
Bell inequalities under one sided relaxation of physical constraints

Biswajit Paul,1, ∗ Kaushiki Mukherjee,2, † and Debasis Sarkar2, ‡

1Department of Mathematics, St.Thomas’ College of Engineering and Technology,
4,Diamond Harbour Road,Alipore, Kolkata-700023, India.

2Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
(Dated: June 16, 2013)

Bell inequalities are violated by quantum mechanics. So, one of the properties, like, determinism,
no signaling and measurement independence which are required to frame Bell inequality, is incom-
patible with quantum correlations. Thus, any model simulating quantum correlations must either
individually or jointly give up these physical constraints. Recently, M. J. W. Hall (Phys Review A,
84, 022102 (2011)) derived different forms of Bell inequalities under the assumption of individual or
joint relaxation of those physical properties on both sides. One sided relaxation can also be a useful
resource for simulating singlet correlations. For that we have derived a Bell-type inequality under
the assumption of joint relaxation of determinism and no signaling on one side. It is shown that
for the previous case, if we increase measurement settings per party, then the Bell-type inequality
takes a different form. We also relaxed no signaling, determinism and measurement independence
all at the same time on one side and framed corresponding Bell-type inequality. In each case, we
have obtained the minimum degree of relaxation of these physical properties for any model which
violates a standard Bell inequality.
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In 1964, John S. Bell introduced an inequality [1]
thereby showing no realistic physical theory which
is also local in a specified sense can agree with all
of the statistical implications of Quantum Mechanics
(under conditions which were relaxed in later work by
Bell [2–4] himself and also by others [5–8]). Different
versions of the theorem, inspired by the paper [1], are
considered as a family which is uniquely termed as
“Bell’s Thoerem” and the corresponding inequalities
are termed as “Bell-type inequalities”. Each of these
inequalities is statistical in nature. Violation of any
“Bell-type inequality” thus may be considered as one of
the remarkable features of quantum theory. Till date
violation of Bell inequality serves various objectives in
the context of better understanding of the behaviour of
composite quantum systems. For example, it serves as a
criteria necessary for categorizing correlations, helps us
in quantifying nonlocality, etc.

Now, various plausible physical postulates are at the
background of framing Bell inequalities. Some of the
physical constraints in this regard are: no signaling, mea-
surement independence, locality, determinism. There-
fore, violation of these inequalities by any physical the-
ory thereby give rise to some queries: are the predictions
made by the theory incorrect? or, whether at least one
of these applied postulates incompatible with the descrip-
tion of the natural phenomena? As Quantum mechanical
predictions tally with the experimental data so only the
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second query is relevant in this regard. Till now vari-
ous literatures have dealt with the relaxation of physical
constraints for framing Bell inequalities [9–14]. In [11],
M.J.W.Hall considered relaxation of measurement inde-
pendence. He argued that for violation of Bell-CHSH
inequality by any singlet correlations at least 86% per-
centage of measurement independence must be relaxed.
In [12], he introduced a Bell inequality considering joint
relaxation of no signaling and determinism thereby fo-
cusing on the complementary relationship shared by sig-
naling and indeterminism by any physical model. He
showed that at least 60% of signaling and 41% of inde-
terminism must be introduced in the Bell-CHSH model
to justify the violation shown by singlet correlations. In
[13], a relaxed Bell-type inequality was introduced un-
der the assumption of joint relaxation of no signaling,
determinism and measurement independence. The main
objective of all these papers [11–13] was to simulate sin-
glet correlations assuming both side relaxation of these
physical constraints. The question that naturally arises
in this context is, whether relaxation of these physical
properties on one side can simulate singlet correlations?
In [14], Banik et. al., dealt with one sided relaxation
of measurement independence. It was shown that 59%
of measurement independence by one of the two parties
was optimal to generate singlet correlations.
In this work, we have investigated whether relaxation of
one sided no signaling is more useful as a resource for sim-
ulation of singlet correlations than that of both sided re-
laxation of the same. We have succeeded in showing that
the minimum degree of relaxation has decreased from
60% to 17%. The complementary relation [12] between
determinism and signaling remains invariant in this case.
We also investigate one sided joint relaxation of no sig-
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naling, determinism and measurement independence. In-
terestingly, for one sided relaxation, maximal violation of
Bell inequality cannot be achieved unlike that in the case
of both sided relaxation [12, 13]. Moreover, depending on
the complementary relation, we obtain two subintervals
(2,3) and (2,4) of the total violation (2,4]. We now briefly
describe our work.
Model Behind Any Experiment: Consider a joint ex-

