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Background.
To realize a quantum computation, we need to have fault-tolerant quantum gates, i.e., quantum
gates with a very low operational error rate. We use quantum error correction codes for that
purpose in the conventional quantum circuit model.

Topological quantum computation [1] is another possible way to have fault-tolerant quantum
gates. Recently, this model of quantum computation has been considered to be much more
promising than conventional model of quantum circuits in terms of error corrections. The way
of encoding logical qubits in topological quantum computation is very different from the conven-
tional quantum circuit model, and thus the logical primitive operations are also very different.
The primitive operation called a braiding operation can be seen as drawing a line between logical
qubits with some special rules. We need to consider such special rules when we design a quan-
tum circuit. Therefore, it should be difficult to utilize the conventional quantum circuit design
naively, and thus it is desirable to have a dedicated quantum circuit optimization method in logic
level with considering special rules of braiding operations.
Our Contribution.
In our work, we formulate a quantum circuit optimization problem especially for the topological
quantum computation. First we observe that our design strategy should be different from the
conventional quantum circuit design as follows. To understand the difference, let us see the
circuit in Fig. 1. In the conventional quantum circuit model, we often assume that multiple
CNOT gates can be performed at the same time if their interacting qubits are different, and the
depth of a circuit is calculated based on this assumption. For example, we can perform g1 and g2

in the circuit in Fig. 1 at the same time. The important observation here is that such a relation
of two gates does not change even if we change the qubit order (qubit layout). Thus, in the
conventional quantum circuit design, we do not need to consider the qubit order.

Contrary to the above, in topological quantum computation, we can assume any two gates can
be performed parallelly only if their gate symbols on the circuit diagram are not overlapped in
the horizontal direction. (The rigorous discussion can be found in the attachment.) For example,
we cannot perform g1 and g2 in the circuit in Fig. 1 at the same time unlike the conventional
circuit model.

Therefore, the qubit orders (i.e., qubit layout) may be really important for the computation
time for topological quantum computation. Our problem is intuitively to find a good qubit order
for a given circuit as shown in Fig. 1. By our proposed method, we can optimize the circuit in
Fig. 1 to the one in Fig. 2. Here, the two circuits are logically equivalent but with different initial

1



x
1

x
2 

x
3  

x
4  

x
5  

x
6  

x
7  

x
8  

x
9  

g
8

g
6

g
5

g
4

g
7

g
2

g
1

g
3

Figure 1: An Initial Circuit: 8
Steps.
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Figure 2: The Optimized One-Dimensional
Qubit Layout by Our Method: 3 Steps.
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Figure 3: The Optimized Two-Dimensional Qubit Layout by Our Method: 2 Steps.

qubit orders. The number of the logical time steps in the circuit in Fig. 1 is 8, which is optimized
by our method to be 3 as shown in Fig. 2.

Moreover we consider two-dimensional qubit layout. In one-dimensional qubit layout, it can
be shown that one single qubit order does not allow us to perform the above circuit with two time
steps. For example, at the one-dimensional qubit layout of the qubit order as shown in Fig. 2,
the three gates, g4, g1 and g5 (or g7), are overlapped with each other; we need at least three
time steps. In contrast, if we layout the qubits two-dimensionally as shown in Fig. 2, we can
perform the circuit with only two logical time steps. This is because the two-dimensional qubit
layout allows us to perform g1, g2, g3 and g4 at the same time as shown on the left-hand side
of Fig. 3. Our proposed method can find such a good two-dimensional qubit layouts efficiently.
As far as we know, our method is the first systematic synthesis method for topological quantum
circuits by considering two-dimensional qubit layouts. Both of our optimization methods for one-
dimensional and two-dimensional layouts utilize clique finding efficiently. The detail is discussed
in the attachment.
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