤
m

2

By Markov’s inequality,

Pr[X ≥ a] ≤ E[x]
a
≤ m

2a

Choosing a = 3m
4 would get give Pr[X ≥ 3m

4] ≤ 2
3 .

99

But notice that if we haven’t got a generating set already, Xi = 0 can
happen atmost log |G| many times. Thus if we were to choose m = 4 log |G|,
at most log |G| of the Xi can be zero and hence will force Gm = G with
probability atleast 1

3 .

Now that we have a generating set for the orthogonal set, all we need to
do right now is solve a system of linear equations to get the orthogonal space
of this, which is the space of λ. Thus we would find λ with just polynomially
many queries since log |G| ≤ n.

The same idea can be used to solve a general problem as well. We are
given a function f such that there is a subspace such that f(x⊕H) = f(x).
The goal is to find a subspace. The same ideas can be used to do this as
well. (exercise to the reader)

72 Towards Shor’s Algorithms

The techniques used in the quantum solution to Simon’s problem is essen-
tial for Shor’s algorithms for integer factoring and the discrete logarithm
problem. Shor’s algorithm is a quantum algorithm for order finding (given a
numbers a and n, find ordn(a)). But the following lemma would show that
this is good enough.

Lemma 64. Order finding is as hard as integer factoring.

Proof. We will show a probabilistic reduction from factoring to order finding.
Without loss of generality, we can assume that n is odd. Pick an x at
random from Zn \ {0} . We would be extremely lucky if gcd(x, n) 6= 1, we
then immediately have a non-trivial factor of n. Hence, we can assume that
x is randomly picked from Z?n.

Suppose ordn(x) is even, and it further satisfies the property that xordn(x)/2 6=
−1 (mod n), then we have non-trivial square root of unity and hence gcd(n, xordn(x)/2−
1) or gcd(n, xordn(x)/2 + 1) will be non-trivial. This is the reduction. Once
we show that we find a good x with high probability, we are done.

Assume that n = pα1
1 pα2

2 · · · p
αk
k . By the chinese remaindering theorem,

Z?n = Z?
p

α1
1
× Z?

p
α2
2
× · · ·Z?

p
αk
k

This map would take x 7→ (x1, x2, · · · , xk) . Let r = s2t = ordn(x) and
ri = si2ti = ordpαi

i
(xi). Clearly, s = lcm si and t = max ti. Thus if r is odd,

then t = 0 which means t1 = t2 = · · · = tk = 0.

100

Suppose r was even, we shall analyze the probability that xr/2 = −1
(mod n). By the chinese remaindering theorem, xr/2 = −1 7→ (−1,−1, · · · ,−1) .
But suppose some ti 6= t, then ti ≤ t − 1 and hence ri | r/2 and therefore
the i-th coordinate in the tuple will have to be a 1 instead of a −1.

Therefore, the probability that r is odd and xr/2 = −1 (mod n) is
bounded above by Pr[t1 = t2 = · · · = tk] ≤ 2k−1 since each ti is inde-
pendent.

Therefore Pr[r is even and xr/2 6= −1 (mod n)] ≥ 1− 2k−1.

Over the next few lectures, we will see how we can find the order of
an element using a quantum algorithm, and this would solve the integer
factoring problem.

101

Algebra and Computation Course Instructor: V. Arvind

Lecture 23: Shor’s Algorithm for Integer Factoring

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

73 Overview

In this lecture we shall see Shor’s algorithm for order finding, and therefore
for integer factoring.

74 The First Steps

We are given a number a ∈ Z?N and we need to find the r = ordN (a).
Pick an L such that N2 ≤ 2L ≤ 2N2 and let q = 2L. Hence the group

Zq is the set of all L-bit binary strings. As in the Simon’s problem, prepare
the uniform superposition using the hadamard transform.

|ψ〉 =
1
√
q

q−1∑
x=0

|x〉

And we shall assume that our function f : x 7→ ax (mod n) is given as a
unitary tranform where Uf (x, y) = (x, y⊕ f(x)). Thus applying this matrix
to the uniform superposition padded with 0s, we get:

1
√
q

q−1∑
x=0

|x〉
∣∣0L〉 −→ 1

√
q

q−1∑
x=0

|x〉 |f(x)〉

Now measuring the second register would give us some al (mod N) for some
least l. And hence, the current state would then be:

1√
A+ 1

A∑
j=0

|l + jr〉 , A =
⌊
q − l − 1

r

⌋
Our job is to retrieve the r and hence we need to get rid of the l. This

is where the fourier tranform comes in.