periment between two parties, Alice and Bob. Sup-
pose each party has dichotomic measurement settings
with inputs x and y for Alice and Bob respectively.
Let a, b ∈ {−1, 1} label the possible outcomes of Al-
ice and Bob respectively. The results of this experiment
can be expressed in terms of the statistical correlations
p(a, b|x, y). Now, for the correlations that depend on un-
derlying hidden variable λ, we have by Bayes’ theorem:
p(a, b|x, y) =

∫
dλp(a, b|x, y, λ)p(λ|x, y). In the standard

Hilbert space model of quantum mechanics, one can con-
sider the underlying variable λ as the density operator ρ
and the joint measurement setting by a POVMMxy

ab with
p(a, b|x, y, ρ) = tr[ρMxy

ab ], p(ρ|x, y) = δ(ρ − ρ0). For a
pure state, p(a, b|x, y, ψ) = ⟨ψ|Mxy

ab |ψ⟩, p(ψ|x, y) = p0(ψ)
where the hidden variable λ being confined to the set
of unit vectors {|ψ⟩} of the Hilbert space and ρ0 ≡∫
dψp0(ψ)|ψ⟩⟨ψ|. Now, given a model behind an exper-

iment, it may or may not satisfy various physically ac-
ceptable properties, such as locality, no signaling, deter-
minism, measurement independence, etc. For instance,
one may consider a model of singlet correlations. Such
a model violates Bell inequalities implying that at least
one of the aforementioned physical constraints must be
relaxed to frame a model of these type of quantum corre-
lations. The necessary degrees of relaxation of the above
properties to model quantum correlations were derived in
[11–13]. In this work, we also deal with the task of relax-
ing one or more physical constraints in a slightly different
approach.
No signaling: In a system of distant parties if we

assume that no communication among the parties can
take place when the measurements are performed, then
the obtained correlations must obey the principle of no
signaling: the choices of observable by one party can-
not influence the statistics observed by the remaining
parties. In other words, if p(a|x, y, λ) = p(a|x, y′, λ),
p(b|x, y, λ) = p(b|x′, y, λ) hold for all pairs (x, y), (x, y′)
and (x′, y) of the model.
The degree of signaling is defined by the maximum

shift possible in an underlying marginal probability
for one observer, due to the alteration of measure-
ment setting of the other. One may formulate it as
follows [12, 13]: S1→2 := supx,x′,y,b,λ |p(2)(b|x, y, λ) −
p(2)(b|x′, y, λ)|, S2→1 := supx,y,y′,a,λ |p(1)(a|x, y, λ) −
p(1)(a|x, y′, λ)| where a, b, x, x′, y and y′ have their usual
meanings. Thus, S1→2 is the maximum possible devi-
ation in an underlying marginal probability distribution
for the second observer, induced via the change of a mea-
surement settings of the first observer. The overall degree
of signaling, for a given underlying model is defined by,

S := max{S1→2, S2→1}.
Determinism: A model is said to be deterministic if the

observed statistical correlations are generated by averag-
ing over a set of all possible values of the underlying vari-
able (λ) such that for any fixed value of the variable(λ)
all measurement outcomes are fully determined [12]. In
a deterministic correlation model all the outcomes being
predictable with certainty for any given knowledge of λ,
correlation terms are either 0 or 1, i.e., p(a, b|x, y, λ) ∈
{0, 1}. The underlying marginal probabilities are also
deterministic, i.e., p(a|x, y, λ), p(b|x, y, λ) ∈ {0, 1}.

The degree of indeterminism may be defined as the
measure of deviation of the marginal probabilities from
the deterministic values of 0 and 1. The local de-
gree of indeterminism Ij may be defined [12, 13] as the
smallest positive number, such that the corresponding
marginal probabilities lie in [0, Ij ]

∪
[1− Ij , 1], i.e., Ij :=

sup{x,y,λ} minz{pj(z|x, y, λ), 1−pj(z|x, y, λ)}. Thus, Ij =
0 if and only if the corresponding marginal is determin-
istic. The overall degrees of indeterminism for the model
may be defined as, I := max{I1, I2}. Hence 0 ≤ I ≤ 1/2,
with I = 0 if the model is fully deterministic.

