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Introduction.—One of the most fundamental
tasks in quantum information theory is the trans-
mission of classical data over many independent
uses of a quantum channel, such that, for a fixed
rate of communication, the error probability of the
transmission decreases to zero in the limit of many
channel uses. The maximum rate at which this is
possible for a given channel is known as the classi-
cal capacity of the channel. Holevo, Schumacher,
and Westmoreland (HSW) [11, 27] characterized
the classical capacity of a quantum channel N in
terms of the following formula:

χ(N ) ≡ max
{pX(x),ρx}

I(X;B)ρ, (1)

where {pX(x), ρx} is an ensemble of quantum
states, I(X;B)ρ ≡ H(X)ρ + H(B)ρ − H(XB)ρ
is the quantum mutual information, and H(σ) ≡
−Tr{σ log σ} is the von Neumann entropy. In the
above formula, the quantum mutual information
I(X;B) is computed with respect to the following
classical-quantum state:

ρXB ≡
∑
x

pX(x)|x〉〈x|X ⊗NA→B(ρx), (2)

for some orthonormal basis {|x〉}, and the notation
NA→B indicates that the channel accepts an input
on the system A and outputs to the system B.

For certain quantum channels, the HSW formula
is equal to the classical capacity of the channel
[2, 4, 6, 8, 15, 17, 19, 30]. These results follow be-
cause the Holevo formula was shown to be additive
for these channels, in the sense that the following
relation holds for these channels for any positive
integer n:

χ
(
N⊗n

)
= nχ(N ).

However, in general, if one cannot show that the
HSW formula is additive for a given channel, then
our best characterization of the classical capacity
is given by a regularized formula:

C(N ) = χreg(N ) ≡ lim
n→∞

1

n
χ
(
N⊗n

)
.

The work of Hastings [9] suggests that the regu-
larized limit is necessary unless we are able to find
some better characterization of the classical capac-
ity, other than the above one given by HSW. Also,
an important implication of the Hastings result,
which demonstrates a strong separation between
the classical and quantum theories of information,
is that using entangled quantum codewords be-
tween multiple channel uses can enhance the classi-
cal capacity of certain quantum channels, whereas
it is known that classically correlated codewords
do not [11, 25, 27, 33].

Given the above results, one worthwhile direc-
tion is to refine our understanding of the classi-
cal capacity of channels for which the HSW for-
mula is additive. Indeed, the achievability part of
the HSW coding theorem states that as long as
the rate of communication is below the classical
capacity of the channel, then there exists a cod-
ing scheme such that the error probability of the
scheme decreases exponentially fast to zero. The
converse part of the capacity theorem makes use
of the well known Holevo bound [10], and it states
that if the rate of communication exceeds the ca-
pacity, then the error probability of any coding
scheme is bounded away from zero in the limit of
many channel uses.

Such a converse statement as given above might
suggest that there is room for a trade-off be-
tween error probability and communication rate.
That is, such a “weak” converse suggests that it
might be possible for one to increase communica-
tion rates by allowing for an increased error prob-
ability. A strong converse theorem leaves no such
room for a trade-off—it states that if the rate of
communication exceeds the capacity, then the er-
ror probability of any coding scheme converges to
one in the limit of many channel uses. Impor-
tantly, a strong converse theorem establishes the
capacity of a channel as a very sharp dividing line
between which communication rates are possible
or impossible in the limit of many channel uses.

Strong converse theorems hold for all discrete



memoryless classical channels [3, 35]. Wolfowitz
employed a combinatorial approach based on the
theory of types in order to prove the strong con-
verse theorem [34, 35]. Arimoto used Rényi en-
tropies to bound the success probability of any
communication scheme [3]. Both the Wolfowitz
and Arimoto approaches demonstrate that the suc-
cess probability converges exponentially fast to
zero if the rate of communication exceeds the ca-
pacity. Much later, Polyanskiy and Verdú gener-
alized the Arimoto approach in a very useful way,
by showing how to obtain a bound on the suc-
cess probability in terms of any relative-entropy-
like quantity satisfying several natural properties
[26].

Less is known about strong converses for quan-
tum channels. However, Winter [33] and Ogawa
and Nagaoka [25] independently developed a
strong converse theorem for channels with classical
inputs and quantum outputs. For such channels,
the HSW formula in (1) is equal to the classical
capacity. The proof in Ref. [33] of the strong con-
verse was based on a combinatorial approach in the
spirit of Wolfowitz. Ogawa and Nagaoka’s proof
[25] was in the spirit of Arimoto.

After this initial work, Koenig and Wehner
proved that the strong converse holds for the
classical capacity of particular covariant quantum
channels [20]. Their proof is in the spirit of
Arimoto—they considered a Holevo-like quantity
derived from the Rényi relative entropy and then
showed that this quantity is additive for particular
covariant channels. This reduction of the strong
converse question to the additivity of an informa-
tion quantity is similar to the approach of Ari-
moto, but the situation becomes more interesting
for the case of quantum channels since entangle-
ment between channel uses might lead to the quan-
tity being non-additive.

Summary of results.—We prove that a strong
converse theorem holds for the classical capacity
of all entanglement-breaking channels [12, 14, 30].
Such channels can be modeled as the following pro-
cess:

1. The channel performs a quantum measure-
ment on the incoming state.

2. The channel then prepares a particular quan-
tum state at the output depending on the
result of the measurement.

The channels are said to be entanglement-
breaking because if one applies a channel in this
class to a share of an entangled state, then the

resulting bipartite state is a separable state, hav-
ing no entanglement. As important subclasses
of the entanglement-breaking channels occur the
classical-quantum channels mentioned above and
quantum measurement channels, in which only the
first step above occurs and the output is classical.
Our result thus sharpens our understanding of the
classical capacity for the entanglement-breaking
channels, as motivated in the introduction.

