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We investigate the problem of teleportation through two-qubit noisy channels with the aid of
weak measurement to preserve the fidelity of teleportation. In particular, we consider a shared
two qubit maximally entangled state as resource for teleportation, allowing one or both qubits to
interact with the environment via the amplitude damping channel. We show that application of
weak measurement and subsequent reverse measurement at suitable stages of the protocol lead to
fidelity greater than 2/3 for any value of the decoherence parameter when only one of the qubits
interact with the environment. In the case when both qubits interact with the environment, the
above-mentioned technique of weak measurement and its reversal enables one to achieve the fidelity
greater than 2/3 for all magnitudes of decoherence for a sub-class of maximally entangled channels.
The success probabilty of the protocol decreases with the strength of weak measurement, and is
lower when both the qubits are affected by decoherence. Finally, if weak measurement is performed
without post-selection, we show that the teleportation fidelity can still be improved for a certain
range of decoherence.

PACS numbers: 03.65.Ta, 03.65.Ud, 03.65.Yz

I. INTRODUCTION

The primary goal of quantum information processing
is to enable performing tasks that are unable to be ac-
complished classically. Teleportation [1] is a typical infor-
mation processing task where at present there is intense
activity in extending the experimental frontiers [2]. At
the practical level teleportation is implemented through
the sharing of quantum entanglement by separated par-
ties involving the transmission of quantum particles over
large distances. Environmental interaction is a ubiqui-
tous process here, which unless controlled through well-
devised means, leads to an inevitable loss of fidelity of the
teleported quantum states. Depending upon the magni-
tude of environmental effects, the fidelity could fall be-
low the maximum limit attainable using classical means,
thereby nullifying the quantum advantage of teleporta-
tion.

Though decoherence is generally responsible for the de-
cay of quantum correlations in entangled states, and the
associated loss of fidelity for the corresponding informa-
tion processing tasks for which such states are utilized as
resources, it has been noted that under certain specially
chosen conditions, it could also have a reverse effect. En-
tanglement between two systems could be created or in-
creased by their collective interactions with a common
environment [3]. Applications of such effects in entangle-
ment generation using trapped ions and cavity fields have
been suggested [4, 5]. For the specific case of teleporta-
tion it has been observed that the effect of amplitude
damping on one of the qubits of a shared bipartite state
could lead to the enhancement of fidelity above the classi-
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cal limit for a class of states whose fidelity lies just below
quantum region [6]. However, such an improvement is
possible only for low values of the damping parameter,
and occurs only for a restricted class of states [7].

The preservation of entanglement in open systems is an
important concern, and in the present work we will ap-
proach this issue from another suggested direction. Re-
cently, the application of weak measurements has been
suggested as a practically implementable method for pro-
tecting the fidelity of quantum states undergoing deco-
herence through the amplitude damping channel [8–13].
The original concept of weak measurements proposed
several years ago [14] showed how it would be possible
to get an experimental outcome outside the eigenvalue
spectrum of an observable, if a sufficiently weak coupling
of the system and the apparatus along with the technique
of post-selection is employed. The idea of weak measure-
ments has more recently been utilized in several interest-
ing applications such as observations of spin Hall effect
[15], trajectories of photons [16], direct measurement of
the quantum wave function [17], and measurement of ul-
trasmall time delays of light [18].

The motivation of this work is to show how the fi-
delity of teleportation using the resource of two-qubits
open to amplitude damping environments could be pro-
tected with the help of weak measurement. For this pur-
pose we utilize the technique of weak measurement and
its reversal as employed recently in order to exhibit the
supression of the effect of amplitude damping decoher-
ence in preserving the entanglement of two-qubit states
[8–13]. We base our study on maximally entangled two-
qubit channels which are the most widely used resources
in teleportation, and the effects of amplitude damping
on which have been investigated earlier for the purpose
of obtaining fidelity greater than 2/3 without using weak
measurement [6, 7]. [A fidelity below the classical limit
of 2/3 can be obtained with the help of shared random-
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ness]. We adapt the technique of weak measurement and
its reversal in the context of such a setting through the
calculation of the optimal strength of weak measurements
required in order to maximize the output fidelity.