102

74.1 Fourier Tranform over Zq

The fourier transform over Zq is the following map:

Fq : |y〉 → 1
√
q

q−1∑
c=0

e
2πi
q
yc |c〉

Shor showed that there exists a polynomial sized quantum circuit for the
fourier tranform. For the moment, let us take it for granted that there does
exists a polynomial sized quantum circuit though we shall prove it later in
the lecture.

The quantum state that we are in is

1√
A+ 1

A∑
j=0

|l + jr〉

Applying the fourier tranform to this, we have:

1√
q(A+ 1)

A∑
j=0

q−1∑
c=0

e
2πi

2L (l+jr)c |c〉 =
1√

q(A+ 1)

q−1∑
c=0

αc |c〉

The Easy case: r | q

Since r divides q and we chose the least l it follows that A = q
r−1. Therefore,

αc = e
2πi
q
cl

A∑
j=0

(
e
2πi cr

q

)j
Suppose q - cr then ω = e

2πi c
q/r 6= 1 is a q/r-th root of unity. Therefore,

αc = e
2πi
q
cl

 q
r
−1∑
j=0

ωj

 = 0

Since the probability amplitude is 0 for the case when q - cr, measuring
c will give us a number that is a multiple of q

r with uniform probability.
Hence we now will have a fraction λq

r . How do we recover r from this?
Suppose λ was coprime to r, we know c

q = λ
r . Since λ

r is in its reduced form,
just take c

q and get it to the reduced form; the denominator would then give
us the r.

How do we make sure that we get a fraction such that λ and r are
coprime? With good probability we will. The probability that this happens
is φ(r)

r > 1
logn . Hence we are safe.

103

The general case:r - q

For any c in the domain,

Pr[c is measured] =
1

q(A+ 1)

∣∣∣∣∣∣
A∑
j=0

e
2πi

c(l+rj)
q

∣∣∣∣∣∣
2

=
1

q(A+ 1)

∣∣∣∣∣∣
A∑
j=1

e2πij(cr mod q)

∣∣∣∣∣∣
2

Let the event E =
{
c : −r

2 ≤ cr mod q ≤ r
2

}
. To analyse the probabil-

ity that this event will happen, for every 0 ≤ λ ≤ r look at the interval[
λq − r

2 , λq + r
2

]
. This interval will contain a multiple of r. There is a pos-

sibility of both end points of this interval being multiples of r. But the
following argument shows that this is not possible.

cr = λq − r

2
(c+ 1)r = λq +

r

2
=⇒ (2c+ 1)r = 2λq

but the last line would force r ≥ 2q which is absurd by the choice of q.
Thus |E| ≥ r since there are r possible λ’s. We now have

|cr − λq| ≤ r

2∣∣∣∣ cq − λ

r

∣∣∣∣ ≤ 1
2q
≤ 1

2N2
≤ 1

2r2

The following theorem then show how to recover r from this.

Theorem 65. For any σ ∈ Q, if
∣∣σ − a

b

∣∣ ≤ 1
2b2

then a
b is one of the cover-

gents9 of σ.

Thus all we need to do is get c
q , look at all its convergents and one of

them will be λ
r . As in the earlier case, the probability that λ

r will be in its
reduced form will happen with good probability and thus the denominator
of the fraction is the order of a.

Hence we just need to show that event E will happen with good proba-
bility.

9truncation of continued fractions

104

74.2 Bounding probability of event E

Needs to be done, didn’t take good notes here.