We now give a brief sketch of the proof of our
main result, full details can be found in Ref. [1].

1. First, we recall the argument of Sharma and
Warsi [29] (which in turn is based on Ref. [26]), in
which they showed that any relative-entropy-like
quantity that satisfies some natural requirements
gives a bound on the success probability of any
coding scheme. Let D(ρ||σ) denote any general-
ized divergence that satisfies monotonicity (data
processing), invariance under tensoring with the
same quantum state, and reduces to a classical
divergence when evaluated on commuting states.
From this generalized divergence, one can define a
Holevo-like quantity for a classical-quantum state
of the form in (2):

χD(N ) ≡ max
{pX(x),ρx}

ID(X;B), (3)

where ID(X;B) ≡ minσB D(ρXB ||ρX ⊗ σB).
Such a quantity itself satisfies a data processing
inequality, which we can then exploit to obtain a
bound on the success probability for any code that
uses the channel n times at a fixed rate R.

2. We then introduce a “sandwiched” Rényi rel-
ative entropy (cf. Refs. [7, 23, 24, 32]), based on
a parameter α and defined for quantum states ρ
and σ as

D̃α(ρ||σ) ≡ 1

α− 1
log Tr

{(
σ

1−α
2α ρ σ

1−α
2α

)α}
.

(4)
This definition of the Rényi relative entropy is dif-
ferent from the traditional one employed in quan-
tum information theory (see Ref. [22], for exam-
ple). Recall that the Rényi relative entropy is de-
fined as

Dα(ρ||σ) ≡ 1

α− 1
log Tr

{
ρα σ1−α}.

However, it follows from the Lieb-Thirring trace
inequality [21] that D̃α(ρ||σ) ≤ Dα(ρ||σ) for all
α > 1. Also, one can easily see that the two quan-
tities are equal to each other whenever ρ and σ
commute (when the states are effectively classi-
cal).

We prove that D̃α(ρ||σ) is monotone under quan-
tum operations for all α ∈ (1, 2] and that it reduces



to the von Neumann relative entropy in the limit
as α→ 1. These properties establish D̃α(ρ||σ) as a
relevant information quantity to consider in quan-
tum information theory. In particular, it will be
useful for us in establishing the strong converse for
entanglement-breaking channels. We then define a
Holevo-like quantity χ̃α(N ) via the recipe in (3).

3. Combining the above two results, we es-
tablish the following upper bound on the success
probability of any rate R classical communication
scheme that uses a channel n times:

psucc ≤ 2−n(α−1
α )(R− 1

n χ̃α(N⊗n)).

4. One can realize by inspecting the above for-
mula that subadditivity of χ̃α would be helpful in
proving the strong converse, i.e., if

χ̃α
(
N⊗n

)
≤ nχ̃α(N ). (5)

We prove this for entanglement-breaking chan-
nels by first showing that χ̃α is equal to an “α-
information radius”[5, 22, 31],

χ̃α(N ) = K̃α(N ) ≡ min
σ

max
ρ

D̃α(N (ρ)||σ), (6)

building upon prior work in Refs. [20, 28].
This allows us to invoke King’s result that the
maximum output α-norm of an entanglement-
breaking channel and any other channel is mul-
tiplicative [18] for α ≥ 1; subsequently Holevo ob-
served that King’s proof extends more generally to
a completely positive entanglement-breaking map
and any other completely positive map [13].
It is crucial for this step that conjugating a
completely positive (entanglement-breaking) map
by a positive operator does not take it out of
this class—i.e., if MEB is a completely positive
(entanglement-breaking) map, then so is (X ◦
MEB)(ρ) = XMEB(ρ)X, for a positive operator
X.

5. The bound on the success probability for
any coding scheme of rate R when using an
entanglement-breaking channel then becomes

psucc ≤ 2−n(α−1
α )(R−χ̃α(NEB)).

Finally, by a standard argument [25, 29], we can
choose ε > 0 such that χ̃α(NEB) < χ(NEB) + ε
for all α ≥ 1 in some neighborhood of 1, so that
the success probability decays exponentially fast
to zero with n if R > χ(NEB). The strong con-
verse theorem for all entanglement-breaking chan-
nels then follows.

Conclusion.—We have proven a strong con-
verse theorem for the classical capacity of

all entanglement-breaking channels, building on
tighter bounds on the success probability in terms
of a “sandwiched” Rényi relative entropy. Our
approach also allows us to recover the earlier re-
sults of Koenig and Wehner [20]. This information
measure should find other applications in quantum
information theory, given that many other infor-
mation measures can be obtained from a relative
entropy.

An important open question going forward from
here is to determine if a strong converse theo-
rem holds for the classical capacity of quantum
Hadamard channels [16, 19]. The most general def-
inition of a Hadamard channel is one whose com-
plementary channel is entanglement-breaking. We
can already determine that our approach devel-
oped here does not seem to be useful for this class
of channels. Namely, denoting the Hadamard (i.e.,
entry-wise) product by ∗, it is not necessarily the
case that X(C ∗ ρ)X = D ∗ ρ for some positive
operator X and some other operator D, so conju-
gating a Hadamard channel by a positive operator
X can take the channel outside of the Hadamard
class.
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