The plan of this paper is as follows. In Section II we
provide a brief review of teleportation through two qubit
amplitude damping channels. In Section III we present
our analysis of employing weak measurements in telepor-
tation. As in any protocol involving weak measurement
[8–18], the role of post-selection is important here, since
it allows one to work with only a sub-ensemble of all the
initial states. Our analysis based on such post-selection
shows that an average fidelity greater than 2/3 is attain-
able for any strength of decoherence for all maximally
entangled two-qubits if one of them undergoes damping,
while such a result holds for a sub-class of maximally
entangled two-qubits if both of them are affected by de-
coherence. However, one may further ask the question
as to what happens if instead of using post-selection, one
were to set up a teleportation protocol involving the full
ensemble of initial states. We address this question in
Section IV where we compute the average teleportation
fidelity without post-selection and compare it with the
case when no weak measurement and reversal are per-
formed. We find interestingly, that even in such a case
the fidelity can be improved for a certain range of deco-
herence, a result without analogue in the protection of
entanglement using the technique of weak measurement.
We make some concluding remarks in Section V.

II. TELEPORTATION THROUGH TWO-QUBIT
AMPLITUDE DAMPING CHANNELS

In quantum teleportation with the help of entangle-
ment the sender (say, Alice) is able to transfer the un-
known quantum state of a qubit to a receiver (say, Bob),
stationed at a distant location by performing local quan-
tum operations and communicating two bits of classical
information to Bob. The efficiency of teleportation, i.e,
closeness of the teleported state with the initial state,
|ψi〉 is determined by the fidelity F given by [19]

F = 〈ψi|σ(|ψf 〉)|ψi〉, (1)

where σ(ψf ) is the density of the teleported state |ψf 〉,
and the average is taken over all initial states. For a given
two-qubit entangled state σ12 shared between Alice (who
possesses the qubit labelled ‘1’) and Bob (who possesses
the qubit labelled ‘2’), the relation of the teleportation
fidelity with the fully entangled fraction (FEF), f(σ12)
of σ12 is given by[20]

F (σ12) =
2f(σ12) + 1

3
, (2)

where f(σ12) is defined by [21]

f(σ12) = max
|φ〉
〈φ|σ12|φ〉, (3)

with the maximization taken over all two qubit maxi-
mally entangled states |φ〉. For the shared maximally
entangled states σM12 , f(σM12 ) = 1 and F (σM12 ) = 1. In ab-
sence of entanglement, i.e., by using shared randomness,
the average teleportation fidelity achieved is 2/3 [22].

Let us suppose that Alice prepares two qubits in one
of the four maximally entangled states, given by

|ψM± 〉 =
|00〉12 ± |11〉12√

2
(4)

|φM± 〉 =
|01〉12 ± |10〉12√

2
, (5)

where subscript i ∈ {1, 2} represents the i-th qubit, and
sends the second qubit to Bob. At the time of transit
over the environment, the second qubit interacts with
the environment. Due to this interaction, the entangle-
ment between the qubits decreases and the maximally
entangled state becomes a mixed state σ12. If the FEF
f(σ12) ≤ 1/2, the state σ12 is useless for the telepor-
tation, as one can achieve the fidelity 2/3 on average
classically.

In Ref.[6], the authors investigated whether using trace
preserving LOCC (local operations and classical commu-
nications), one could get the quantum advantage, i.e., the
fidelity to lie between 2/3 and 1 from the shared entan-
gled state σ12 with f(σ12) ≤ 1/2. Any bistochastic map
(Λ) which preserves both the trace and identity (I), i.e.,
(Λ(I) = I) fails to improve the FEF from the classical
region (0 ≤ f ≤ 1/2) to the quantum region (f > 1/2).
Badziag et al.[6] showed that for a class of states ρ12
given by

ρ12 =

λ11 0 0 λ14
0 λ22 −γ23 0
0 −γ23 λ33 0
λ14 0 0 λ44

 , (6)

where γ23 ≥ 0 and λ14 are real; and λ22 + λ33 ≥ 1
2 ,

γ23 ≥ (1 − λ22 − λ33)/2, the fidelity (F (ρ12) = (1 +
λ22 + λ33 + 2γ23)/3 ≥ 2/3) can be enhanced by apply-
ing a non-bistochastic map Λ. For the choice of pa-
rameters λ11 = λ14 = 0, λ22 = 3 − 2

√
2, λ33 = 1,

λ44 = 2
√

2 − 2 and γ23 =
√

2 − 1, the fidelity of the
above state, (F (ρ12) = 2/3, which belongs to classical
region) can be enhanced up to 2.06

