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Extended Abstract:

Adiabatic theorem refers to a situation in which the original Hamiltonian of the system

is gradually changed to a new Hamiltonian. It played an important role in the development

of quantum mechanics [1, 2, 3]. An energy eigenstate, of the original Hamiltonian, becomes

approximately an eigenstate for the new Hamiltonian, if the switch-on of the energy difference

is sufficiently slow. This implies that the slowness of variation needs to be compared with an

inherent slow system frequency, for e.g., the minimum of splitting of energy levels, say ω. The

time variation of the Hamiltonian introduces another frequency, χ. For the adiabatic regime

to hold, χ ≪ ω, which implies that the Hamiltonian does not change significantly during the

system characteristic cycle of motion. A canonical example of the adiabatic phenomena can be

seen from the case of a one dimensional harmonic oscillator perturbed by −eEXe
−

t
2

τ2 , where
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τ is the time scale associated with the perturbation and E is the electric field. Applying time

dependent perturbation theory, the probability of transition of the oscillator from the ground

state to the first excited state is πe2Eτ2

2mh̄ω
e−

ω
2
τ
2

2 . In the adiabatic regime (τ ∼
1

χ
), ωτ ≫ 1, the

system is seen to remain in the ground state.

The above simple estimate, justifying the adiabatic approximation, has been subject, in a

number of works, to rigorous mathematical analysis, related to first order estimates of the spec-

tral gap, of the spectral projection of the ground state separated from the rest of the spectrum

[4, 5, 6]. These estimates have been extended to systems without a gap [7]. In [8], rigorous

estimates were made for Hamiltonians which at any time t possess two spectral projectors, P1(t)

and P2(t), and which are spectrally isolated. Considering systems with avoided level crossing,

the adiabatic analysis lead to a rigorous derivation of the well known Landau-Zenner formula.

In [9] use was made of the adiabatic theorem to introduce the concept of topological states of

matter in order to distinguish gapped many body ground states of non-interacting systems and

mean field superconductors, respectively, regarding their global geometrical features.

In recent times, adiabatic approximation has been used as a method of quantum computation

[10]. The Hamiltonian of interest is H(t) = (1− g(t))H0 + g(t)H1. In most applications of the

adiabatic theorem to quantum computation one is interested to find out how certain quantities,

such as the running time of a computer program, grow (or decrease) with the parameter, n,

which describes the size of the system [11]. In [12], the time evolution of a quantum system in

the adiabatic limit was shown to have a geometric origin, leading to the concept of the geometric

phase, an important tool in holonomic quantum computation.

A general applicability of these ideas requires an extension to the arena of open quantum

systems. Open quantum systems are ubiquitous in the sense that any system can be thought of

as being surrounded by its environment (reservoir or bath) which influences its dynamics. They

provide a natural route for discussing damping and dephasing. One of the first testing grounds for
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open system ideas was in quantum optics [13]. Its application to other areas gained momentum

from the works of Caldeira and Leggett [14], and Zurek [15], among others. Depending upon the

system-reservoir (S−R) interaction, open systems can be broadly classified into two categories,

viz., quantum non-demolition (QND) or dissipative. A particular type of quantum nondemolition

(QND) S − R interaction may be achieved when the Hamiltonian HS of the system commutes

with the Hamiltonian HSR describing the system-reservoir interaction, i.e., HSR is a constant

of the motion generated by HS [16, 17, 18, 19, 20]. This results in pure dephasing without

dissipation. A dissipative open system would be when HS and HSR do not commute resulting

in dephasing along with damping [21]. Impressive progress has been made on the experimental

front in the manipulation of quantum states of matter towards quantum information processing

and quantum communication. Myatt et al. [22] and Turchette et al. [23] performed a series

of experiments in which they engineered both the pure dephasing as well as dissipative type of

evolutions.

Efforts have been made to develop an understanding of the adiabatic effect in open quantum

systems. In [24], estimates were made for systems evolving under a Lindbladian evolution.

Some rigorous estimates for adiabatic evolution of Lindbladian open quantum systems, with

and without a gap, was made recently in [25]. Since an open system evolution would, in general,

be non-unitary, it cannot be described by a Hermitian Hamiltonian. In some recent works,

attempts have made to use an effective Hamiltonian approach to this problem [26]. Here we

aim at providing simple, physically motivated examples aimed at an understanding of adiabatic

effects in the context of open quantum systems. An interesting analysis can be made from the

prespective of thermodynamics. Here it is easy to show that for systems, undergoing Lindbladian

evolution, where the Lindbladian commutes with the Hamiltonian, the system is adiabatic from

the perspective of thermodynamics, but is not informationally isolated from its environment.

In fact, this is the above discussed QND regime which is subject to decoherence. We take up

a simple model of a two-level system, undergoing a general open system evolution. This is

3



then converted into an equivalent problem of a spin precession around an effective magnetic

field, which is described in terms of the open system parameters [27]. From the time scales in

this problem, a simple understanding is reached about the adiabatic regime in a simple, but

instructive, open system model.

The technical paper will appear soon in the quant-ph archive.
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