If a model of two parties be such that the determinism
is relaxed for the second party while the measurement
outcomes of the first party are deterministic, then such a
model is said to be the one sided indeterministic model.
In such a model I1 = 0, 0 < I2 ≤ 1/2. Hence, I = I2.

A Complementary Relation Between Signaling And
Determinism: The degrees of indeterminism and sig-
nalling are dependent on each other to some extent. This
is due to the fact that any deviation in a marginal proba-
bility value p, due to signaling, must either keep the value
in the same subinterval [0, I] (or, [1 − I, 1]) (S ≤ I) , or
shift the value across the gap between the subintervals
(S ≥ 1− 2I) which leads to I ≥ min{S, (1− S)/2}.

Measurement Independence: Measurement indepen-
dence of a model is the property that the distribution
of the underlying variable is independent of the mea-
surement settings chosen by the experimenters. More
specifically, p(λ|x, y) = p(λ|x′, y′) for every joint settings
(x, y), (x′, y′). This condition is satisfied by quantum
system. By Bayes’ theorem, alternately one can ob-
tain, p(x, y|λ) = p(x, y), p(x, y, λ) = p(x, y)p(λ) as-
suming the existence of a well defined distribution p(x, y)
of joint measurement settings [13]. Thus, Measurement
dependence(M) may be interpreted as a measure to quan-
tify the degree of violation of measurement indepen-
dence by the underlying model. It is defined as [11]:
M := supx,x′,y,y′

∫
dλ|p(λ|x, y) − p(λ|x′, y′)|. Therefore,

for measurement independence M = 0. The maximum
possible value of M is given by Mmax = 2 implying com-
plete measurement dependence. The fraction of measure-
ment independence corresponding to a given model is de-
fined by [11], F := 1−M/2. Thus 0 ≤ F ≤ 1, with F = 0
for the case where M = 2. Geometrically, F represents
the minimum degree of overlap between any two under-
lying distributions p(λ|x, y) and p(λ|x′, y′). Also, local
degrees of measurement dependence are defined analo-
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gously [11], M1 := supx,x′,y

∫
dλ|p(λ|x, y) − p(λ|x′, y)|;

M2 := supx,y,y′
∫
dλ|p(λ|x, y) − p(λ|x, y′)|. So, local de-

grees of measurement independence are defined by, F1 :=
1−M1/2; F2 := 1−M2/2.
Bell Inequality Under Relaxation of Determinism and

No signaling on One Side: In order to generate mod-
els violating Bell inequality, the properties of no signal-
ing and that of determinism are relaxed to some extent,
thereby introducing signaling and indeterminism in the
models. The extent of relaxation of these two proper-
ties can be quantified with the help of the corresponding
relaxed Bell-type inequality [12]. Below we describe a
model where one sided signaling and indeterminism are
introduced.
In a system of two parties (Alice and Bob), it is as-

sumed that determinism and no signaling are preserved
by the correlations shown by Alice’s measurement. A sig-
nal is sent to Bob by Alice and it is also assumed that
the correlations in Bob’s part are indeterministic. So for
this model S = S1→2 and I = I2. The extent of mini-
mum possible relaxation in this context is given by the
following theorem.
Theorem 1: Let x, x′ and y, y′ denote possible measure-

ment settings for Alice and Bob, respectively, and label
each measurement outcome by 1 or -1. Suppose, ⟨XY ⟩
being the average product of the measurement outcomes
for joint measurement settings. Then, for any underlying
model having values of indeterminism and signalling of
at most I and S, respectively, Bell inequality takes the
form: ⟨XY ⟩ + ⟨XY ′⟩ + ⟨X ′Y ⟩ − ⟨X ′Y ′⟩ ≤ B(I, S) with
upper bound B(I, S) = 2+2I for S < 1−2I(tight upper
bound), and < 4 for S ≥ 1− 2I.
Immediate implications: Original form of Bell inequal-

ity is derivable with I = S = 0, i.e., B(0, 0) = 2. De-
gree of relaxation for V, the amount of violation: Sup-
pose, the Bell-CHSH inequality be violated by an amount
V . The left hand side of above equation gives 2 + V .
Hence the corresponding model must satisfy the rela-
tion B(I, S) ≥ 2 + V. Also, I ≥ IV := V/2 and/or
S ≥ SV := 1 − V. This theorem, thus exerts bounds on
the minimum possible degrees of indeterminism and sig-
nalling that must exist in any corresponding model. For
singlet state correlations, V = 2