3 (which lies in the

quantum region) by applying Λ on any one of the qubits
[6]. The map Λ which represents the dissipative inter-
action of any one qubit with the environment via the
amplitude damping channel (ADC), is given by

Λ(ρα) = Wα,0ραW
†
α,0 +Wα,1ραW

†
α,1, (7)

where α ∈ {1, 2}, ρ1(2) = Tr2(1)[ρ12], and the operators
Wα,i are given by

Wα,0 =

(
1 0

0
√
Dα

)
, Wα,1 =

(
0
√
Dα

0 0

)
, (8)
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where Dα = 1 −Dα. Here D1 and D2 are the strength
of interactions of the 1st qubit (belonging to Alice) and
the 2nd qubit (belonging to Bob) with the environment,

respectively, and
∑
i

W †α,iWα,i = I. The above map de-

scribes the interaction of the environment (which is ini-
tially in the state |0〉E) with the qubit by the following
transitions

|0〉i|0〉E → |0〉i|0〉E ,

|1〉i|0〉E →
√
Dα|1〉i|0〉E +

√
Dα|0〉i|1〉E , (9)

where i ∈ {1, 2} and α = 1(2) for i = 1(2).
Later, in Ref.[7], it was shown that the above inter-

esting class of states ρ12 (used in Ref.[6]) are obtained
when Alice prepares the two-qubit maximally entangled
state only in the class given by Eq.(4) and sends one
qubit (say, the second qubit) to Bob over ADC. Now,
for the purpose of enhancing the fidelity, Alice allows her
qubit (1st qubit) also to interact with the environment
via ADC. According to Bandyopadhyay [7], the fidelity is
increased from the classical region to the quantum region
due to the enhancement of classical correlations by the
application of ADC on the 1st qubit as LOCC by itself
is unable to increase the entanglement. This protocol is
not effective if the prepared maximally entangled state is
chosen from the class given by Eq.(5).

III. APPLICATION OF WEAK
MEASUREMENT AND MEASUREMENT

REVERSAL

In earlier studies [8–12] it has been shown that the ef-
fect of amplitude damping decoherence (given by Eq.(9))
can be suppressed by weak quantum measurement and
reversing quantum measurement (WMRQM) [10]. In the
present work we consider two cases. In the 1st case
(“Case I”), Alice prepares two qubits in one of the above
two classes given by Eqs.(4) and (5), and sends the 2nd
qubit to Bob. Here the 2nd qubit is affected by ADC
and 1st qubit is unaffected. In this case, for all shared
states ρ12 whose teleportation fidelities lie in the classical
region, Alice and Bob are able to enhance the fidelity to
the quantum region with the help of WMRQM, as we
show below. In the second case (“Case II”), we consider
both the 1st and 2nd particles to be interacting with envi-
ronment. Here we show that for the class of states which
are unable to achieve fidelity in the quantum region after
allowing the interaction of Alice’s particle with the en-
vironment, the help of WMRQM enables attainment of
fidelity above classical region. However, if the prepared
state is chosen from the class given by Eq.(5), the WM-
RQM technique fails to shift the fidelity from the classial
region to the quantum region. We also calculate the the
success probability (which is a consequence of the non-
unitary operation for the weak measurement) [11] and

show how it decreases with increment of the strength of
the weak measurement.

Our protocol for both the cases proceeds as follows.
First, Alice prepares two qubits in one of the maximally
entangled states given by Eqs.(4) and (5). Before al-
lowing the interaction with environment via ADC, Alice
makes a weak measurement with the strength pi on the i-
th particle (i = 1, 2). The weak measurement is achieved
by reducing the sensitivity of the detector, i.e., the de-
tector clicks with probability pi if the input qubit is in
the state |1〉i, and never clicks if the input qubit is in
the state |0〉i [10, 11]. When the detector clicks, the pro-
tocol fails as the input state collapses on the state |1〉i
in an irreversible way. The success probability plays an
important role in our protocol. When the detector does
not click, the input state partially collapses towards the
state |0〉i which is unaffected by the interaction given by
Eq.(9) [10]. The measurement operator corresponding to
the detection of the particle is given by

Mα,1 =

(
0 0
0
√
pα

)
, (10)

which does not have any inverse and hence, Mα,1 is irre-
versible. The measurement operator that describes the
situation when the detector has not clicked is given by

