Formula of channel matrix for a certain class of \((G, \hat{\chi})\)-covariant signals

Yoshihiro ISHIKAWA\(^1\) * Keisuke SHIROMOTO\(^2\) Tsuyoshi Sasaki USUDA\(^1\) †

\(^1\) School of Information Science and Technology, Aichi Prefectural University, 1522-3 Ibaragabasama, Nagakute, Aichi, 480-1198 Japan.
\(^2\) Department of Mathematics and Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan.

Keywords: classical-quantum channel, channel matrix, Gram matrix, group covariant

1 Introduction

In the classical-quantum channel, coding theorem for quantum channel has been already proved and we can calculate channel capacity that is asymptotically attained maximum mutual information in the limit of infinite codeword length[1, 2, 3]. However, computation of mutual information in finite codeword length is rather difficult. That is, to evaluate performance of classical-quantum communication system in the real world is hard. As an example, consider computation of a channel matrix of classical-quantum communication in which pure-state signals are transmitted and are measured by square-root measurement[1]. The channel matrix is obtained by computing the square-root of the Gram matrix of the quantum signal set. However, it is very difficult to compute by a universal algorithm if there are many signals (typically, more than 1000). Therefore, we have been studied to derive the analytical solution of the channel matrix[4, 5, 6]. Recently, the general formula for narrow sense group covariant quantum signals[7] was shown[8].

However, some important group covariant signal sets (e.g. four states used in BB84 quantum cryptographic protocol[9] and a SIC set[10]) are not narrow sense covariant. Moreover, it is expected that coded \(M\)-ary PSK coherent-state signals by a code over an extension field are not narrow sense group covariant unless the code can be constructed over a prime field or the ring of integers modulo \(M\)[6]. Since the formula[8] is not applicable to these signals, further generalization of the formula is necessary. Toward this goal, we defined the \((G, \hat{\chi})\)-covariant signal set, which is a generalization of narrow sense group covariant, and showed its necessary and sufficient condition[11]. The relationship of general group covariant signals[12], \((G, \hat{\chi})\)-covariant signals[11] and narrow sense group covariant signals[7] is shown in Fig.1.

In the present paper, we derive a formula of channel matrix for a \((G, \hat{\chi})\)-covariant signal set when \(\hat{\chi}\) is a specific map. Such a signal set is not narrow sense group covariant, so that this result is not included in the conventional formula.

\begin{align}
U_k|\psi_i\rangle = |\psi_{ki}\rangle \, \forall i, k \in G,
\end{align}
For the narrow sense group covariant signals defined in Definition 1, the following necessary and sufficient condition was derived [7].

Proposition 2 : necessary and sufficient condition of narrow sense group covariant signals[7]

A set of pure quantum state signals \(\{ \psi_i \mid i \in G \} \) is (narrow sense) group covariant if and only if, for any \(i, j \in G \),
\[
\langle \psi_{k_{0i}} | \psi_{k_{0j}} \rangle = \langle \psi_i | \psi_j \rangle,
\]
for all \(k \in G \).

Proposition 2 shows the condition for the inner products of the signals. Since the Gram matrix is a matrix of the inner products of the signals, the proposition provides the form of the Gram matrix. As an example, from the proposition, the Gram matrix of any narrow sense group covariant signal set with four elements has the following form.

\[
\Gamma = \begin{bmatrix}
1 & a & b & c \\
 a & 1 & c & b \\
 b & c & 1 & a \\
 c & b & a & 1
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
1 & a & b & c \\
 c & 1 & a & b \\
 b & c & 1 & a \\
 a & b & c & 1
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
a & b & c & \cdot \\
 b & c & \cdot & a \\
 c & \cdot & a & b \\
 \cdot & a & b & c
\end{bmatrix}
\]

(3)

Note that \(a, b \) and \(c \) are complex numbers but are not arbitrary since the Gram matrix is hermitian and absolute values of its elements are not exceed unity.

2.2 Formula of channel matrix for narrow sense group covariant signal set

Let \((G; \circ)\) be an abelian group of order \(M \) with operation \(\circ \) such that
\[
G = \{0, 1, \cdots, M - 1\},
\]
where, 0 is the identity element of \(G \) (i.e. \(\forall i \in G, 0 \circ i = i \circ 0 = i \)). And let
\[
\hat{G} = \{\chi_0, \chi_1, \cdots, \chi_{M-1}\},
\]
be the multiplicative group of the set of all characters [13] of \(G \). We consider a narrow sense group covariant signal set \(\{ |\psi_i\rangle | i \in G \} \) and its Gram matrix \(\Gamma_G = [\langle \psi_i | \psi_j \rangle] \). Then we have the following proposition[11].

