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Abstract. We propose a new estimator for quantum state tomography, and prove that the (always
physical) estimates will be close to the true prepared state with high probability. We derive an explicit
formula for evaluating how high the probability is for an arbitrary finite-dimensional system and explicitly
give the one- and two-qubit cases as examples. Using the formula, we can evaluate not only the difference
between the estimated and prepared states, but also the difference between the prepared and target states.
This is the first result directly applicable for evaluating the precision of estimation and preparation in
quantum tomographic experiments.
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1 Introduction

Quantum tomography is a method for estimating an
unknown quantum state and process and the standard
tool in current quantum information experiments for ver-
ifying a successful realization of states and operations [1].
Let us consider the case of state preparation, where ρ∗
denotes a target state that we are trying to prepare in the
lab. In real experiments, the true prepared state ρ does
not coincide with ρ∗ because of imperfections. We wish
to evaluate the precision of this preparation, that is, the
difference between ρ∗ and ρ - however we do not know
ρ. Instead, we perform quantum state tomography; let
ρest

N denote an estimate of the state made from N sets of
data obtained in a tomographic experiment. To date the
best we have been able to do is to evaluate the difference
between ρ∗ and ρest

N , but even if the difference is small, it
does not guarantee that the prepared state ρ is close to
the target state ρ∗, because ρest

N is given probabilistically
and can deviate from ρ when N is finite. In this context,
we refer to the difference between ρest

N and ρ the precision
of the estimation.

There are many proposals for evaluating the precision
of estimation [2, 3, 4] and preparation [5, 6]. However
the settings considered in [2, 3, 4, 5, 6] are different from
the standard setting in quantum tomography, and their
results are not directly applicable for evaluating the preci-
sion of estimation or preparation in current tomographic
experiments. This is a crucial problem in the current
theory of quantum tomography.

In this presentation, we explain the problem mentioned
above and give a solution to this problem. We propose
a new estimator for quantum state tomography in finite-
dimensional systems, and prove that the estimated states
are within a distance threshold δ from the prepared state
with high probability. We derive an explicit formula for
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evaluating how high the probability is in arbitrary finite-
dimensional systems. This formula applies for any in-
formationally complete set of measurements, for an ar-
bitrary finite amount of data, and for general loss func-
tions including the infidelity, the Hilbert-Schmidt, and
the trace distances. Importantly, for a given experimen-
tal setup we can calculate the value of the formula with-
out knowing the true prepared state, and so the formula
can be used to evaluate the precision of state preparation.
To our knowledge this is the first result directly applica-
ble to evaluating the precisions of both estimation and
preparation in quantum tomography. We demonstrate
the technique for the example of one- and two-qubit state
tomography.

2 Setting

We consider a finite d(< ∞) dimensional quantum
system, with Hilbert space H. A state of the system
is described by a density matrix, which is a positive-
semidefinite and trace-one matrix, the space of which we
denote by S(H). Let ρ denote the density matrix de-
scribing the true prepared state on H. It is unknown,
and we make no further assumptions on ρ. Suppose that
N identical copies of the unknown true state, ρ⊗N , are
available, and we can perform a measurement on each
copy. Our aim is to estimate the unknown true state ρ
from measurement results.

The statistics of a quantum measurement are described
by a positive operator-valued measure (POVM), which
is a set of positive-semidefinite matrices that sum to the
identity. In standard setting of quantum tomography we
choose a combination of measurements. A set of POVMs
is called informationally complete (IC) if it spans the vec-
tor space of Hermitian matrices on H [7]. Such a set al-
lows for the reconstruction of an arbitrary quantum state,
and we will assume that the set of POVMs describing our
measurements is always IC.

A map from a data set to the space of interest – in



this case the space of quantum states – is called an es-
timator, and an estimation result is called an estimate.
A loss function is a measure for evaluating the difference
between two states. We analyze three loss functions: the
Hilbert-Schmidt distance, the trace distance, and the in-
fidelity, respectively. In current quantum tomography ex-
periments the trace distance and the infidelity are most
often used.

3 Main results

We propose a new nonlinear estimator ρENM whose
estimates are always physical. We call ρENM an extended
norm-minimization (ENM) estimator. We prove that the
ENM estimates will be close to the true prepared state
with high probability.

Theorem 1 For arbitrary true density matrix ρ ∈ S(H),
any IC set of POVMs, positive integer N , and positive
number δ,

∆(ρENM
N , ρ) ≤ δ (1)

holds with probability at least

CL := 1 − 2
d2−1∑
α=1

exp
[
− b

cα
δ2N

]
, (2)

where b and cα are determined by our choice of the loss
function and the measurement setting, respectively.

We call CL in Eq. (2) the confidence level of ρENM at
the (user-specified) error threshold δ.

4 Analysis

The most important point in Theorem 1 is that Eq. (2)
is independent of the true prepared state ρ. Therefore
we can use it to evaluate ∆(ρ∗, ρ) without knowing ρ.
Suppose that we choose a loss function ∆ that satisfies
properties of a mathematical distance. Then from the
triangle inequality and Theorem 1, we have

∆(ρ∗, ρ) ≤ ∆(ρ∗, ρENM
N ) + ∆(ρENM

N , ρ) (3)
≤ ∆(ρ∗, ρENM

N ) + δ, (4)

where Eq. (4) holds at the confidence level in Eq. (2). We
can calculate the value of the R.H.S. of Eq. (4) without
knowing the true prepared state ρ and use it to evaluate
the size of ∆(ρ∗, ρ).

Let us consider quantum state tomography of a k-
qubit system and suppose that we make the three Pauli
measurements with detection efficiency η on each qubit.
There are 3k different tensor products of Pauli matrices,
and suppose that we observe each equally n := N/3k

times. When we choose ∆ = ∆T, we obtain the explicit
form of CL for k-qubit state tomography as

CL(k) = 1 − 2
k−1∑
l=0

3k−l

(
k

l

)
exp

[
− 2

22k − 1
η2(k−l)

3k−l
δ2N

]
. (5)

In [8], an efficient maximum-likelihood (ML) estimator
algorithm is proposed for quantum state tomography us-
ing an IC set of projective measurements with Gaussian
noise whose variance is known, and numerical results for
k-qubit (k = 1, . . . , 9) state tomography indicate that
the computational cost would be significantly lower than
that of standard ML algorithms. We find that their effi-
cient algorithm can be modified and used for our ENM
estimates. Additionally, our result (Theorem 1) shows
that the ENM estimator can be used without assuming
projective measurements or Gaussian noise.
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