Mα,0 =

(
1 0
0
√
pα,

)
, (11)

where pα = 1−pα and M†α,0Mα,0 +M†α,1Mα,1 = I. Here,
Mα,0 is the reversible having a mathematical inverse.
Case I. : Here, only the 2nd qubit is affected by the

amplitude damping dechoherence when Alice sends it to
Bob over the environment. To reduce the effect of ADC,
Alice makes a weak measurement before sending the 2nd
qubit and after receiving it, Bob makes a reverse weak
measurement. After making the weak measurement on
the 2nd qubit by Alice, the two-qubit state (unnormal-
ized) becomes

ρW± = (I ⊗M2,0)|ψ〉M± 〈ψ|(I ⊗M
†
2,0)

=
1

2

 1 0 0 ±
√
p2

0 0 0 0
0 0 0 0

±
√
p2 0 0 p2

 (12)

and

σW± = (I ⊗M2,0)|φ〉M± 〈φ|(I ⊗M
†
2,0)

=
1

2

0 0 0 0
0 p2 ±

√
p2 0

0 ±
√
p2 1 0

0 0 0 0

 (13)

when Alice prepares the initial state in the maximally
entangled forms given by Eq.(4) and Eq.(5), respectively.
Here the detector’s inefficiency, or the success probability
is given by

PD2 = Tr[ρW± ] = Tr[σW± ] = (1− p2
2

). (14)
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Next, Alice sends the second qubit to Bob over ADC.
Due to the effect of the interaction, the shared state ρW±
becomes

ρD± = (I ⊗W2,0)ρW± (I ⊗W †2,0) + (I ⊗W2,1)ρW± (I ⊗W †2,1)

=
1

2

 1 0 0 k1
0 0 0 0
0 0 D2p2 0
k1 0 0 k12

 , (15)

where k1 = ±
√
D2p2. Similarly, σW± becomes

σD± = (I ⊗W2,0)σW± (I ⊗W †2,0) + (I ⊗W2,1)σW± (I ⊗W †2,1)

=
1

2

D2p2 0 0 0
0 k12 k1 0
0 k1 1 0
0 0 0 0

 . (16)

Finally, Bob applies the reverse quantum measurement
[10] N2,0 (corresponding to M2,0 given in Eq.(11)) given
by

N2,0 =

(√
q2 0
0 1

)
, (17)

where q2 is the strength of the weak measurement on the
2nd qubit and q2 = 1 − q2. At the end, Alice and Bob
actually share one of the states given by

ρR± = (I ⊗N2,0)ρD±(I ⊗N†2,0) (18)

=


q2
2 0 0

±
√
D2p2q2
2

0 0 0 0

0 0 D2p2q2
2 0

±
√
D2p2q2
2 0 0 D2p2

2


σR± = (I ⊗N2,0)σD± (I ⊗N†2,0) (19)

=


D2p2q2

2 0 0 0

0 D2p2
2

±
√
D2p2q2
2 0

0
±
√
D2p2q2
2

q2
2 0

0 0 0 0

 .

The FEF’s are equal for both the states given by
Eqs.(18) and (19), i.e., the FEF is the same whether Al-
ice prepares the initial two qubit state in the class given
by Eq.(4) or Eq.(5), and it is given by

f1 =
p2 + q2 + 2

√
D2p2q2 −D2p2

2(p2 + q2)− 2D2q2p2
(20)

The strength of the weak measurement has to be cho-
sen so as to achieve the purpose of the experiment. In
Ref.[13] the authors calculate the optimum strength of
the weak measurement that maximizes the concurrence
of the non-maximally entangled state used by them in
order to protect the entanglement from the interaction

of the qubits with environement via ADC. The optimal
value of q2 which maximally protects the fidelity of the
unknown teleported state undergoing amplitude damp-
ing is obtained by maximizing f1 (given by Eq.(20)) with
respect to q2. It turns out that for both the class of
prepared states, the optimal strength, qO2 of the reverse
measurement is the same, and is given by

qO2 =
3D2p2 +D2

2p
2
2 + p2

(1 +D2p2)2
. (21)