75 Quantum Circuit for Fourier Transform

We want a circuit that transforms |y〉 to 1√
q

∑q−1
c=0 e

2πi
q
cy |c〉 . Fix a c and lets

its binary representation be c0c1 · · · cL−1 and that of y be y0y1 · · · yL−1.

e
2πi

2L cy |c〉 = e
2πi

2L y(2L−1c0+···+cL−1) |c0〉 |c1〉 · · · |cL−1〉

=
(
e
2πi y

2L (2L−1c0) |c0〉
)
⊗
(
e
2πi y

2L (2L−2c1) |c1〉
)
⊗ · · · ⊗

(
e
2πi y

2L (cL−1) |cL−1〉
)

=
(
e2πi(0.yL−1)c0 |c0〉

)
⊗
(
e2πi(0.yL−2yL−1)c1 |c1〉

)
⊗ · · · ⊗

(
e2πi(0.y)cL−1 |cL−1〉

)
Thus, summing over the possible bits for each ci we get the following

tensor product.

q−1∑
c=0

e
2πi
q
yc =

(
|0〉+ e2πi(0.yL−1) |1〉√

2

)
⊗

(
|0〉+ e2πi(0.yL−2yL−1) |1〉√

2

)
⊗· · ·

(
|0〉+ e2πi(0.y) |1〉√

2

)

Define the following rotation gates:

Rk =

(
1 0

1 e
2πi

2k

)

and its controlled version CRk = I ⊗ Rk, that takes in an extra bit and
does the rotation only if that bit was 1. Our circuit will use the hadamard
gates and these controlled rotation gates. For sake of notation CRk(x, y)
will apply the rotation on x with y as the control bit.

Let us look at
(
|0〉+e2πi(0.ymym+1···yL−1)|1〉√

2

)
. Applying a hadamard trans-

form on |ym〉 would give us
(
|0〉+e2πi(0.ym)

√
2

)
. Now there is a smaller rotation

created by ym+1 only if it is equal to one. But this just amounts to rotating
the present state by 2−(m+1) controlled by ym+1. And so on.
Writing it as an algorithm:
1: for i = 0 to L− 1 do
2: yi = H1(yi)
3: j = 2
4: while (i+ j − 1 ≤ L− 1) do

105

5: (yi, yi+j−1) = CRj(yi, yi+j−1)
6: end while
7: end for

(picture here would be much better)

106

Algebra and Computation Course Instructor: V. Arvind

Lecture 24: The Hidden Subgroup Problem

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

76 Overview

In this class we shall look at character theory and it’s take on quantum com-
puting. Once we have sufficient tools, we will get into the hidden subgroup
problem, which can be used to solve a whole class of problems including the
discrete logarithm.

77 The Hidden Subgroup Problem

The hidden subgroup problem is the natural generalization of the order find-
ing problem.

The Problem: Let G be a finite group and H ≤ G be a subgroup of G.
Let X be an arbitrary set and we are given a function f : G→ X such that
it is constant on every right coset of H (f(x) = f(y) if and only if x and
y belong to the same right coset of H) and is different for different right
cosets.

Find a generating set for H.

77.1 Discrete Log as a hidden subgroup problem

Problem: p is a prime and g is a generator for Z?p. Given a ∈ Z?p find x such
that gx = a (mod p).

This can be easily converted to the HSP setting. Let G′ be the additive
group (Zp−1 × Zp−1,+) and f : G′ → Z?p such that it sends (α, β) to gαa−β

(mod p).
It is easy to see that (α, β) goes to 1 if and only if α = xβ. Therefore,

the hidden subgroup of this function is the subgroup generated by (x, 1).
Thus all we need to do is find a generator (α, β) and β/α = x.

107

77.2 Graph Isomorphism as a hidden subgroup problem

We have seen earlier that graph isomorphism reduces to the problem of
finding the automorphism group of the graph. Converting to the HSP setting
is easy.

Let Gn be the set of all possible graphs on n nodes. The hidden function
is

fX : Sn −→ Gn
π 7→ Xπ

that is, it takes a permutation and sends is to the graph obtained by per-
muting X by that permutation.

The hidden subgroup is precisely the automorphism group of the graph.

This however is a case of the HSP in a non-abelian group setting. We
will just solve the problem for finite abelian groups.

78 Characters of a finite group

A character of a finite abelian group G is a homomorphism χ : G→ C?. That
is, they satisfy properties like χ(1) = 1,χ(g1g2) = χ(g1)χ(g2),χ(g−1) = χ(g)
etc.

Define C[G] to be the |G| dimensional vector space over C, by just con-
sider the elements of G as the standard basis elements of the vector space. It
in fact also has a multiplicative structure and is called a group algebra. Note
that the vector space for the quantum algorithms was C2n

= C[Zn2] and at
some points we even exploited the group structure of Zn2 . And the standard
basis for the quantum setting were {|g〉 : g ∈ G} which is precisely G[G].