Proposition 3 : Formula of channel matrix for narrow sense group covariant signal set[11]

For any \(0 \leq i, j \leq M - 1 \),
\[
(\Gamma_G)^{1/2}_{ij} = \frac{1}{M} \sum_{k \in G} \chi(i \circ j^{-1}) \sum_{k \in G} \chi(k) |\psi_k\rangle |\psi_k\rangle
\]

For simplicity, we assume the operators which determine the inner products of the signals are unitary but also anti-unitary operators. Here, for simplicity, we assume the operators which determine \((G, \hat{\chi})\)-covariant signal set are unitary.

Definition 4 : \((G, \hat{\chi})\)-covariant quantum signal set[11]

Let \((G; \circ)\) be a finite group and be a set of parameters characterizing pure quantum state signals \(\{ |\psi_i\rangle | i \in G \} \). The set of signals is called \((G, \hat{\chi})\)-covariant if there exist unitary operators \(U_k(k \in G) \) such that
\[
U_k |\psi_i\rangle = \hat{\chi}(k, i) |\psi_{k_{0i}}\rangle, \quad \forall i, k \in G,
\]
where \(\hat{\chi} \) is a map from \(G \times G \) into \(\mathbb{U} = \{ x \in \mathbb{C} \mid |x| = 1 \} \).

Note that the original definition includes not only unitary operators but also anti-unitary operators. Here, for simplicity, we assume the operators which determine \((G, \hat{\chi})\)-covariant signal set are unitary.

Proposition 5 : Necessary and sufficient condition of \((G, \hat{\chi})\)-covariant signals[11]

A set of pure quantum state signals \(\{ |\psi_i\rangle | i \in G \} \) is \((G, \hat{\chi})\)-covariant if and only if, for any \(i, j \in G \),
\[
\langle \psi_{k_{0i}} | \psi_{k_{0j}} \rangle = \hat{\chi}(k, i) \overline{\hat{\chi}(k, j)} \langle \psi_i | \psi_j \rangle,
\]
for all \(k \in G \).

Proposition 5 provides the form of the Gram matrix. The following matrix is an example of the Gram matrix of a \((G, \hat{\chi})\)-covariant signal set.

\[
\Gamma = \begin{bmatrix}
1 & a & b & c \\
 a & 1 & -c & -b \\
 b & -c & 1 & -a \\
 c & -b & -a & 1
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
a & b & c & \cdot \\
 b & c & \cdot & a \\
 c & \cdot & a & b \\
 \cdot & a & b & c
\end{bmatrix}
\]

(9)

Apparentely, the above example is not a Gram matrix of narrow sense group covariant signal set.

4 Main result: formula of channel matrix for a \((G, \hat{\chi})\)-covariant quantum signal set

Now we show the main result: the formula of the channel matrix of a \((G, \hat{\chi})\)-covariant quantum signal set with a specific map \(\hat{\chi} \). We define the map \(\hat{\chi} \) as follows.
\[
\hat{\chi}(i^{-1}, j) = \begin{cases}
1 & \text{if } i = 0 \text{ or } j = 0 \text{ or } j = i, \\
-1 & \text{otherwise},
\end{cases}
\]

Note that when the order of the group \(G \) is four, the Gram matrix of this \((G, \hat{\chi})\)-covariant quantum signal set has the form of Eq.(9).

Then, we finally obtain the following theorem.

Theorem 6 : Formula of channel matrix for a \((G, \hat{\chi})\)-covariant quantum signal set
For $i = j = 0 \ or \ 1 \leq i, j \leq M - 1$,

$$(G_1)_{ij}^{1/2} =$$

$$\frac{1}{M} \sum_{l \in G} \chi_l(i \circ j^{-1}) \sqrt{1 - \sum_{k=1}^{M-1} \chi_l(k) \langle \psi_0 | \psi_k \rangle}, \quad (11)$$

For $i = 0, 1 \leq j \leq M - 1 \ or \ j = 0, 1 \leq i \leq M - 1$,

$$(G_1)_{ij}^{1/2} =$$

$$-\frac{1}{M} \sum_{l \in G} \chi_l(i \circ j^{-1}) \sqrt{1 - \sum_{k=1}^{M-1} \chi_l(k) \langle \psi_0 | \psi_k \rangle}, \quad (12)$$

The proof of Theorem 6 is shown in the technical version of the paper and will be presented at the conference.

5 Conclusion

In the present paper, we have shown the formula of the channel matrix of a $(G, \hat{\chi})$-covariant quantum signal set when $\hat{\chi}$ is a specific map. The derived formula is not included in the conventional result. Therefore, combining the conventional and the new formulae, we obtain a generalized formula. We will further generalize the formula by considering other maps.

Acknowledgment

This work has been supported in part by JSPS KAKENHI Grant Number 24360151.

References