Note that though the choice of q2 = p2 +D2p2 optimally
preserves the entanglement of the maximally entangled
state [12, 13], it does not maximize the fidelity of the
state passing through the noisy channel. For the choice
of initial state from the class given by Eqs.(4) and (5),
using Eqs.(20) and (21) one can calculate the optimal
FEF which is given by

fO1 =
2 +D2p2
2 + 2D2p2

, (22)

where fO1 is bounded by 0.75 (occurs for the choice
D2 = 1 and p2 = 0) and 1 (occurs for either p2 = 1,
or D2 = 0). Here one may note that the optimal tele-

portation fidelity FO1 (=
2fO

1 +1
3 ) always belongs to the

quantum region (> 2/3) irrespective of the strength of
decoherence. Due to the weak measurement and the re-
verse weak measurement, the overall success probability,
i.e., the probability of obtaining the state ρR± (σR±) when
Alice prepares the two qubit state in the class given by
Eq.(4) (Eq.(5)) is given by [11]

P 1
Suss = Tr[ρR±] = Tr[σR±] =

1

2
(p2 + qO2 −D2p2)

=
(1−D2)(1− p2)(2 +D2(1− p2))

2 + 2D2(1− p2)
, (23)

where the success probability lies between 0 (which oc-
curs for either D2 = 1, or p2 = 1, or both) and 1 (which
occurs when both D2 = 0 and p2 = 0 hold simultane-
ously).

Now, let us consider the situation when no weak mea-
surement and its reverse is performed. Due to the effect
of interaction on the 2nd particle with the environment
via ADC, the FEF of the two-qubit state prepared in one
of the two classes of maximally entangled states given by
Eqs.(4) and (5), is given by[7]

f1 =
1

4
+

1

2

√
1−D2 +

1

4
(1−D2) (24)

and the corresponding fidelity turns out to be F 1 =
(2f1 + 1)/3. In the range 2

√
2 − 2 ≤ D2 ≤ 1, the tele-

portation fidelity F 1 lies in the classical region, and for
others values, i.e., 0 ≤ D2 < 2

√
2 − 2, F 1 lies in the

quantum region. In the figure, FIG. 1 we compare the
FO1 with the F 1. One sees that for sufficiently strong en-
vironmental interaction, the fidelity could fall below the
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quantum region without the help of weak measurement.
However, as detailed in our protocol above, when one
performs weak measurement and its subsequent reversal,
the fidelity is preserved above the classical value for all
strengths of decoherence. This result holds irrespective
of whether the initial state is chosen to belong to the
class given by Eq.(4) or by Eq.(5).

It is interesting to note that the role of the reverse
weak measurement done by Bob is more important than
the weak measurement made by Alice before sending the
2nd particle to Bob over the ADC. To see this point, we
consider that Alice sends the 2nd particle to Bob without
making any weak measurement on it, i.e., p2 = 0, over
the environment. After getting the 2nd particle, Bob
makes an optimal weak measurement given by Eq.(17)
with q2 = qO2 given by Eq.(21). The optimal FEF in this
case is given by

fO12 =
2 +D2

2 + 2D2
, (25)

which is obtained from Eq.(22) by putting p2 = 1, and

the corresponding success probability is
2−D2−D2

2

2(1+D2)
. Here,

FO12 (= (2fO12 + 1)/3) is not only greater than f1, but,
also FO12 lies in the quantum region, i.e., 5/6 ≤ FO12 ≤ 1
for all values of the decoherence parameter D2 which lie
in the region given by 1 ≥ D2 ≥ 0.

FIG. 1: (Coloronline) The flat plane represents the average classi-
cal fidelity 2

3
. The surface intersecting it represents the fidelity F 1

corresponding to the FEF f1 = 1
4

+ 1
2

√
1−D2 + 1

4
(1−D2). The

uppermost surface represents the fidelity FO
1 corresponding to the

FEF fO
1 =

2+D2p2
2+2D2p2

.

