Non-classicality and entanglement of symmetric multiqubit states


1Department of Physics, Bangalore University, Bangalore-560 056, India
2Inspire Institute Inc., Alexandria, Virginia, 22303, USA.
3Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019, India
4Department of Physics, Kuvempu University, Shankaraghatta, Shimoga-577 451, India.
5Raman Research Institute, Bangalore 560 080, India

Non-classical quantum states draw attention both from conceptual point of view and as a resource for quantum information technology. Tests to explore whether a quantum system exhibits non-classicality has gained renewed attention. These investigations provide insights into how quantum description of nature turns out to be inevitable. Widely accepted notion of non-classicality emerged from quasi-probability distributions of quantum systems [1]. Failure of the Sudarshan-Glauber P-function [2] from being a true classical probability density offers a decisive signature of non-classicality in single mode quantum radiation. On the other hand, information theoretic concepts define non-classical correlations in a composite quantum system [4–6]. A comparison of these two celebrated approaches in bipartite bosonic states revealed that the notion of nonclassicality stemming from P representation is inequivalent to that emerging from information-theoretic arguments [7]. In this paper, we investigate the same question in multiqubit symmetric systems and we find that the notion of non-classicality emerging from the P representation of spins [8] is a necessary and sufficient condition for entanglement [3].

Sudarshan-Glauber P representation of an arbitrary quantum state formally resembles a statistical mixture of coherent states of radiation. For a single coherent state, the weight function of the P representation reduces to a δ function in the phase space. However, for a large class of quantum states the P function (weight function) cannot be interpreted as classical probability density as it can assume negative values or is more singular than delta function. Consequently, states with ill behaved P-function are referred to as non-classical. P representation has been extended for discrete spin states too [8]. It allows for a decomposition of the spin density matrix as a weighted sum of spin coherent states [8]. Classicality of spin
states, based on well behaved P representation has been explored by Giraud et. al. [9].
function to be a classical probability density. They also investigated simple operational
procedures revealing the violation of classical statistical bounds by non-classical spin states.
In addition to studying the non-classicality of single spin systems, Giraud et. al. [9] analyzed
the implications of P representation on entanglement in bipartite spin systems. They showed
that a bipartite system consisting of two qubits is separable if and only if their P function
is positive. However, in the case of a coupled system consisting of spin-1/2 and spin-1, it
was recognized that separable states too can exhibit non-classicality manifested in terms
of their non-positive or singular P function. We have confined our attention on symmetric
N qubit states [12] for our investigation. Our main result is the following: the set of all
separable symmetric multiqubit states possess a well-behaved positive P representation [3].
Conversely, the existence of a positive P function for a symmetric multiqubit state implies
its separability [3]. In other words, we recognize that non-classicality (characterized by P-
function negativity) implies entanglement and vice versa in symmetric multiqubit states [3].
We also explore how P function negativity gets reflected in terms of operational tests of
non-classicality (entanglement) in symmetric multiqubit states.

(1963).

