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Abstract. Quantum state tomography is the standard tool in current experiments for
verifying that a state prepared in the lab is close to an ideal target state, but up to now
there were no rigorous methods for evaluating the precision of the state preparation in
tomographic experiments. We propose a new estimator for quantum state tomography,
and prove that the (always physical) estimates will be close to the true prepared state with
high probability. We derive an explicit formula for evaluating how high the probability
is for an arbitrary finite-dimensional system and explicitly give the one- and two-qubit
cases as examples. Using the formula, we can evaluate not only the difference between
the estimated and prepared states, but also the difference between the prepared and
target states. This is the first result directly applicable to the problem of evaluating the
precision of estimation and preparation in quantum tomographic experiments.
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1 Introduction

Quantum tomography is a method for esti-
mating an unknown quantum state and process
and the standard tool in current quantum in-
formation experiments for verifying a successful
realization of states and operations [1]. Let us
consider the case of state preparation, where ρ∗
denotes a target state that we are trying to pre-
pare in the lab. In real experiments, the true
prepared state ρ does not coincide with ρ∗ be-
cause of imperfections. We wish to evaluate the
precision of this preparation, that is, the differ-
ence between ρ∗ and ρ - however we do not know
ρ. Instead, we perform quantum state tomogra-
phy; let ρest

N denote an estimate of the state made
from N sets of data obtained in a tomographic
experiment. To date the best we have been able
to do is to evaluate the difference between ρ∗
and ρest

N (see Fig. 1), but even if the difference
is small, it does not guarantee that the prepared
state ρ is close to the target state ρ∗, because ρest

N
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Figure 1: Three-fold relation between target,
prepared, and estimated states: ρ∗ is a target
state that an experimentalist tries to prepare, ρ
is the true prepared state. ρest

N is an estimate
made from N tomographic data sets.

is given probabilistically and can deviate from ρ
when N is finite. In this context, we refer to the
difference between ρest

N and ρ the precision of the
estimation.

There are many proposals for evaluating the
precision of estimation [2, 3, 4] and prepara-
tion [5, 6]. However the settings considered in
[2, 3, 4, 5, 6] are different from the standard
setting in quantum tomography, and their re-
sults are not directly applicable for evaluating



the precision of estimation or preparation in cur-
rent tomographic experiments. This is a crucial
problem in the current theory of quantum to-
mography.

In this presentation, we give a solution to
this problem. We propose a new estimator for
quantum state tomography in finite-dimensional
systems, and prove that the estimated states
are within a distance threshold δ from the pre-
pared state with high probability. We derive
an explicit formula for evaluating how high the
probability is in arbitrary finite-dimensional sys-
tems. This formula applies for any information-
ally complete set of measurements, for an arbi-
trary finite amount of data, and for general loss
functions including the infidelity, the Hilbert-
Schmidt, and the trace distances. Importantly,
for a given experimental setup we can calculate
the value of the formula without knowing the
true prepared state, and so the formula can be
used to evaluate the precision of state prepara-
tion. To our knowledge this is the first result
directly applicable to evaluating the precisions
of both estimation and preparation in quantum
tomography. We demonstrate the technique for
the example of one- and two-qubit state tomog-
raphy.

2 Setting

We consider a finite d(< ∞) dimensional
quantum system, with Hilbert space H. A state
of the system is described by a density matrix,
which is a positive-semidefinite and trace-one
matrix, the space of which we denote by S(H).
Let ρ denote the density matrix describing the
true prepared state on H. It is unknown, and we
make no further assumptions on ρ. Suppose that
N identical copies of the unknown true state,
ρ⊗N , are available, and we can perform a mea-
surement on each copy. Our aim is to estimate
the unknown true state ρ from measurement re-
sults.

The statistics of a quantum measurement are
described by a positive operator-valued measure
(POVM), which is a set of positive-semidefinite
matrices that sum to the identity. In stan-
dard setting of quantum tomography we choose a
combination of measurements. A set of POVMs
is called informationally complete (IC) if it spans

the vector space of Hermitian matrices on H [7].
Such a set allows for the reconstruction of an ar-
bitrary quantum state, and we will assume that
the set of POVMs describing our measurements
is always IC.