Case II. : In this case, both the 1st and 2nd parti-
cles interact with the environment via ADC. To prevent
the loss of information about the unknown state in the
teleportation protocol, Alice makes weak measurements
(given by Eq.(11)), separately on each qubit. When the
prepared two qubit state belongs to the class given by

Eq.(4), after the weak measurement the state becomes

ρWW
± = (M1,0 ⊗M2,0)|ψ〉M± 〈ψ|(M1,0 ⊗M†2,0)

=


1
2 0 0 ±

√
p1p2
2

0 0 0 0
0 0 0 0

±
√
p1p2
2 0 0 p1p2

2

 (26)

Similarly when the state chosen is from the class given
by Eq.(5), after weak measurement the state becomes

σWW
± =


0 0 0 0

0 p2
2 ±

√
p1p2
2 0

0 ±
√
p1p2
2

p1
2 0

0 0 0 0

 . (27)

The corresponding success probabilities of the weak mea-
surements are given by

PD12(ρWW
± ) = Tr[ρWW

± ] =
1

2
(1 + p1p2) (28)

and

PD12(σWW
± ) = Tr[σWW

± ] =
1

2
(p1 + p2), (29)

respectively.
Here, Alice sends the 2nd qubit through the ADC and

also allows her qubit (1st qubit) to interact with the en-
vironment. Hence, both particles interact with the envi-
ronment via ADC. After the interaction with the envi-
ronment, the noisy shared state takes one of the following
forms (depending upon the initial state)

ρDD± =


1+D1D2k4

2

2
0 0 ± k5k4

2

0 D1D2k4
2

2
0 0

0 0 D1D2k4
2

2
0

± k5k4
2

0 0 k52k42

2

(30)

σDD± =


D1p1

2
+

D2p2
2

0 0 0

0
D2p2

2
± k4k5

2
0

0 ± k4k5
2

D1p1
2

0
0 0 0 0

 , (31)

where k4 =
√
p1p2, k5 =

√
D1D2 and k6 = 1/(p1 + p2).

Next, both Alice and Bob apply reverse weak measure-
ment with the strengths q1 and q2 on their respective
particles. Let us consider the two classes of intial states
separately.

If the initial state is chosen to be from the class given
by Eq.(4), the joint state now becomes

ρRR± = (N1,0 ⊗N2,0)ρDD± (N1,0 ⊗N†2,0) (32)

where N2,0 is given by Eq.(17) and Alice’s reverse weak
measurement operator N1,0 is given by

N1,0 =

(√
q1 0
0 1

)
. (33)
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Before maximizing the fidelity f(ρRR± ) in this case, for
simplicity, let us make the following assumptions. We
consider D1 = D2 = D, i.e., both the qubits interact
with similar environments, and also, p1 = p2 = p, i.e.,
the strength of weak measurements on both qubits are
the same, and q1 = q2 = q, as well. Similar to ‘Case-I’,
we maximally enhance the teleportation fidelity (i.e., the
FEF f(ρRR± )) by maximizing f(ρRR± ) with respect to the
reverse weak measurement strength q. The optimal FEF
is given by

fO2 = f(ρRR± ) =
1 +

√
1 +D2p2 +D2p2

2(1 +Dp
√

1 +D2p2 +D2p2)
, (34)

which occurs for the choice

qO =
1 +D2p2 −

√
D

2
p2(1 +D2p2)

1 +D2p2
. (35)

From the above expression it follows that fO2 always lies
in the quantum region, i.e., between 0.5 (corresponding
to D = 1 and p2 = 0) and 1.0 (corresponding to D = 0
and p2 = 0). Simultaneously, the success probability
decreases according to the relation

P 2
Succ = Tr[ρRR± ]

=
1

1 +D2(1− p)2
((1−D)2(1− p)2(1 +

D(1− p)
√

1 +D2(1− p)2 +D2(1− p)2)),(36)

where we use q = qO. The success probability P 2
Succ

varies from 0 to 1.

FIG. 2: (Coloronline) The flat plane represents the average classi-
cal fidelity 2

3
. The lower surface represents the fidelity F 2 cor-

responding to the FEF f2 = 1 − D + D2

2
. The upper sur-

face represents the fidelity FO
2 corresponding to the FEF fO

2 =
1+
√

1+D2(1−p)2+D2(1−p)2

2(1+D(1−p)
√

1+D2(1−p)2+D2(1−p)2)
. Here we consider D1 = D2 =

D and p1 = p2 = p.

Here again, we compare the above situation with the
case when decoherence acts without introducing weak
measurement and reversal. In the absence of weak mea-
surement, when both the qubits undergo damping, the

FEF is given by [7]

f2 = 1−D +
D2

2
(37)

and F 2 is the corresponding fidelity. Note that when D
is chosen in the range 2

√
2− 2 ≤ D ≤ 1, though F 1 lies

in the classical region, it was shown that F 2 is quantum
[6, 7]. In FIG. 2, we compare the optimal fidelity FO2
achieved using weak measurement and reversal with F 2.
The comparison shows that the weak measurement tech-
nique enhances the fidelity FO2 above F 2 for the whole
range of the decoherence parameter.

