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Abstract. It is known that repeated gambling over the outcomes of independent and identically dis-
tributed (i.i.d.) random variables gives rise to alternate operational meaning of entropies in the classical
case in terms of the doubling rates. We give a quantum extension of this approach for gambling over the
measurement outcomes of tensor product states. Under certain parameters of the gambling setup, one can
give operational meaning of von Neumann entropies. We discuss two variants of gambling when a helper
is available and it is shown that the difference in their doubling rates is the quantum discord. Lastly,
a quantum extension of Kelly’s gambling setup in the classical case gives a doubling rate that is upper
bounded by the Holevo information.
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Quantum information theory [1, 2, 3] deals with the in-
formation content in the quantum systems and is a gen-
eralisation of classical information theory (see Ref. [4]
for example) for quantum systems.

The measurement outcome of a quantum system is a
random variable and the measurement alters the quan-
tum state in general. We confine ourselves to finite
dimensional Hilbert spaces that describe the quantum
states and a probability mass function would describe
the measurement outcome random variable that can be
computed using the postulates of quantum mechanics.

If after a measurement, a quantum system is prepared
again in the same state as before the measurement and
the same measurement process is repeated, the sequence
of the measurement outcomes is a sequence of i.i.d. ran-
dom variables.

As an example, consider a quantum system prepared
each time before the measurement in the quantum state
ρ = p |0〉 〈0|+ (1− p) |1〉 〈1|, where 0 ≤ p ≤ 1. The mea-
surement operators are {|0〉 〈0| , |1〉 〈1|}. The measure-
ment outcomes form a sequence of i.i.d. binary random
variables each of which take values 0, 1 with probabilities
p, 1− p respectively.

A classical gambling device such as a roulette consists
of a revolving wheel onto which a ball is dropped and
the ball settles down to one of the numbered slots or
compartments on the wheel. Alice, the roulette player,
bets on a number or a subset of numbers on which the
ball comes to rest. There is a probability associated with
winning on each gamble.

If bets are placed on the measurement outcomes of a
quantum system, then the apparatus becomes a gam-
bling device or a quantum roulette. Quantum gambling
has been studied before in different contexts. Goldenberg
et al invented a zero-sum game where a player can place
bets at a casino located in a remote site [5]. Hwang et al
considered its extensions using non-orthogonal and more
than 2 states [6, 7]. Betting on the outcomes of measure-
ments of a quantum state was considered by Pitowsky
[8].
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We note that none of the above references study the
log-optimal gambling strategies, which, on the other
hand, have been well-studied for the classical case (see
for example [9, 4, 10] and references therein).

Quantum systems exhibit certain characteristics that
are not possible classically. Bell inequalities [11, 12] give
classical limits to the figure of performance for certain se-
tups and these inequalities could be violated by quantum
systems. We show that the quantum gambling devices
too exhibit certain characteristics that are impossible to
replicate classically.

At an information-theoretic level, the von Neumann
entropy of the composite quantum systems A and B can
be smaller than the von Neumann entropy of the subsys-
tem B alone giving rise to negative conditional entropies.
This is, as is well known, impossible for classical Shannon
entropies.

Kelly defined a log-optimal gambling strategy by ap-
plying the law of large numbers to the factor (a ran-
dom variable) by which Alice’s wealth grows in a gam-
ble. Thus, one can loosely claim that Alice’s wealth is
an exponential function of the number of gambles [9].
(We define this more precisely in the expanded version.)
This approach has been developed further with the side
information (or a helper) in Ref. [4].

The exponent (or the doubling rate if the base of the
logarithm is 2) is a function of payoffs that the casino
owner, Charlie, offers for each outcome, outcome prob-
ability distribution, and Alice’s strategy. When we op-
timise the strategy under certain conditions, then the
entropy (Shannon or von Neumann) appears in the ex-
ponent.

We note that these entropies (and certain information
measures) have deep operational interpretations in clas-
sical and quantum information theory (see Ref. [1] and
references therein).

In the classical case, Alice chooses how the wealth with
which she is gambling is going to be distributed across
the various outcomes. As an example, for two outcomes,
Alice could bet half of her money on each of the outcomes.

For the quantum case, Alice can additionally make



a choice of the measurement operators. Any classical
roulette would be a special case of a quantum roulette.

We also consider a case when a helper named Bob is
available for the gambler to make more money. Bob has
access to a quantum system that is correlated with Alice’s
quantum system. Bob is broke and has no money to
gamble on his system and offers Alice help in two ways.

In the first variant, Bob reports the measurement out-
come to Alice who now knows the collapsed state of her
quantum system and uses this information to further op-
timise her exponent (or the doubling rate). Alice may
or may not have control over the measurement operators
applied by Bob.

In the second variant, Bob leases out his quantum sys-
tem to Alice who then gambles on the composite quan-
tum system consisting of her and Bob’s systems. In re-
turn, Bob demands a share in Alice’s accrued wealth and
wants Alice to retain the fraction of wealth that Alice
would have accrued by gambling only on her system and
had completely ignored the correlations between the two
systems. Bob’s argument is that Alice can win more by
taking the correlations into account and it thus a win-win
situation for both him, since he earns money after being
broke, and Alice since she earns more money.

Under certain conditions, for the classical gambling,
these two variants give rise to the same doubling rates
whereas, for quantum gambling, they give rise to different
doubling rates whose difference is equal to the quantum
discord, a quantity that has been studied in a completely
different context [13, 14].

Quantum discord is interpreted as purely the quantum
part of the total correlation between the two quantum
systems. That these two variants are the same classically
in terms of the doubling rate lends support to the above
interpretation.

Kelly gave another interesting interpretation of the
mutual information [9]. Suppose Alice, knowing the out-
put of a communication channel, bets on the inputs to
the channel, then under certain conditions, the optimised
doubling rate is equal to the mutual information. We
extend Kelly’s result to the quantum case and get a dou-
bling rate in terms of a certain mutual information that
is a function of the measurement operators which, us-
ing the Holevo bound, is upper bounded by the Holevo
information.
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