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Two notions that have been particularly well explored in the context of quantum in-

formation of continuous variable states are nonclassicality [1] and entanglement [2]. The

‘older’ notion of entanglement has become one of renewed interest in recent decades for its

central role and applications in (potential as well as demonstrated) quantum information

processes [3], while the concept of nonclassicality which emerges directly from the diagonal

representation [1] had already been well explored in the quantum optical context [4], long

before the emergence of the present quantum information era. While nonclassicality can

be defined even for states of a single mode of radiation, the very notion of entanglement

requires two or more parties. Nevertheless, it turns out that the two notions are not entirely

independent of one another; they are rather intimately related [5–7]. In fact, nonclassicality

is a prerequisite for entanglement [7]. Since a nonclassical bipartite state whose nonclassi-

cality can be removed by local unitaries could not be entangled, one can assert, at least in

some intuitive sense, that ‘entanglement is nonlocal nonclassicality’.

An important aspect in the study of nonclassicality and entanglement is in regard of

their evolution under the action of a channel. A noisy channel acting on a state can degrade

its nonclassical features [8]. Simlarly, bipartite entanglement can be degraded by channels

acting locally on the constituent parties or modes [9–11]. In fact, there are channels that

render every bipartite state separable by acting on just one of the parties [10–12]. Such

channels are said to be entanglement-breaking.

A class of channels that has been of particular interest in the continuous variable quan-

tum information processing context is the family of Gaussian channels. These are physical
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processes that map Gaussian states into Gaussian states. A (centered) Gaussian state is

completely specified by its variance matrix V , and under the action of Gaussian channel

Γ specified by the pair of matrices (X, Y ), V → V ′ = XT V X + Y . Let S denote an

element of the symplectic group Sp(2n, R) of linear canonical transformation and U(S) the

corresponding unitary (metaplectic) operator [17]. One often encounters situations wherein

the aspects one is looking for are invariant under local unitary operations, entanglement

being an example. In such cases a Gaussian channel Γ is ‘equivalent’ to U(S
′

) ΓU(S), for

arbitrary symplectic group elements S, S
′

∈ Sp(2n, R). The orbits or double cosets of

equivalent channels in this sense are the ones classified and enumerated by Holevo and col-

laborators [14, 15]. The canonical forms so determined are useful, for instance, in the study

of entanglement-breaking Gaussian channels [11].

In this work we address the following issue : which Gaussian channels have the property

that they rid every input state of its nonclassicality? We recall that the density operator ρ̂

representing any state of radiation field is ‘diagonal’ in the coherent state ‘basis’ [1], and this

happens because of the over-completeness property of the coherent state basis. An important

notion that arises from the diagonal representation is the classicality-nonclassicality divide.

Since coherent states are the most elementary of all quantum mechanical states exhibiting

classical behaviour, any state that can be written as a convex sum of these elementary

classical states is deemed classical. Any state which cannot be so written as a convex sum of

coherent states is deemed nonclassical. This classicality-nonclassicality divide leads to the

following natural definition, inspired by the notion of entanglement breaking channels :

Definition : A channel Γ is said to be nonclassicality-breaking if and only if the output state

ρ̂out = Γ(ρ̂in) is classical for every input state ρ̂in, i.e., if and only if the diagonal ‘weight’

function of every output state is a genuine probability distribution.

Now, the close connection between nonclassicality and entanglement alluded to ear-

lier raises a related and important second issue : what is the connection, if any, between

entanglement-breaking channels and nonclassicality-breaking channels? To appreciate the

nontriviality of this second issue, it suffices to simply note that the very definition of

entanglement-breaking refers to bipartite states whereas the notion of nonclassicality-

breaking makes no such reference. In this paper we show that both these issues can be

completely answered in the case of bosonic Gaussian channels.