Now notice that C[G] can be thought of as a function from C to G, where
every coordinate of the basis element can be thought of as the value of the
function. Thus C[G] = CG. In this setting, the characters, being functions
from G to C, can be thought of as vectors in C[G].

78.1 Properties of Characters

• It is easy to see that for every g ∈ G, χ(g)|G| = 1 since χ is a homo-
morphism. Hence, χ(g) is a |G|-th root of unity.

Thus characters are vectors where each coordinate is a |G|-th root of
unity. The vector (1, 1, · · · , 1) is referred to as the trivial character.

108

• As in the quantum setting, we shall normalize characters by writing
them as

|χ〉 =
1√
G

∑
g

χ(g) |g〉

By the usual hermitian inner product (〈a|b〉 =
∑
aibi), it is clear that

〈χ|χ〉 = 1.

Thus characters are vectors of norm 1.

• Suppose we have two distinct characters χ1, χ2, that is there exists an
h such that χ1(h) 6= χ2(h). Let us look at what happens to 〈χ1|χ2〉 .
Multiplying both sides by χ1(h):

χ1(h) 〈χ1|χ2〉 =
1√
G

∑
g

χ1(h)χ1(g−1)χ2(g)

=
1√
G

∑
g

χ1(hg−1)χ2(g)

=
1√
G

∑
g̃

χ1(g̃−1)χ2(g̃h) , g̃ = gh−1

= χ2(h)

 1√
G

∑
g̃

χ1(g̃−1)χ2(g̃)

= χ2(h) 〈χ1|χ2〉

But since we assumed that χ1(h) 6= χ2(h), this will force 〈χ1|χ2〉 = 0.
Thus the characters are mutually orthogonal to each other.

And hence, for any non-trivial character χ, 〈(1, 1, · · · , 1)|χ〉 = 0 and
hence

∑
g χ(g) = 0.

Therefore it is clear that there are at most |G| characters (a |G| dimen-
sional space can have at most that many mutually orthogonal vectors). For
the finite abelian group setting, it is easy to show that there are in fact |G|
many characters.

Theorem 66 (Structure theorem for finite abelian groups). Any finite
abelian group G is isomorphic to a direct product of cyclic groups.

Thus
G ∼= ZN1 × ZN2 × · · · × ZNl

109

For a cyclic group ZN , it is easy to show that we indeed have N charac-
ters:

ωN = e
2πi
N

χj : Zn −→ C?

1 7→ ωjN

k 7→ ωjkN

And clearly these are distinct. In the same way, we have |G| distinct
characters by just saying:

χj1,j2,··· ,jl(a1, a2, · · · , al) 7→ (ωN1)
j1a1 (ωN2)

j2a2 · · · (ωNl
)jlal

Thus, the characters indeed form an orthonormal basis for C[G].

78.2 The fourier transform

The fourier transform is just the change of basis from the standard to the
characters. And the transform played an important role in the order finding
algorithm due to the property of ’shift invariance that the character basis
enjoys.

|χg〉 =
1√
G

∑
x

χg(x) |x〉

Uhχg =
1√
G

∑
x

χg(x) |hx〉

=
1√
G

∑
x

χg(h−1)χg(hx) |hx〉

= χg(h−1)

(
1√
G

∑
x′

χg(x′)
∣∣x′〉) , x′ = hx

= χg(h−1) |χg〉

The fourier basis are all eigenvectors for all shift operators Uh, the eigen-
value being χg(h−1).

79 The Hidden Subgroup Problem for Finite Abelian
Groups

The group is given to us as ZN1 ×ZN2 × · · · ×ZNl
. And we need to find the

hidden subgroup of G.

110

As in the Simon’s problem and Shor’s algorithm, first create the uniform
superposition

|ψ〉 =
1√
G

∑
g

|g〉

How we create this is a lovely trick that we shall see later in this lecture.
Another thing we will assume that we can do a fourier transform (approx-
imate at least) efficiently. Applying the function to the padded version, we
get

1√
G

∑
g

|g〉 |f(g)〉

On measuring the second qubits, we would measure some f(x) and thus
would result in the state

1√
H

∑
h

|xh〉

A fourier transform on this gives

1√
H
√
G

∑
h

∑
g

χxh(g) |g〉

Note that χa(b) = χb(a). And hence

1√
H
√
G

∑
h

∑
g

χxh(g) |g〉 =
1√
H
√
G

∑
h

∑
g

χg(xh) |g〉

=
√
H
√
G∑
g

(∑
h

χg(h)

)
χg(x) |g〉

Now, since χg(h) is a character ofH as well the summation inside the bracket
will be zero for a lot of χs.

