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INTRODUCTION

Heisenberg’s original formulation of the uncertainty
principle considered sequential measurements of comple-
mentary observables, like position and momentum, per-
formed on the same physical system, and the principle
was that the second observable is unavoidably disturbed
by the measurement of the first [1]. An alternative sce-
nario considers unavoidable uncertainty related to the in-
dependent measurement of the two observables, with the
measurements performed on two distinct but identically
prepared quantum systems [2, 3].
The latter formulation of the uncertainty principle

seems to receive more attention in modern times. For
example, entropic uncertainty relations [4] typically cap-
ture this unavoidable uncertainty; consider a well-known
example from Maassen and Uffink [5]. For any state ρS
of a finite-dimensional quantum system S they find

H(X) +H(Z) ⩾ log(1/c), (1)

where X = {|Xj⟩} and Z = {|Zk⟩} are any two orthonor-
mal bases of HS , H(X) := −

∑
j p(Xj) log p(Xj) is the

Shannon entropy associated with the probability distri-
bution p(Xj) := ⟨Xj |ρS |Xj⟩ (similarly for H(Z)), and
c := maxj,k |⟨Xj |Zk⟩|2 quantifies the complementarity
between theX and Z observables. (Logarithms are taken
in base 2 throughout.)
In [6] it was proven that an entropic uncertainty rela-

tion like (1) has a correspondent entanglement certainty
relation. Ref. [6] considers the generation of entangle-
ment between measurement devices and independent, al-
though identically prepared, copies of some physical sys-
tem, and proves that, when dealing with complementary
observables, there is unavoidable creation of entangle-
ment between at least one copy of the system and one
measuring device.

MAIN RESULT

In this work, we offer a new point of view on what
complementarity entails. As Heisenberg did originally,
we consider sequential measurements performed on the
same physical system, rather than idependent copies of
the system; on the other hand, following [6–10], we focus
on the entanglement generated between the system and
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FIG. 1: Circuit diagram for the sequential measurement of
the X and Z observables on system S.

the measurement devices. In general, for any X and Z,
we can lower-bound the entanglement E(X,Z) between
the system and the measurement devices created from
sequentially measuring X and Z with

E(X,Z) ⩾ log(1/c), (2)

where the c factor appearing here is precisely the same c
appearing in Eq. (1). Here, we take E to be the distillable
entanglement, i.e., the optimal rate to distill Einstein-
Podolsky-Rosen (EPR) pairs using local operations and
classical communication (LOCC) in the asymptotic limit
of infinitely many copies of the state.

Our approach relates in a novel way two basic
concepts of quantum mechanics: complementarity—
in the sequential-measurement scenario—and entangle-
ment. Besides this fundamental interest, our results
have direct operational interpretations. On one hand,
they provide bounds on the usefulness of sequential bi-
partite operations—corresponding to the measurement
interactions—for entanglement generation. On the other
hand, we discuss below the application of our results to
decoupling [11–15] and coherent teleportation [16, 17].

Figure 1 depicts the basic setup for our main result.
At the initial time, denoted t0, the system is in an arbi-

trary state ρ
(0)
S . It firsts interacts with device M1, which

measures observable X, and later it interacts with device
M2, which measures observable Z. The measurements
are depicted with the controlled-NOT symbols although
more generally they represent controlled-shift unitaries.
We are interested in the bipartite entanglement E(X,Z)
between S and the joint system M1M2 at the final time,
denoted t2.

Fully complementary observables.—The case where X
and Z are fully complementary, so-called mutually un-
biased bases (MUBs), corresponds to |⟨Xj |Zk⟩|2 = 1/d
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for all j, k, and hence c = 1/d, where d = dim(HS). In
the uncertainty relation (1), this leads to the maximum
tradeoff in knowledge, with the r.h.s. becoming log d, and
hence perfect knowledge of X implies complete ignorance
of Z. Likewise, in our main result, the r.h.s. of (2) be-

comes log d. This implies that, for any input state ρ
(0)
S ,

sequentially measuring X and Z results in a maximally
entangled state between S and M1M2. It may seem sur-
prising that this is even true if we feed in a maximally-

mixed state ρ
(0)
S = 11/d.

Partial complementarity.—Equation (2) also allows us
to say that if X and Z are almost fully complementary,
then for any input state, S is almost maximally entangled
to M1M2 at time t2. Furthermore, as long as there is
some non-zero complementarity, i.e., log(1/c) > 0, then
there is guaranteed to be distillable entanglement at time
t2.

Proof of (2).—We refer to Ref. [18], where we offer
two alternative proofs of (2). One approach is based
on the uncertainty principle with quantum memory [19],
applied at time t1 in Fig. 1. The other approach invokes
the monotonicity of entanglement under LOCC, which
allows us to derive a slightly stronger version of (2) given
in Ref. [18].