Next, we compare the success probabilities for both
the cases studied, which are given by Eqs.(23) and (36),
respectively. In FIG. 3, we plot the success probabili-
ties P 1

Succ with P 2
Succ , as functions of the decoherence

parameter and the strength of weak measurement. Note
that in both the cases the corresponding success proba-
bilities fall with the increase of these parameter values.
However, P 1

Succ always lies above P 2
Succ, since in the lat-

ter case both qubits undergo damping, and two weak
measurements are required.

FIG. 3: The upper surface represents the success prob-

ability P 1
Suss =

(1−D2)(1−p2)(2+D2(1−p2))
2+2DB(1−p2)

of Case I. The

lower surface represents the success probability P 2
Succ =

(1−D)2(1−p)2(1+D(1−p)
√

1+D2(1−p)2+D2(1−p)2)

1+D2(1−p)2
of Case II where

we consider D1 = D2 = D and p1 = p2 = p.

Let us now consider the situation when Alice prepares
the two qubit state in the class given by Eq.(5). With-
out applying the weak measurement technique and in the
presence of interaction of the environment with both the
particles, the FEF f2 is given by [7] 1−D ∀D ≤ 2

3 , and

by D
2 ∀D ≥ 2

3 , where we consider D1 = D2 = D.
Comparing with the situation of Case I, when only one
of the qubits undergo damping, one sees that F 2 ≤
F 1 ∀ 2

√
2−2 ≤ D ≤ 8

9 , and F 2 > F1 ∀ 8
9 < D ≤ 1,

with F 2 = 2f2+1
3 , and the FEF f1 is given by Eq.(24)).

f1 belongs to the classical region, i.e., f1 ≤ 1/2 for
the choice of decoherece strength in the range given by
2
√

2 − 2 ≤ D ≤ 1. When two qubits are allowed to in-
teract with the environment, the fidelity F 2 increases,
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but it never goes to non-classical region for the choice of
D from the region given by 2

√
2 − 2 ≤ D2 = D ≤ 1.

However, when weak measurement is applied with equal
strength on both the qubits for the state prepared in the
class given by Eq.(5), it remains unaffected. Hence, the
weak measurement technique is not useful for increasing
the fidelity beyond the classical region for the state in
the class given by Eq.(5).

IV. TELEPORTATION FIDELITY WITHOUT
POST-SELECTION

In this section we discuss the situation when without
using post-selection, one sets up a teleportation proto-
col involving the full ensemble of initial states. In other
words, we now do not discard the states corresponding
to the earlier failure events, i.e., when the detector clicks
making the initial state collapse to |1〉. We consider these
event along with the successful events, i.e., when the de-
tector does not click. In this scenario let us first we dis-
cuss about entanglement protection using the formalism
of Ref. [12] and then proceed to the protocol of telepor-
tation considered in this paper.

In the case of entanglement protection [12], when de-
coherence acts on a single particle (i.e., D1 = 0 and
D2 = D), the concurrence of the state ρD± (given by
Eq.(15)) with p1 = p2 = 0, i.e., no weak measurement
performed is given by

C1D =
√

1−D. (38)

When weak measurement (with strength p2 = p) and it’s
reversal with strength q is applied on the second qubit,
the concurrence after maximization with respect to q is
given by

C1W =
1√

1 +D(1− p)
, (39)

and the optimal strength of the reverse weak measure-
ment is qO = −2Dp+2D+p

D(−p)+D+1 . Here, the success probability

is given by

P1CSucc = (1−D)(1− p). (40)

The above values are the same if the initially prepared
state is taken to be (5). When the protocol fails, i.e.,
the detector used in weak measurement clicks, the en-
tanglement vanishes (i.e., C = 0) which occurs with the
probability (1−PC1). Hence, the average entanglement
(where average is taken over the success probability of
applying weak measurement and it’s reversal) is

C1AV = P1CSuccC1W (41)

On comparing C1D, C1W , and C1AV and it can be eas-
ily seen that C1W ≥ C1D ≥ C1AV. It is thus clear that
without post-selection, the entanglement protection pro-
tocol [12] fails, since the average teleportation fidelity lies

below the one obtained through the amplitude damping
channel without weak measurement. Similar results hold
true if both the particles are subjected to decoherence.

