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Non-classical quantum states draw attention both from conceptual point of view and as

a resource for quantum information technology. Tests to explore whether a quantum system

exhibits non-classiclaity has gained renewed attention. These investigations provide insights

into how quantum description of nature turns out be inevitable. Widely accepted notion of

non-classicality emerged from quasi-probability distributions of quantum systems [1]. Failure

of the Sudarshan-Glauber P-function [2] from being a true classical probability density offers

a decisive signature of non-classicality in single mode quantum radiation. On the other hand,

information theoretic concepts define non-classical correlations in a composite quantum

system [4–6]. A comparison of these two celebrated approaches in bipartite bosonic states

revealed that the notion of nonclassicality stemming from P representation is inequivalent

to that emerging from information-theoretic arguments [7]. In this paper, we investigate

the same question in multiqubit symmetric systems and we find that the notion of non-

classicality emerging from the P representation of spins [8] is a necessary and sufficient

condition for entanglement [3].

Sudarshan-Glauber P representation of an arbitrary quantum state formally resembles a

statistical mixture of coherent states of radiation. For a single coherent state, the weight

function of the P representation reduces to a δ function in the phase space. However, for

a large class of quantum states the P function (weight function) cannot be interpreted as

classical probability density as it can assume negative values or is more singular than delta

function. Consequently, states with ill behaved P-function are referred to as non-classical. P

representation has been extended for discrete spin states too [8]. It allows for a decomposition

of the spin density matrix as a weighted sum of spin coherent states [8]. Classicality of spin
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states, based on well behaved P representation has been explored by Giraud et. al. [9].

Luis and Rivas [10] showed that spin squeezing [11] manifestly reflects the failure of P

function to be a classical probability density. They also investigated simple operational

procedures revealing the violation of classical statistical bounds by non-classical spin states.

In addition to studying the non-classicality of single spin systems, Giraud et. al. [9] analyzed

the implications of P representation on entanglement in bipartite spin systems. They showed

that a bipartite system consisting of two qubits is separable if and only if their P function

is positive. However, in the case of a coupled system consisting of spin-1/2 and spin-1, it

was recognized that separable states too can exhibit non-classicality manifested in terms

of their non-positive or singular P function. We have confined our attention on symmetric

N qubit states [12] for our investigation. Our main result is the following: the set of all

separable symmetric multiqubit states possess a well-behaved positive P representation [3].

Conversely, the existence of a positive P function for a symmetric multiqubit state implies

its separability [3]. In other words, we recognize that non-classicality (characterized by P-

function negativity) implies entanglement and vice versa in symmetric multiqubit states [3].

We also explore how P function negativity gets reflected in terms of operational tests of

non-classicality (entanglement) in symmetric multiqubit states.
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