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I. INTRODUCTION

In recent years, there is lot of interest generated in the study of entanglement properties of

ultra cold atoms [1–6]. In one such study, the single-site addressability in a two-dimensional

optical lattice [7] has been demonstrated which could be a natural resource for applications of

quantum information processing with neutral atoms. In all the experimental demonstrations of

ultra cold atoms, loss is an important role which gives rise to decoherence and in turn destroying

the quantum correlations. The losses due to decoherence can be modelled by a master equation.

One such model is examined in the ref [5, 6] for a linear damping using the Bose-Hubbard model.

The Bose-Hubbard model [8] is one of the popular model used to study the evolution of cold atoms

and the Bose-Einstein condensates in an optical lattice. In this paper, we examin the two-site

Bose-Hubbard model to study the entanglement and decoherence properties of two mode states

under the action of non-linear damping. We consider the following master equation for density

matrix ρ in a non-linear medium

∂

∂t
ρ =

i

h̄
[H, ρ] + κ

K∑
k=1

([akbk, ρa
†
kb

†
k] + [akbkρ, a

†
kb

†
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here κ is a damping coefficient, ak and bk bosonic annihilation operators referring to atoms in the

internal states |N1⟩ and |N2⟩, respectively, with one boson in the kth lattice site and K is the

number of lattice sites and H is the Hamiltonian for the Bose-Hubbard model which describes the

optical lattice. In this paper, we are studying the model in the presence of non-linear damping

corresponding to the term associated with κ.

For solving this master equation we use the techniques of thermo field dynamics (TFD)[9,

10] and thereby the Hartree-Fock approximation to convert two-site Bose-Hubbard model into a
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two-mode bosonic system (see ref [11] for details). The two-site Bose-Hubbard model is used to

study Josephson tunneling between two Bose-Einstein condensates. The expectation values of the

approximated field is computed self-consistently. We solve this master equation for a small time

t so that we get the analytical solution, there by we compute the decoherence and entanglement

properites of the two-mode bosonic system.

In TFD, the master equation reduces to,

∂

∂t
|ρ(t)⟩ = −iĤ|ρ⟩ (2)

where |ρ⟩ is a vector in the Hilbert space H⊗H∗ and −iĤ = i(H−H̃)+L, here L is Liouville term,

H and H̃ corresponds to non tildian and tildian Hamiltonians, and H∗ is the extended Hilbert

space( for further details see ref [11]).

II. TWO SITE BOSE-HUBBARD MODEL

To study the decoherence and the entanglement properties of Bose-Hubbard model, for sim-

plicity, we consider the toy model, in which the Bose-Hubbard model is written for the two site

interaction only. Than the master equation for the two site Bose-Hubbard model is obtained by

taking k = 1 in the equation (1)

∂

∂t
ρ = −iω(a†aρ− ρa†a)− iJ(a†bρ− ρa†b)− iJ(b†aρ− ρb†a) + i

Ua

2
(a†a†aaρ− ρa†a†aa)− iω(b†bρ− ρbb†)

+i
Ub

2
(b†b†bbρ− ρb†b†bb) + i

Uab

2
(a†b†abρ− ρa†b†ab) +

κ

2

(
2abρa†b† − a†b†abρ− ρa†b†ab

)
. (3)

The interaction term J in the Hamiltonian describes the induced hopping between adjacent cells.

The ω is the frequency of the atom in the lattice. The on-site interactions of atoms are described

by Ua and Ub, and a nearest-neighbour interaction by Uab. For further details see ref [8].

At first we consider the special case to solve this master equation with J = Ua = Ub =

0 and Uab = U , which corresponds to the Mott insulating phase. We apply the thermo field

dynamics techniques to convert the master equation (3) into a Schrödinger equation (2) by applying

|I⟩ from the right to the eq (3), (The state vector |I⟩ takes a normalized vector to an another

normalized vector in the extended Hilbert space H⊗H∗ for detail ref [11]) and using Hartree Fock

approximation we get the solution to be

|ρ(t)⟩ = (exp[−i

∫
dtH1]⊗ exp[−i

∫
dtH2])|ρ(0)⟩, (4)

where |ρ(0)⟩ is an initial state in H⊗H∗. Here

H1 = ω(a†a+ b†b) +
iκ∆(t)

2

(
ab− a†b†

)
− U∆(t)

2
(a†b† + ab) (5)
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and similar H2 is with the tildian terms. By exploiting the su(1,1) symmetry of the Hamiltonian

and calculating the ∆(t) self consistently one gets the solution to be, for details refer to [11].

III. ENTANGLEMENT

The solution of the master equation (3) in the system Hilbert space as

ρ(t) = (exp[Γa+K+]exp[ln(Γa3N ]exp[Γa−K−]ρ(0)(exp[Γb+K+]exp[ln(Γb3N ]exp[Γb−K−]). (6)

where ρ(0) is taken to be the initial state, N = a†a + b†b,K+ = a†b†,K− = ab and Γi± =

−∆(0)ζt
2 (1+ ω2t2

4 )e±iϕ, here i stands for a and b. One can clearly see that this a two-mode squeezed

state. It is well known that two-mode squeezing gives rises to entanglement [12]. By taking the

initial state ρ(0) to be the two mode thermal state, the amount of entanglement in ρ(t) is given in

terms of logarithmic negativity

EN (r) = −1

2
[Log(e−4r/n)], (7)

where is r is the squeezing parameter and n = n1 = n2 is are the sympletic eigenvalues of covariance

matrix of two-mode thermal state, (for details ref to [11]).

To calculate decoherence effects of ρ(t) we compute {ρ(t)}2 = ρ2 and is given eq (56) in ref [11].

One can see immediately that for the short time it self as the value of damping coefficient increases

the system decoheres faster. (see figures 1 and 2 in ref [11] for further details).

IV. CONCLUSION

We show that the entanglement for two site Bose-Hubbard model for a short time increases when

the initial state is a two-mode thermal state. We interpret this behaviour due to the existence of

the non-linear medium. To get the exact picture for the long time behaviour of the entanglement,

one has to do the numerical studies. It can be seen from the decoherecnce plot, (see figures 1 and

2 in ref [11]), that as the value of the damping coefficient increases the damping in the system is

faster as expected. We expect that the further numerical studies using this model will give better

results and these results may be applied to condensed matter systems.
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