Now, let us consider the case of teleportation through
ADC. For the Case I. of our protocol, the optimal fi-
delity FO1 (corresponding to the optimal FEF fO1 given
by Eq.(22)) is achieved with the success probability P 1

Succ
(given by Eq.(23)). The protocol fails (with probability
(1 − P 1

Succ)) when the detector clicks. When the pro-
tocol fails, Alice and Bob are left with a classical state.
Hence, they are constrained to use a classical resource
(i.e., shared randomness) to achieve maximum teleporta-
tion fidelity, and it is given by 2/3 [22]. Therefore, the
average teleportation fidelity is given by

FAv
1 = FO1 P

1
Suss +

2

3
(1− P 1

Suss) (42)

=
3D2 (1− p)2 +D

(
p2 − 8p+ 7

)
− 2p+ 6

6(D (1− p) + 1)2
,

where D2 = D and p2 = p. It can be seen that FAv
1 lies

in the quantum region (i.e., 2
3 ≤ FAv

1 ≤ 2
3 ) for all values

of D2 and p2.
In the Fig. (4) we compare the FAv

1 with the F 1

(corresponding to FEF f1 given by Eq.(24)). One
sees that for sufficiently strong environmental in-
teraction, the fidelity could fall below the quantum
region without the help of weak measurement, i.e., for
D2 = D > 0.82843, F 1 <

2
3 . However, employing weak

measurement even without post-selection we find that
the average fidelity FAv

1 is not only larger than the the
fidelity F 1 in the region 0.76299 < D < 1 and p <
D3−2

√
1−DD2−

√
(1−D)(D2−2

√
1−DD−D+1)−2

√
1−DD+1

D3−2
√
1−DD2−D2+D

,

but, also belongs to quantum region. This result holds
irrespective of whether the initial state is chosen to
belong to the class given by Eq.(4) or by Eq.(5). Our
result of FAv

1 > F 1 in the above range of decoherence
is remarkable in the sense that it has no analogue in
the protocol for protecting entanglement [12]. However,
such a result is not obtained when both the qubits are
made to interact with the environment.

V. CONCLUSIONS

To summarize, in the present work, we propose a
method for maintaining teleportation fidelity over the
classical region through noisy channels using the tech-
nique of weak measurements. We reduce the loss of infor-
mation about the unknown state due to interaction with
the environment via amplitude damping channel with the
help of weak measurement and reversal of weak mea-
surement. We find the optimal strength of reversing the
measurement for which the loss is minimum. For the pre-
pared two qubit states given by Eqs.(4) and (5), we show
that when only one particle (say, the 2nd qubit which
Alice sends to Bob over the environment) interacts with
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FIG. 4: The upper surface represents the fidelity F 1 correspond-
ing to FEF f1 given by Eq.(24). The middle surface represents
the success probability FAv

1 given by Eq.(43)of Case I. The lower
surface represents the classical fidelity 2/3.

environment, the weak measurement technique is able
to enhance the teleportation fidelity arbitarily close to 1.
This result holds good for all maximally entangled states,
as well as for all values of the decoherence parameter. In
this case even without performing the weak measurement
before sending the 2nd particle, i.e., p2 = 0, Bob is able
to enhance the fidelity to the quantum region by mak-
ing a weak measurement with strength given by Eq.(21).

However, without applying the weak measurement tech-
nique by Alice an Bob, the teleportation fidelity lies in
the classical region for the choice of decoherence strength
chosen from the region 2

√
2− 2 ≤ D2 ≤ 1.

Next, when the environment effects both the particles,
the weak measurement technique protects the informa-
tion for the initially prepared state given by Eq.(4), but
fails to do so for the state given by Eq.(5). We also show
that by increasing the strength of weak measurement, the
success probability (which arises as a consequence of the
cancellation of the protocol when the detector clicks) de-
creases. The success of enhancing teleportation fidelity
is larger when one qubit interacts compared to the case
when both qubits interact with the environment. Finally,
we also consider the case when the states corresponding
to the detector click events atr taken into consideration.
Here, we see that the average teleportation fidelity may
be improved for a certain range of decoherence param-
eters when only one qubit undergoes decoherence. The
last result makes our teleportation protection protocol
qualitatively different from the protocol for the preserva-
tion of entanglement [12].
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