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To detect and measure entanglement in a general state, represented by a density

matrix, is a difficult problem. It has been solved for the case of two qubit states via

concurrence, bipartite states of a qubit and a qutrit via the partial transpose, and all

bipartite pure states. There are various measures of entanglement, for example the

von Neumann entropy of any one subsystem in a bipartite pure state is such a measure,

the concurrence introduced by Hill and Wootters measures entanglement between two

qubits in a pure or mixed state, while negativity and log negativity is invoked for a

general bipartite mixed state which uses the positive, but not completely positive,

map of partial transposition (PT). The partial transpose was introduced by Peres [1]

to detect entanglement, and provides a sufficient but not necessary condition. One

other such criterion uses the operation of “realignment”. The operation of realignment

is also associated with entanglement detection [2] and provide necessary conditions

for separability. This operation is found to detect some bound entangled states, these

being positive under PT and hence not being detected by the corresponding criterion.

The question of entanglement in the case of pure bipartite states is solved com-

pletely by using the Schmidt decomposition, where the Schmidt coefficients are in-

variant under local unitary (LU) operations [3]. The Schmidt coefficients or functions

of them, for e.g. the von Neumann entropy, are used to characterize bipartite en-

tanglement. As there is no such decomposition, in general, for multipartite states,
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another approach to study entanglement, is by studying the LU invariants of the sys-

tem which consists of invariants under arbitrary unitary transforms restricted to the

individual subsystems. In as much as entanglement quantifies non-local properties,

entanglement measures remain invariant under LU operations and hence the impor-

tance of their study. The spectra of the density matrix itself and the various reduced

density matrices got by tracing out subsystems are such LU invariants. However, it

helps to have invariants that are polynomials in the entries of the density matrix [4],

and those whose physical interpretation in terms of entanglement is available.

These invariants uniquely determine the orbit of the state under these local op-

erations. For example three qubit pure states have five independent LU invariants

[3, 5] excluding the trace. In a recent paper Williamson et.al [6], inspired by lattice

gauge theory, have given a method of generating these invariants by associating them

with a closed path joining some or all the qubits where two consecutive qubits on

the path are connected by a “link transformation”. In this paper [7], it is first shown

that the link transformation in [6] is unitarily equivalent to the combined operations

of partial transpose [1] and realignment [2]. Thus it is interesting that two rather in-

dependent operations on which entanglement criteria are based come together in the

construction of local invariants. This result immediately suggests a way to generalize

to a system of an arbitrary set of qudits, each not necessarily of identical dimensions.

Such a generalization is then shown to be LU invariant as well. One of the advantages

of this method is that it does not need the generalization of Pauli matrices in higher

dimensions to get the invariants as required for the link transformation approach of

[6].
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