In what follows, we discuss the implications of our main
result for decoupling and coherent teleportation, and also
remark on generalisations of our results.

DECOUPLING

The correlations between two quantum systems can
be destroyed, turning an arbitrary bipartite state ρSS′

into some tensor product σS ⊗ σS′ , with appropriate lo-
cal operations. This idea, called decoupling [11–15] has
specific applications in state merging [20] and quantum
cryptography [21]. Our work identifies sequential comple-
mentary measurements as one such method to decouple.
This is due to the monogamy principle: because system
S is highly entangled to M1M2 at time t2, then S cannot
be too correlated with any other system S′ at this time.

We make this precise by considering the relative en-

tropy D(σ∥τ) := Tr(σ log σ) − Tr(σ log τ). Letting ρ
(2)
SS′

denote the state of S and some other system S′ at time

t2, we find that, for any initial state ρ
(0)
SS′ ,

D(ρ
(2)
SS′ ||11/d⊗ ρ

(2)
S′ ) ⩽ log(d · c), (3)

which is a corollary of Eq. (2). Indeed this implies that

the final state ρ
(2)
SS′ is almost completely decoupled if the

X and Z observables are almost fully complementary.

COHERENT TELEPORTATION

We have shown that the ability to produce entangle-
ment and to decouple, using sequential measurements,
is a quantification of the complementarity of those two
measurements. It turns out there is a third perspec-
tive on complementarity. In the case when X and Z
are MUBs, there exists a local unitary applied to M1M2

at time t2 that recovers the input state ρ
(0)
S on device

M1, i.e., we can “teleport” the input state of S to one
of the measurement devices. This is commonly known as
coherent teleportation [16, 17]. In this case, the channel
E :S(t0) → S(t2) is completely noisy, while the chan-
nel Ec :S(t0) → M1M2(t2) is perfect. As we reduce the
complementarity of X and Z, the channel Ec becomes
less perfect, so we can consider the quantum capacity Q
of Ec, i.e., the optimal rate at which Ec allows for the
reliable transmission of quantum information [22], as a
measure of the complementarity of X and Z. We make
this idea quantitative with the following bound

Q(Ec) ⩾ log(1/c),

which again is a corollary of our main result (2). This
bound allows us to say that we can approximately tele-

port the state ρ
(0)
S when X and Z are almost MUBs.

GENERALISATIONS

In Ref. [18] we consider two ways in which the above
results can be generalised. The first considers measure-
ment devices that are initially in mixed states instead of
in the pure |0⟩ states. While one expects mixed devices
to be bad at accepting information, we find that a small
amount of mixing does not completely ruin the entan-
glement created in the sequential measurements. Indeed
we obtain a very simple generalisation of (2) when the
devices are initially in mixed states.

An alternative generalisation considers the case where
n ⩾ 2 measurement are done sequentially on the system.
We find that the pairwise complementarity between any
two successive observables provides a lower bound on the
entanglement created. Again this gives a nice, simple
generalisation of (2), to the case where many measure-
ments are performed sequentially.

CONCLUSIONS

Summary.—Our work gives an alternative take on
complementarity. Instead of discussing a trade-off of
knowledge, as is typically done with uncertainty rela-
tions, we propose that a signature and a quantification
of complementarity of two observables is given by the en-
tanglement generated when the two observables are se-
quentially measured on the same system by means of



3

a coherent interaction with corresponding measurement
devices. We also offer the perspectives of decoupling and
coherent teleportation.
The operational importance of complementarity has

also been discussed by Renes and collaborators (see [23]
and references therein); although we note that our phys-
ical scenario of sequential coherent complementary mea-
surements is not obviously connected to mathematical
theorems [24–27] based on knowledge or transmission of
complementary information.
In general, we find it intriguing that the same comple-

mentary factor c appearing in uncertainty relations also
appears in operational contexts. The fact that the com-
plementarity of two observables measures their power to
process quantum information in our scheme suggests to
search for further “uncertainty” (or “certainty”) relations
for other information-processing tasks or quantum com-
puting algorithms. Ref. [28] already made some progress
along these lines, and we expect that our work will stim-
ulate further results in the same perspective.

Appeal to AQIS audience.—Physicists who are famil-
iar with the uncertainty principle should be engaged by
our alternative view of complementarity, simply from a
fundamental perspective. Information theorists who wish
to better understand quantum information technologies
should find it interesting that we have connected com-
plementarity to the ability to accomplish several opera-
tional tasks, suggesting that complementarity is a useful
resource, even when it is only partial.
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