√
2 − 2 [15]. Thus, any

singlet state model must assign at least 82% of indeter-
minism, and/or communicating at least 17% of signaling.
Can Maximal Violation Be Reached? For I = 0 and/or
S = 1, B(I, S) = 4. But in that case Bob’s outcome cor-
relations become deterministic. Hence, unlike the case
of both sided relaxation on no signaling and determin-
ism [12], for one sided signaling and indeterminism max-
imal violation cannot be reached. Division of the range
of violation: Depending on the complementary relation
between indeterminism and signaling, we get two subin-
tervals R1 and R2 of the interval R = (2, 4] of violation.
For S < 1− 2I, R1 = (2, 3). For S ≥ 1− 2I, we get the
other subinterval R2 = (2, 4).
Bell Inequalities Under Relaxation of Determinism, No

signaling and measurement independence on One Side:

A relaxed Bell-type inequality is framed to investigate
the extent to which Bell inequalities are violated when
jointly no signaling, determinism and measurement in-
dependence are relaxed from one side. This quantifies
the amount of individual and/or joint degrees of relax-
ation required to model a given violation of a standard
Bell inequality. Without loss of generality, we assume
that joint relaxation is done only on Bob’s side, i.e.,
I2 > 0, S1→2 > 0 and M2 > 0, whereas at the same
time Alice maintains I1 = 0, S2→1 = 0 and M1 = 0.
Thus, I > 0 and S > 0.

Theorem 2 : Suppose, x, x′ and y, y′ be the measure-
ment settings for Alice and Bob respectively and the mea-
surement outcomes for each party be 1 or -1. If ⟨XY ⟩
denote the average of the product of the measurement
outcomes for joint measurement settings X and Y, then
⟨XY ⟩ + ⟨XY ′⟩ + ⟨X ′Y ⟩ + ⟨X ′Y ′⟩ ≤ B(I, S,M) where
I, S and M are the values of indeterminism, signaling
and measurement dependence respectively, for any un-
derlying models. B(I, S,M) = 4 − (1 − I)(2 −M), for
S < 1 − 2I and M < 2 (tight upper bound) and < 4,
otherwise.

As immediate implications we will discuss here two
cases:Degree of relaxation for generation of singlet state
correlations: Here V = 2

√
2 − 2 [15]. Thus any singlet

state model must either assign at least 82% of uncer-
tainty and/or predict a change of at least 17% and/or
relax measurement independence by 59% for one party in
response to a measurement performed on the other party.
Local deterministic model: In this case, both I = 0 and
S = 0 and B(0, 0,M) = min{2 +M, 4}. Hence, a local
deterministic model exists for simulating a singlet state
correlation if and only if M ≥ V = 2

√
2 − 2 ≈ 0.82. So

59% measurement independence is optimal for simulat-
ing singlet correlation when measurement dependency is
allowed only on one side. These results have been ob-
tained in a recent paper [14]. So, our relaxed Bell in-
equality gives a general result and [14] can be obtained
as a particular case.

In our work, we then considered relaxed Bell inequal-
ities for more than two settings. Thus, we have consid-
ered here only one sided relaxation of constraints such
as, no signaling, determinism and measurement indepen-
dence and have framed Bell-type inequalities under such
assumptions. With the view of all discussed in our work,
we can safely conclude that the results derived in one
sided relaxation scenarios do not tally exactly with that
of in the both sided cases. The existing complementary
relation between both sided signaling and indeterminism
also holds in the one sided case. But the minimal degree
of relaxation of the constraints in the one sided cases dif-
fer from that of both sided cases. The form of relaxed
Bell-type inequalities have also changed. There still re-
main many other topics of discussion in the context of
one sided relaxation of physical constraints.

For details of our work we refer arXiv version
arXiv:1304.7409
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