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Study of certain class of tripartite correlations under a number of recently proposed bi-

partite physical principles has produced important insight regarding such principles. We find

a lower bound on success probability of tri-partite Hardy’s correlation respecting all bi-partite

physical principles. The no-signaling principle does not reveal any gap in Hardy’s maximum

success probability for bi-partite and tri-partite system, whereas quantum mechanically there

is such a gap. Interestingly, we show that, Information causality principle is successful in

qualitatively revealing this quantum feature.

Motivation–The outcome of local measurements on spatially separated parts of a composite

quantum system can be non-classically (nonlocally) correlated. Violation of the Bell-CHSH in-

equality [1, 2] is a witness of this nonlocal feature in such correlations. The value of Bell-CHSH

expression, exceeding the classical bound 2, then qualifies as a measure of nonlocality. This non-

locality within the quantum mechanics is limited by the Cirel’son bound 2
√

2 [3]. On the other

hand, on considering a larger set of generalized correlations (possibly non-quantum) which are

compatible with no signaling (NS) principle, nolocality underlying these correlations can achieve

any value up to the algebraic maximum 4 for the Bell-CHSH expression (e.g. PR-box correlation

achieves the value 4 [4]). So the natural questions arises; what are the physical principles, other

than NS, that can distinguish quantum correlations from post-quantum no-signaling correlations?

This fundamental question has been addressed in several recent works proposing novel physical

principles, like, no nontrivial communication complexity [5, 6], macroscopic locality [7] and infor-

mation causality [8], for explaining the boundary defining quantum correlations. In particular,

the application of the principle of noviolation of information causality (IC) has produced very

interesting results, like explaining the Cirel’son’s bound and showing that in a bipartite scenario

any correlation going beyond the Cire’lson bound is unphysical. IC principle is a generalization of

no-signaling condition—while relativistic causality (the no-signaling principle) states that a party

cannot extract more information then the communicated (say, m) number of cbits; information

causality further restricts free choice to decode deterministically a single m-cbit information, from
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different possible m-cbit informations potentially encoded within the communicated amount of

m-cbit message. Applications of the IC principle in the study of both bi-partite and tri-partite

correlations has produced some interesting results [9–12]. On the other hand, IC or any other

bi-partite principle has been shown to be insufficient for witnessing all multipartite post-quantum

correlations [13, 14]. Thus, multipartite generalization of IC, or some other genuinely multipartite

physical principle(s) are necessary to characterize all quantum correlations. Studying some simple

class of multipartite correlations, like Hardy’s set [15, 16, 18, 19], can give useful insight about the

strength and weakness of such principles [10, 11, 14].

Like Bell-CHSH nonlocality test, Lucian Hardy first proposed [15] an elegant argument for

witnessing nonlocal correlations without any use of inequality. For two qubit states subjected to

local projective measurements, the maximum success probability of Hardy’s nonlocality argument

has been shown to be (5
√

5−11)/2 (≈ 0.09)[16, 17]. Recently, it has also been shown that this value

is ‘device independent’, i.e, the maximum success probability of Hardy’s argument for any bipartite

quantum state is (5
√

5− 11)/2 [18]. Again, on extending Hardy’s argument to three qubit systems

subject to local projective measurements, the maximum success probability of the argument is

shown to be 1
8 (= 0.125) [19]—this value also holds for any tripartite state subjected to arbitrary

measurements, i.e., this value is also device independent [14]. Thus, in quantum mechanics, the

maximum success probability of Hardy’s nonlocality argument for tri-partite system is greater than

that for bi-partite system.

Hardy’s nonlocality has been studied in the broader framework of general probabilistic theories

by invoking physical principles like NS condition and IC condition. Under the NS condition,

optimal success probability for Hardy’s nonlocality is 1
2 , both for bi-partite system and tri-partite

system [19]. Thus, in contrast to the quantum mechanical feature, under the NS condition there

is no gap between Hardy’s maximum success probability for bi-partite and tri-partite system. On

the other hand, under the IC principle, it has been shown that the maximum success probability of

Hardy’s argument for bi-partite system is bounded above by 0.207 [10]. The study for the bound

on Hardy’s success probability for tri-partite system under IC condition has not yet been studied.

The problem is very intriguing as information causality is a bi-partite principle and it is highly

nontrivial to exhaust the IC condition under all bi-partitions with all possible wirings.

Results–Motivated along this line of research, in our work [23], we show that the maximum

value of Hardy’s success for tri-partite correlation satisfying every bi-partite principle cannot go

below 1
4 . Then, we argue that in particular IC principle successfully reveals a quantum feature

viz. a gap between Hardy’s maximum success probability for bi-partite and tri-partite systems.
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Moreover, the gap between two bounds is decisive, as for tri-partite system we achieve a lower bound

through a probability distribution which is time-ordered-bi-local (TOBL) [20–22] and hence it not

only satisfies IC but satisfies any bi-partite information principles discovered or not discovered.

On the other hand, for the bipartite case, the upper bound on maximum success probability was

derived by applying a necessary condition for respecting the IC principle. Thus, even though

IC principle may not reproduce various quantum features quantitatively like maximum success

probability for Hardy’s nonlocality in quantum mechanics, still it could reproduce some qualitative

interesting quantum features like revealing a gap between bi-partite and tri-partite cases for the

maximum success probability of Hardy’s nonlocality argument.
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