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Abstract. We present a comprehensive approach to quantum discord of two-qubit X-states. Our ap-
proach is geometric in nature, and employs methods that have been in use in classical polarization optics
for several decades. We believe that our treatment is exhaustive: all known results can be reproduced,
often more simply and economically; several new insights emerge, including clarification on some not so
accurate claims in the literature.
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The study of correlations in bipartite systems has been
invigorated over the last couple of decades or so. Var-
ious measures and approaches to segregate the classical
and quantum contents of correlations have been explored.
Entanglement has been the most popular of these corre-
lations, owing to its inherent advantages in performing
quantum computation and communication tasks. More
recently, however, there has been a rapidly growing inter-
est in the study of correlations from a more direct mea-
surement perspective; in particular quantum discord and
classical correlation have been attracting much attention.

In this work, we undertake a comprehensive analysis
of the problem of computation of correlations in two-
qubit system X-states which have come to be accorded
a distinguished status in this regard. The problem of
X-states has been considered by many authors. Here
we present an approach that exploits the very geometric
nature of the problem, and it may be noted that the
geometric methods used here have been the basic tools
of (classical) polarization optics for a very long time, and
involve constructs like Stokes vectors, Poincaré sphere,
and Mueller matrix [1].
The present study is largely caused by the work of M.

Ali, A. R. P. Rau, and G. Alber [2] who simply asserted

that the optimal measurement for X-states is always the
von-Neumann measurement along either ‘x’ or ‘z’ direc-
tion. This assertion itself is based on an unusual sym-
metry argument which goes like thus : since the problem

has a symmetry, the optimal von-Neumann measurement

must be invariant under this symmetry. We begin by ex-
hibiting an X-state for which, despite the symmetry, the
x and z-projections return the worst value among all

von-Neumann measurements. Several authors have more
recently presented isolated examples wherein the Ali et
al. assertion either fails or is doubtful, numerically; but
the need for our comprehensive study originates in our
position that the Ali et al. argument is non-maintainable
even in cases where their assertion returns numerically
correct values.
Now, classical correlation in a bipartite state is given

by the expression

C(ρ̂AB) = max
Π

S(ρ̂A)−
∑

j

pjS(ρ̂
A
j ), (1)

where the probabilities {pj} and the state of system A

after the measurement Πj are given by

pj = Tr[(11A ⊗ΠB
j )ρ̂AB ], ρ̂Aj =

TrB [Π
B
j ρ̂AB ]

pj
. (2)

The set Π = {Πj}meets the defining conditions
∑

j Πj =
11 and Πj ≥ 0 for all j. That is, the set {Πj} forms a
POVM. The second term in the expression (1) for classi-
cal correlation is the (minimum) conditional entropy post
measurement, and we may denote it by

SA
min

= min
Π

∑

j

pjS(ρ̂
A
j ), (3)

so that the expression for quantum discord reads as

D(ρ̂AB) = S(ρ̂B)− S(ρ̂AB) + SA
min

. (4)

We note that the first two terms of this expression for
quantum discord are known as soon as the bipartite state
ρ̂AB is specified. Therefore the only quantity of compu-
tational interest is the conditional entropy SA

min
of system

A post measurement (on B) : this alone involves an opti-
mization.
In classical polarization optics the state of a light

beam is represented by a 2 × 2 complex positive ma-
trix Φ called the polarization matrix. The intensity of
the beam is identified with TrΦ, and so the normalized
matrix (TrΦ)−1Φ represents the actual state of polariza-
tion. The polarization matrix Φ is thus analogous to the
density matrix of a qubit, the only distinction being that
the trace of the latter needs to assume unit value. Even
this one little difference is gone when one deals with con-
ditional quantum states post measurement : the proba-
bility of obtaining a conditional state becomes analogous
to intensity = TrΦ of the classical context.
The Mueller-Stokes formalism itself arises from the fol-

lowing simple fact : any (complex) 2 × 2 matrix Φ can
be invertibly associated with a (generally complex) four-
vector S, called the Stokes vector, through

Φ =
1

2

3∑

k=0

Skσk, Sk = Tr(σkΦ). (5)



This representation is an immediate consequence of the
fact that the Pauli triplet σ1, σ2, σ3 together with σ0 =
11, the unit matrix, form a complete orthonormal set of
(hermitian) matrices. Clearly, hermiticity of the polar-
ization matrix Φ is equivalent to reality of the associated
four-vector S and TrΦ = S0. Positivity of Φ reads S0 > 0,
S2
0
−S2