A map from a data set to the space of interest
– in this case the space of quantum states – is
called an estimator, and an estimation result is
called an estimate. A loss function is a measure
for evaluating the difference between two states.
We analyze the following three loss functions:

∆HS(ρ′, ρ) :=
1√
2

Tr
[
(ρ′ − ρ)2

]1/2
, (1)

∆T(ρ′, ρ) :=
1

2
Tr [|ρ′ − ρ|] , (2)

∆IF(ρ′, ρ) := 1 − Tr

[√√
ρ′ρ

√
ρ′

]2

. (3)

called the Hilbert-Schmidt distance, the trace
distance, and the infidelity, respectively. In cur-
rent quantum tomography experiments the trace
distance and the infidelity are most often used.

3 Main results

We propose a new nonlinear estimator ρENM

whose estimates are always physical. We call
ρENM an extended norm-minimization (ENM)
estimator.

We prove that the ENM estimates will be close
to the true prepared state with high probability.

Theorem 1 For arbitrary true density matrix
ρ ∈ S(H), any IC set of POVMs, positive integer
N , and positive number δ,

∆(ρENM
N , ρ) ≤ δ (4)

holds with probability at least

CL := 1 − 2
d2−1∑
α=1

exp

[
− b

cα

δ2N

]
, (5)

where b is determined by our choice of the loss
function as

b :=


8/(d2 − 1) if ∆ = ∆HS

16/d(d2 − 1) if ∆ = ∆T

4/d(d2 − 1) if ∆ = ∆IF

, (6)

and cα are determined by our choice of the mea-
surement setting.
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Figure 2: Confidence level of ρENM for error threshold δ = 0.07 in quantum state tomography: panel
(a) is the one-qubit case (k = 1) and panel (b) is the two-qubit case (k = 2). In both panels, the
left and right vertical axes are 1 − CL(k) and CL(k) in Eq. (9), respectively. The lower and upper
horizontal axes are the number of prepared states N and the number of observations for each tensor
product of Pauli matrices n = N/3k, respectively. In both panels, the line styles are fixed as follows:
solid (black) line for detection efficiency η = 1, dashed (red) line for η = 0.9, chain (blue) line for
η = 0.8.

We call CL in Eq. (5) the confidence level of
ρENM at the (user-specified) error threshold δ.

4 Analysis

The most important point in Theorem 1 is
that Eq. (5) is independent of the true pre-
pared state ρ. Therefore we can use it to eval-
uate ∆(ρ∗, ρ) without knowing ρ. Suppose that
we choose a loss function ∆ that satisfies proper-
ties of a mathematical distance. Then from the
triangle inequality and Theorem 1, we have

∆(ρ∗, ρ) ≤ ∆(ρ∗, ρ
ENM
N ) + ∆(ρENM

N , ρ) (7)

≤ ∆(ρ∗, ρ
ENM
N ) + δ, (8)

where Eq. (8) holds at the confidence level in Eq.
(5). We can calculate the value of the R.H.S. of
Eq. (8) without knowing the true prepared state
ρ and use it to evaluate the size of ∆(ρ∗, ρ).

Let us consider quantum state tomography of
a k-qubit system and suppose that we make the
three Pauli measurements with detection effi-
ciency η on each qubit. There are 3k different
tensor products of Pauli matrices (J = 3k), and
suppose that we observe each equally n := N/3k

times. When we choose ∆ = ∆T, we obtain the
explicit form of CL for k-qubit state tomography

as

CL(k) = 1 − 2
k−1∑
l=0

3k−l

(
k

l

)
exp

[
− 2

22k − 1

η2(k−l)

3k−l
δ2N

]
. (9)

Figure 2 shows plots of Eq. (9) for the one-qubit
(k = 1) and two-qubit (k = 2) cases in pan-
els (a) and (b), respectively. The error thresh-
old is δ = 0.07 and detection efficiency is η =
1, 0.9, 0.8. Both panels indicate that smaller
detection efficiency requires a larger number of
prepared states. The plots tell us what value of
N sufficient for guaranteeing a fixed confidence
level. For example, if we want to guarantee 99%
confidence level for δ = 0.07 in one-qubit state
tomography with η = 0.9, panel (a) indicates
that N = 7500 is sufficient for that.
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