To this end we first derive the nonclassicality-based canonical forms for Gaussian chan-
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nels. The classification of Holevo and collaborators is entanglement-based, and so it is not

suitable for our purpose, since the notion of nonclassicality-breaking has a more restricted

local invariance. A nonclassicality-breaking Gaussian channel Γ preceded by any Gaussian

unitary U(S) is nonclassicality-breaking if and only if Γ itself is nonclassicality breaking. In

contradistinction, the nonclassicality-breaking aspect of Γ and that of U(S) Γ [Γ followed the

Gaussian unitary U(S)] are not equivalent in general. They are equivalent if and only if S is

in the intersection Sp(2n, R)∩SO(2n, R) of symplectic phase space rotations, or passive el-

ements in the quantum optical sense [17]. In the single-mode case this intersection is just the

rotation group SO(2) ⊂ Sp(2, R). We thus need to classify single-mode Gaussian channels

Γ into orbits or double cosets U(R) ΓU(S), S ∈ Sp(2, R), R ∈ SO(2) ⊂ Sp(2, R). Equiva-

lently, we classify (X, Y ) into orbits (SXR, RT Y R). It turns out there are three distinct

canonical forms for (X, Y ). These are then used to derive the necessary and sufficient con-

ditions on a single-mode Gaussian channel to be nonclassicality-breaking. The canonical

forms and the corresponding necessary and sufficient conditions for nonclassicality-breaking

are listed in Table I. The conditions for entanglement-breaking and complete-positivity are

also listed for comparison. The content of Table I is made transparent in the plots listed in

Table II (see caption of Table. II).

For all three canonical forms we show that a nonclassicality-breaking channel is neces-

sarily entanglement-breaking. There are channel parameter ranges where in the channel is

entanglement-breaking but not nonclassicality-breaking, but the nonclassicality of the out-

put state is of a ‘weak’ kind in the following sense : For every entanglement-breaking channel,

there exists a particular value of squeeze-parameter r0, depending only on the channel pa-

rameters and not on the input state, so that the entanglement-breaking channel followed

by unitary squeezing of extent r0 always results in a nonclassicality-breaking channel. It

is in this precise sense that nonclassicality-breaking channels and entanglement-breaking

channels are essentially one and the same.

Squeezing is not the only form of nonclassicality. Our result not only says that the output

of an entanglement-breaking channel could at the most have a squeezing-type nonclassicality,

it further says that the nonclassicality of all output states can be removed by a fixed unitary

squeezing transformation.
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Canonical form Nonclassicality-breaking Entanglement-breaking Complete-positivity

condition condition condition

(κ 11, diag(a, b)) (a− 1)(b− 1) ≥ κ4 ab ≥ (1 + κ2)2 ab ≥ (1− κ2)2

(κσ3, diag(a, b)) (a− 1)(b− 1) ≥ κ4 ab ≥ (1 + κ2)2 ab ≥ (1 + κ2)2

(diag(1, 0), Y ), a, b ≥ 1, a, b being ab ≥ 1 ab ≥ 1

eigenvalues of Y

(diag(0, 0), diag(a, b)) a, b ≥ 1 ab ≥ 1 ab ≥ 1

TABLE I: Here 11 is the 2× 2 identity matrix, and σ3 is the diagonal Pauli matrix.
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(a) Canonical form I : (κ11, diag(a, b)) (b) Canonical form II : (κσ3, diag(a, b))
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(c) Limiting case of I : (11, diag(a, b)) (d) Canonical form III : Singular X

TABLE II: In all the four frames, the region to the right of (above) curve (1) corresponds to
nonclassicality-breaking channels; the region to the right of (above) curve (2) corresponds
to entanglement-breaking channels; curve (3) depicts the CP condition, so the region to the
right of (above) it alone corresponds to physical channels. In frames (b) and (d), curves (2)
and (3) coincide. The dotted curve indicates the orbit of a typical Gaussian channel under
a unitary squeezing after the channel action. Note that the orbit of every entanglement-
breaking channel passes through the nonclassicality-breaking region, showing that the non-
classicality in the output of an entanglement-breaking channel can be removed by a fixed
unitary squeezing.
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