1
−S2

2
−S2

3
≥ 0 corresponding, respectively, to the

pair TrΦ > 0, detΦ ≥ 0. Thus positive 2 × 2 matrices
(or their Stokes vectors) are in one-to-one correspondence
with points of the positive branch of the solid light cone.
Unit trace (intensity) restriction corresponds to the sec-
tion of this (four-dimensional) cone at unity along the
‘time’ axis, S0 = 1. The resulting three-dimensional unit
ball B3 ∈ R3 is the more familiar Bloch (Poincaré) ball,
whose surface or boundary S2 representing pure states is
often called the Bloch (Poincaré) sphere P.
Optical systems which map Stokes vectors linearly into

Stokes vectors have been of particular interest in polar-
ization optics. Such a linear system is represented by a
4 × 4 real matrix M , the Mueller matrix M : Sin →
Sout = MSin.
To see the connection between Mueller matrices and

two-qubit states unfold naturally, use a single index
rather than a pair of indices to label the computa-
tional basis two-qubit states {|jk〉} in the usual manner :
(00, 01, 10, 11) = (0, 1, 2, 3). Now, a two-qubit density
operator ρ̂AB can be expressed in two distinct ways :

ρ̂AB =
3∑

j,k=0

ρjk|j〉〈k| =
1

4

3∑

a,b=0

Mab σa ⊗ σ∗

b , (6)

the second expression simply arising from the fact that
the sixteen hermitian matrices {σa⊗σ∗

b} form a complete
orthonormal set of 4×4 matrices. Hermiticity of operator
ρ̂AB is equivalent to reality of the matrix M = ((Mab)),
but the same hermiticity is equivalent to ρ = ((ρjk))
being a hermitian matrix.
The Stokes vector of the conditional state of A result-

ing from measurement element corresponding to Stokes
vector S on the B side turns out from Eq. (6) to be

S
′

a =
∑

3

k=0
MakSk, which may be written in the sug-

gestive form

Sout = MSin. (7)

Comparison with the polarization scenario prompts us
to call M the Mueller matrix associated with two-qubit

state ρ̂AB . The state of subsystem A resulting from mea-
surement of any POVM element on the B-side of ρ̂AB is
the Stokes vector resulting from the action of the associ-
ated Mueller matrix on the Stokes vector of the POVM
element. In the rank-one case, the input Stokes vectors
correspond to points on the (surface S2 = P) of the Bloch
ball.
Every two-qubit state has associated with it a unique

output ellipsoid of all possible conditional states. Since
the ellipsoid degenerates to a single point in the case of
product states, we may call it the correlation ellipsoid as-
sociated with the given bipartite state. The X-states are
distinguished by the fact that C (center of the ellipsoid),
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Figure 1: Depicting a two-section of the manifold of X-
states. It is the wedge-like tiny region at the top right
end that corresponds to X-states for which the optimal
POVM is not a von-Neumann projection.

I (image when identity is the input), and the origin of P
are collinear with one of the principal axes of the ellipsoid.
In other words, C and I become one-dimensional rather
than three-dimensional variables, rendering X-states a
11-parameter subfamily of the 15-parameter state space.
This geometric rendering is manifestly invariant under
local unitaries as against the characterization in terms of
‘shape’ X in the computation basis.
We develop a optimal scheme for computation of the

quantum discord for any X-state of a two-qubit sys-
tem. Our treatment itself is both comprehensive and self-

contained and, moreover, it is geometric in flavour. We
begin by exploiting symmetry to show, without loss of
generality, that the problem itself is one of optimization

over just a single variable. The analysis is entirely based
on the output or correlation ellipsoid.
Not all parameters of a two-qubit X-state influence the

correlation ellipsoid, and since our entire analysis is an-
chored on the correlation ellipsoid, the parameters that
influence and those which do not influence play very dif-
ferent roles. The correlation ellipsoid has an invariance
group which is much larger that the group of local uni-
tary symmetries. An appreciation of this larger invari-
ance turns out to be essential to the simplification of the
present analysis.
A typical two-section of the manifold of X-states is

depicted in Fig. 1 to underline the fact that the region
where the assertion of Ali et al. is numerically misplaced
is really tiny. But the X-states in this tiny region have
the same symmetry as those outside, perhaps implying
that if the symmetry argument of Ali et al. is misplaced
it is likely to be so everywhere, and not just in this region.
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