At this point, for any group G, define the dual group G′ as the group of
characters of G. H⊥ = {χ ∈ G′ : χ(h) = 1∀h ∈ H}.

For all characters in H⊥, the summation in the bracket will be |H|, and
0 otherwise. Hence the summation reduces to

√
H√
G

∑
g:χg∈H⊥

χg(x) |g〉

Now measuring |g〉 will give us a random element in H⊥. Thus using the
sampling lemma in Simon’s problem we can get a generating set for H⊥.
With this, how do we find a generating set for H?

111

Suppose we have our sample g1, g2, · · · , gt where t = 4 log |G|. By the
structure of the group G, gi = 〈ai1 , ai2 , · · · , ail〉 . Thus for each xi ∈ H we
know that

ω
x1ai1
N1

ω
x2ai2
N2

· · ·ωx1ail
Nl

= 1

But this is an exponential constraint, if we have a linear constraint we can
solve it using the techniques discussed earlier.

Let N = lcm(Ni) and let Mi = N/Ni. Then the constraint above is just
finding solutions xi to

∑
jMjaijxj = 0 (mod N). The mod can be removed

as well by having an extra indeterminate yi and writing it as

M1ai1x1 +M2ai2x2 + · · ·Mlailxl +Nyi = 0

These constraints, for each i, is just a system of diophantine equations that
can be solved using the hermite normal form. Thus, this would solve the
hidden subgroup problem.

79.1 The Converse

Another important question is the following: suppose we have a way of
solving the hidden subgroup problem for a finite abelian group, can we use
that to find the structure of G?

One way is to take the generators of G (by random sampling), finding
their orders and factorizing them. The factorization of the orders will de-
compose the group in to a direct product of p-groups. How do we find the
cyclic product decomposition of the p-groups?

We shall discuss this in the next lecture.

79.2 Creating the uniform superposition

We want to create the state

|ψ〉 =
1√
G

∑
g

|g〉

The idea is to find a binary encoding of the group and use that. En-
code elements of G using binary strings of length m, m chosen such that
2m ≥ |G| ≥ 2m/poly(m) (a reasonably efficient encoding). Once we have
an encoding function, we naturally have another checker functions Uf that
takes a binary string and decides whether it is actually an encoding of an
element of G.

112

Using the hadamard transform, we can create a uniform superposition
over {0, 1}m:

|ψ〉 =
1

2m
∑

x∈{0,1}m

|x〉

Applying the checker function to the padded version of this, we get

1
2m

∑
x∈{0,1}m

|x〉 |f(x)〉

Now since we assumed that the encoding is reasonably efficient, measuring
f(x) will give us a 1 with high probability. And hence, the rest of the state
will collapse to

1√
G

∑
g

|g〉

which is precisely what we want!

113

Algebra and Computation Course Instructor: V. Arvind

Lecture 25: Needle in a Haystack: Grover Search

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

80 Overview

In this lecture, we shall look at another problem where quantum algorithms
do better than classical algorithms. This, unlike the DJ problem, is deep
and is truly one where the quantum model beats the classical model.

81 Grover’s Search

The problem is the following. You are given a function f : {0, 1} −→ {0, 1}
as an oracle with the promise f(x) = 1 for precisely one x say x0. The
problem is to find the x0. We want to do this with as few queries as possible.

This is equivalent to searching in an unordered list; the value x0 is hidden
in the list and you want to find it.

81.1 Lower bounds on classical models

It is clear that a deterministic algorithm will take O(2n) queries.
It is easy to show that even for randomized algorithms, it would need

O(2n) queries to make the error probability bounded by a constant. We
shall leave the proof to the interested reader.

81.2 The Quantum Model

Grover presented a quantum algorithms that makes O
(
2n/2poly(n)

)
queries

and finds x0 with error probability bounded by a constant.

82 The Algorithm

The basic idea is the following property:
Let M1 and M2 are two lines through the origin in the plane, and the

angle separating them being α and let P is any point on the plane. If you
reflect P about M1 and then that reflection about M2, the resultant point

114

is at an angle 2α from P in the direction M1M2.

