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Abstract. The entanglement between two arbitrary subsystems of random pure states is studied via
properties of the density matrix’s partial transpose, ρT2

12
. The density of states of ρT2

12
is found to be

asymptotically the Wigner semicircle. A simple random matrix model is found to capture these properties
well, including a NPT–PPT transition. The smallest eigenvalue of ρT2

12
is found to follow the extreme

value statistics of random matrices. Thus the Tracy-Widom distribution is used to calculate the fraction
of entangled states at critical dimensions. These results are then tested in a quantum dynamical system
of three coupled standard maps.
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A random state corresponds to assuming minimal prior
information about the quantum system. Thus they are
very general and can be seen as typical states. Eigen-
states of a nonintegrable Hamiltonian can often result in
states whose statistical properties closely resemble those
of random states. Previous results suggest that almost all
pure states have almost maximal bipartite entanglement
[1, 2] and are shown to be useful for quantum informa-
tion processing [3]. Very little is known in the case of en-
tanglement between two subsystems of tripartite (three
parts) random pure states. An example is provided by
two interacting systems which are kept in a heat bath
and together they are in a pure state.
Consider random tripartite pure states in H2L1 ⊗

H2L2 ⊗H2L−L1−L2 , having L qubits and a partition into
three subsystems of L1, L2 and L − L1 − L2 qubits.
We have studied [4] entanglement between the two sub-
systems whose density matrix is denoted by ρ12, using
the properties of its partial transpose (PT), ρT2

12
. It is

found that the eigenvalue density of ρT2

12
is close to the

Wigner semicircle law for sufficiently large L1, L2 and
L1 + L2 ≪ L. Wigner semicircle law is an important
distribution of random matrix theory, for example it is
the eigenvalue density of the various Gaussian ensembles
[5]. It is found that typically the two subsystems are
entangled if L1 + L2 > L/2 − 1 and typically PPT if
L1 +L2 < L/2− 1. The case when L1 +L2 = L/2− 1 is
critical, with a coexistence of NPT and PPT states even
for large L.
A simple random matrix model for the partial trans-

pose of the density matrix of subsystems in a typical pure
states is studied. This is found to capture these entangle-
ment properties, including that of the critical case. Log
negativity is used as a measure to quantify the typical
entanglement between the subsystems and analytic for-
mulas for this are derived based on the simple model. It
is found that the eigenvalue density of ρT2

12
is a skewed dis-

tribution. Thus the skewness of the eigenvalue density of
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ρT2

12
is derived analytically, using the average of the third

moment over the ensemble of random pure states. The
third moment after partial transpose is also shown to be
related to a generalization of the Kempe invariant and is
invariant under permutation of subsystems for any given
state.
It is found that the smallest eigenvalue after partial

transpose follow the extreme value statistics of random
matrices, namely the Tracy-Widom distribution [6, 7].
This distribution, with relevant parameters obtained
from the model, is found to be useful in calculating the
fraction of entangled states at critical dimensions. These
results are tested in a quantum dynamical system of three
coupled standard maps, where one finds that if the pa-
rameters represent a strongly chaotic system, the results
are close to those of random states, although there are
some systematic deviations at critical dimensions.
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