Entanglement certainty from Heisenberg’s uncertainty
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Abstract. We present a new paradigm for capturing the complementarity of two observables (see original
article, arXiv:1305.3442). It is based on the entanglement created by the interaction between the system
observed and the two measurement devices used to measure the observables sequentially. Our main result
is a lower bound on this entanglement and resembles well-known entropic uncertainty relations. Besides its
fundamental interest, this result directly bounds the effectiveness of measurement operations for generating
entanglement, and has further application for decoupling and coherent teleportation.
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Heisenberg’s original formulation of the uncertainty
principle considered sequential measurements of comple-
mentary observables, like position and momentum, per-
formed on the same physical system, and the princi-
ple was that the second observable is unavoidably dis-
turbed by the measurement of the first []. An alterna-
tive scenario considers unavoidable uncertainty for inde-
pendent measurement of the two observables, with the
measurements performed on distinct but identically pre-
pared quantum systems [2, B].

The latter formulation of the uncertainty principle
seems to receive more attention in modern times. For
example, entropic uncertainty relations [d] typically cap-
ture this unavoidable uncertainty; consider a well-known
example from Maassen and Uffink [5]. For any state pg
of a finite-dimensional quantum system S they find

H(X)+ H(Z) = logy(1/c), (1)

where X = {|X};)} and Z = {|Z;)} are any two orthonor-
mal bases of Hs, H(X) := —3 . p(X;)log, p(X;) is the
Shannon entropy associated with the probability distri-
bution p(X;) := (X,|ps|X;) (similarly for H(Z)), and
¢ = max; [(X;|Z)|? quantifies the complementarity
between the X and Z observables.

Ref. [6] showed that an entropic uncertainty relation
like (M) has a correspondent entanglement certainty rela-
tion. They considered the generation of entanglement be-
tween measurement devices and independent, identically-
prepared copies of some system, and proved that, when
dealing with complementary observables, there is un-
avoidable creation of entanglement between at least one
copy of the system and one measuring device.

Main result.—In this work, we offer a new point of
view on complementarity. As Heisenberg did originally,
we consider sequential measurements performed on the
same physical system, rather than idependent copies of
the system; on the other hand, following [B, [, ], we focus
on the entanglement generated between the system and
the measurement devices. In general, for any X and Z,
we can lower-bound the entanglement E(X, Z) between
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Figure 1: Circuit diagram for the sequential measure-
ment of the X and Z observables on system S.

the system and the measurement devices created from
sequentially measuring X and Z with

E(X,Z) > logy(1/c), (2)

where the ¢ factor appearing here is precisely the same c
appearing in Eq. (I). Here, we take F to be the distillable
entanglement, i.e., the optimal rate to distill Einstein-
Podolsky-Rosen (EPR) pairs using local operations and
classical communication (LOCC) in the asymptotic limit
of infinitely many copies of the state.

Our approach relates in a mnovel way two basic
concepts of quantum mechanics: complementarity—
in the sequential-measurement scenario—and entangle-
ment. Besides this fundamental interest, our results
have direct operational interpretations. On one hand,
they provide bounds on the usefulness of sequential bi-
partite operations—corresponding to the measurement
interactions—for entanglement generation. On the other
hand, we discuss below the application of our results to
decoupling [4] and coherent teleportation [I].

Figure 0 depicts the basic setup for our main result. At
the initial time, ¢y, the system is in an arbitrary state pg)).
It firsts interacts with device M7, which measures ob-
servable X, and later it interacts with device M5, which
measures observable Z. The measurements are depicted
with the controlled-NOT symbols although more gener-
ally they represent controlled-shift unitaries. We are in-
terested in the bipartite entanglement E(X, Z) between
S and the joint system M;Ms at the final time, to.

The case where X and Z are fully complementary, so-
called mutually unbiased bases (MUBs), corresponds to



|(X;|Zk)|> = 1/d for all j, k, and hence ¢ = 1/d, where
d = dim(Hg). In the uncertainty relation (), this leads
to the maximum tradeoff in knowledge, with the r.h.s.
becoming log, d, and hence perfect knowledge of X im-
plies complete ignorance of Z. Likewise, in our main
result, the r.h.s. of (B) becomes log, d. This implies that,
for any input state p(SO), sequentially measuring X and
Z results in a maximally entangled state between S and
MiMs. It may seem surprising that this is even true if
we feed in a maximally-mixed state p(;) =1I/d.

Eq. (2) also allows us to say that if X and Z are almost
MUBSs, then for any input state, S is almost maximally
entangled to M1 M, at time t5. Furthermore, as long as
log,(1/c) > 0, then there is guaranteed to be distillable
entanglement at time t5.

Ref. [i] provides two alternative proofs of (). One is
based on the uncertainty principle with quantum memory
[12], applied at time ¢; in Fig. M. The other invokes the
monotonicity of entanglement under LOCC, which allows
us to derive a slightly stronger version of (B) given in [I].

In what follows, we discuss the implications of our main
result for decoupling and coherent teleportation.

Decoupling.—The correlations between two quantum
systems can be destroyed, turning an arbitrary bipartite
state pgg/ into some tensor product og®ogs, with appro-
priate local operations. This idea, called decoupling [9]
has specific applications in state merging [[3] and quan-
tum cryptography [Id]. Our work identifies sequential
complementary measurements as one such method to de-
couple. This is due to the monogamy principle: because
S is highly entangled to M; M, at time ¢y, then S cannot
be too correlated with any other system S’ at ts.

We make this precise by considering the relative en-
tropy D(o||7) := Tr(ology o) — Tr(o log, 7). Letting pgg,
denote the state of S and some other system S’ at time
to, we find that, for any initial state pgg,,

D(pShIT/d® pg)) < logy(d - ), (3)

which is a corollary of Eq. (B). Indeed this implies that
the final state p(;g, is almost completely decoupled if the
X and Z observables are almost fully complementary.
Coherent teleportation.—We have shown that the abil-
ity to produce entanglement and to decouple using se-
quential measurements is a quantification of the comple-
mentarity of those measurements. It turns out there is a
third perspective on complementarity. In the case when
X and Z are MUBs, there exists a local unitary applied
to M1 Ms at time to that recovers the input state pgo) on
device My, i.e., we can “teleport” the input state of S
to one of the measurement devices. This is commonly
known as coherent teleportation [I0]. In this case, the
channel £:S(ty) — S(t2) is completely noisy, while the
channel £°:5(tg) — My Ms(t2) is perfect. As we reduce
the complementarity of X and Z, the channel £¢ becomes
less perfect, so we can consider the quantum capacity @
of £¢, i.e., the optimal rate at which £¢ allows for the
reliable transmission of quantum information [IH], as a
measure of the complementarity of X and Z. We make

this idea quantitative with the following corollary of (2),

Q(E°) = logy(1/c). (4)

Eq. (@) allows us to say that we can approxzimately tele-
port the state pgo) when X and Z are almost MUBs.
Conclusions.—We give an alternative take on comple-
mentarity. Instead of discussing a trade-off of knowledge,
as in uncertainty relations, we propose that a signature
and quantification of complementarity of two observables
is given by the entanglement generated when the observ-
ables are sequentially measured on the same system via
a coherent interaction with corresponding measurement
devices. We also offer the perspectives of decoupling and
coherent teleportation. We find it intriguing that the
same complementary factor ¢ appearing in uncertainty
relations also appears in these operational contexts.
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