Our setting is going to be like this. We will be working in C2n
and there

is one special coordinate axis labelled by x0 that we want to find. Using
the function provided as oracle, we can get the unitary transform of the
rotation about x0 eventhough we do not know what x0 is. The idea is to
take another vector whose angle with x0 is known and use this rotation
technique to get closer to x0. Since we know the angles, we know precisely
how many rotations need to be done and that will give us a vector with a
very high probability amplitude on the x0 coordinate at which point we can
make a measurement.

82.1 The Reflection Maps

Consider the uniform superposition |ψ〉 = 1
N

∑
x |x〉 . We know that it makes

an angle of cos−1(2−n/2) with each coordinate axis.
The unitary map given to us works as we have assumed always. And

we have also seen that |x〉
(
|0〉−|1〉√

2

)
goes to (−1)f(x) |x〉

(
|0〉−|1〉√

2

)
. By just

dropping the second coordinate, we can think of this as a map

Ix0 : |x〉 7→ (−1)f(x) |x〉

This is just the identity matrix with a −1 on the (x0, x0) entry. This can be
compactly written as Ix0 = I − 2 |x0〉 〈x0| . This is just reflection about the
plan perpendicular to x0.

Observation 67. If U is any unitary operator, then IU |0n〉 = UI0nU−1.

Proof. It follows from the observation that Ix = I − 2 |x〉 〈x| .

Observation 68. For any states |φ〉 and |ψ〉, Iψ preserves the span of
|φ〉 , |ψ〉 .

In particular, IU |0n〉 and Ix0 preserve the span S of x0 and U |0n〉 .

Observation 69. Let |e1〉 = U |0n〉 and let e2 be anything in S that is
perpendicular to e1. We can pull out the eiθ factor out of ei so that 〈ei, x0〉
is real. Hence we now have

S = {a |e1〉+ b |e2〉 : a, b ∈ R}

Observation 70. Let v ∈ S and let v⊥ be another in S that is orthogonal
to v in S. Then Iv = −Iv⊥ .

115

Thus, we need not know what x0 is but by just using Ix0 we can achieve
the reflection about x0. And let U be the hadamard transform and U |0n〉
will now be the uniform superposition |ψ〉 .

82.2 The Double Reflection

We know that U0n make an angle of cos−1(2−n/2) with each coordinate axis,
and this is almost a right angle. Thus instead of U |0n〉, we shall look at
the orthogonal vector U |0n〉⊥ in the span S and the reflection. The angle
that x0 makes with this sin−1(2−n/2) which is very small. Now, the unitary
transform that achieves the rotation about x0 and then about U |0n〉⊥ is
just −UI0nUIx0 .

Now look at the uniform superposition |ψ〉 = 1
N

∑
x |x〉. This is in the

plane and the double rotation will rotate it by an angle of 2 sin−1(2−n/2).
Thus with just π

4

√
2n such double rotations we would get very close to x0.

At this point, we can safely make a measurement and obtain x0 with
high probability.

83 Implications on SAT

The problem can be transformed to a decision problem. We are given a
function f as an oracle and we need to determine if f is 1 at atleast one x.
This is certainly easier than determining the x0 as we have seen.

A result of Valiant and Vazirani shows that any SAT instance φ can be
reduced to another instance φ′ in randomized polynomail time such that φ
is satisfiable implies φ′ has exactly one satisfiable instance, and φ is unsat-
isfiable implies φ′ is also unsatisfiable.

Grover’s algorithm shows that SAT can be solved in O(
√

2
n
) time using

a quantum algorithm.

84 A glimpse into the finale

In the next class, we shall show that Grover’s algorithm is infact tight, any
quantum algorithm that has error probability bounded by a constant must
take O(2n/2) queries.

We shall prove this using two beautiful lower bound techniques in the
oracle setting.

116

	Motivation
	Graph Isomorphism and Automorphism Groups
	The Set Stabilizer Problem
	More group theory: Sylow theorems
	Overview
	Orbit Computation
	Decomposition of Transitive Groups
	Blocks and Subgroups
	Finding Blocks
	Membership Testing
	Overview
	The problem
	Idea
	Algorithm
	Finding the cosets at each level of the tower
	Testing membership of a given g
	Finding generating sets for the subgroups
	The reduce Algorithm

	Other Problems
	The Group-Intersection Problem

	Overview
	The General Setting
	Subnormality and group-inter
	Recognizing Solvability

	Jerrum's Filter
	Overview
	Bounded Colour Multiplicity graph-iso: BCGIb
	Bounded Degree graph-iso
	A Road Map
	A generating set for ker
	A generating set for (Aute(Xr+1))

	Recap
	Generalization to (d)-degree graphs
	keri has small factors
	Image of i reduces to restricted set-stab

	The restricted set-stab
	Generalized set-stab

	The Divide and Conquer
	Overview
	Colourings of Graphs
	Colour-Degree Refinement
	Propagating Refinements

	Colour Valence and graph-iso
	Enter Luks

	Crash course in Field theory
	Algorithms
	Testing Irreducibility
	Factorisation: Cantor--Zassenhaus algorithm
	If q is odd
	If q is even

	Factorisation: Berlekamp's algorithm

	Overview
	Preliminaries
	The Primality Test
	Proof Correctness
	A short note on identity testing
	Overview
	Factoring P Root-Finding
	How to Share a Secret
	Towards Bivariate Factoring
	A Crash Course in Ring Theory
	Towards Bivariate Factorization

	Overview
	The Idea
	Hensel Lifting
	The Factoring Algorithm
	Step 4 will have a non-trivial solution
	Step 5 will happen

	Missing Pieces
	Overview
	The Missing Pieces
	f is square free
	f(x,0) is square free

	Hensel Lifting and Newton Rhapson
	Overview
	Linear Diophantine Equations
	Hermite Normal Form
	Converting to HNF

	HNF and Lattices
	Bounding Sizes
	Bounds on HNF size
	Bounds on U

	Keeping Numbers Small
	Arithmetic circuits with bounds on final answer
	Overview
	The Shortest Vector Problem
	The Gram-Schmidt Orthogonalization
	Reduced Basis

	LLL Algorithm
	The Reduction Step
	The Swap Step
	Correctness
	Sizes of Numbers

	Factoring over Q
	Overview
	Simon's Problem
	Lower Bounds on Classical Deterministic Computation
	Lower Bounds on Classical Randomized Computation
	A Quantum Algorithm

	Towards Shor's Algorithms
	Physical systems and computational models
	Computers as physical systems
	Feynman's question
	The situation before quantum mechanics

	The two-slit experiment
	The two-slit experiment with particles
	The two-slit experiment with waves
	The dual nature of matter and waves

	The setup of quantum theory
	Basic axioms
	Hermitian inner product
	The way quantum states evolve
	Different quantum states giving the same probability

	Quantum superposition versus random sampling
	Probability distribution versus quantum superposition
	Transforming probability distributions
	Transforming quantum states

	Quantum theory and Boolean circuits
	Boolean circuits
	Unitary operator for a Boolean function
	Boolean circuit in the quantum language
	Tensor product of vector spaces
	A quantum circuit
	Particular cases: controlled NOT and controlled AND
	Solovay's theorem

	Postulates of quantum mechanics
	The state space postulate
	The evolution postulate
	The measurement postulate

	The Deutsch-Josza problem
	Statement of the problem
	Classical deterministic and randomized complexities
	Rules for the quantum algorithm
	The Hadamard gate
	The solution
	For a constant function
	For a balanced function
	The upshot

	Overview
	Simon's Problem
	Lower Bounds on Classical Deterministic Computation
	Lower Bounds on Classical Randomized Computation
	A Quantum Algorithm

	Towards Shor's Algorithms
	Overview
	The First Steps
	Fourier Tranform over Zq
	Bounding probability of event E

	Quantum Circuit for Fourier Transform
	Overview
	The Hidden Subgroup Problem
	Discrete Log as a hidden subgroup problem
	Graph Isomorphism as a hidden subgroup problem

	Characters of a finite group
	Properties of Characters
	The fourier transform

	The Hidden Subgroup Problem for Finite Abelian Groups
	The Converse
	Creating the uniform superposition

	Overview
	Grover's Search
	Lower bounds on classical models
	The Quantum Model

	The Algorithm
	The Reflection Maps
	The Double Reflection

	Implications on SAT
	A glimpse into the finale

