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Abstract. Uncertainty relations are often considered to be a measure of incompatibility of noncommuting
observables. However, such a consideration is not valid in general, motivating the need for an alternate
measure that applies to any set of noncommuting observables. We present an operational approach to
quantifying incompatibility without invoking uncertainty relations. Our measure aims to capture the
incompatibility of noncommuting observables as manifest in the nonorthogonality of their eigenstates. We
prove that this measure has all the desired properties. It is zero when the observables commute, strictly
greater than zero when they do not, and is maximum when they are mutually unbiased. We also obtain
tight upper bounds on this measure for any N noncommuting observables and compute it exactly when
the observables are mutually unbiased.
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In quantum theory, any observable or a set of com-
muting observables can in principle be measured with
any desired precision. Commuting observables have a
complete set of simultaneous eigenkets, and therefore,
measurement of one does not disturb the measurement
result obtained for the other. This no longer holds when
the observables do not commute. Noncommuting observ-
ables do not have a complete set of common eigenkets,
and therefore it is impossible to specify definite values
simultaneously. This is the essence of the celebrated un-
certainty principle [1]. Uncertainty relations express the
uncertainty principle in a quantitative way by providing
a lower bound on the “uncertainty” in the result of a si-
multaneous measurement of noncommuting observables.

Observables are defined to be compatible when they
commute, and incompatible when they do not. The un-
certainty principle is thus a manifestation of the incom-
patibility of noncommuting observables. Despite the con-
ceptual importance of quantifying incompatibility and
the usefulness of such observables in quantum state dis-
crimination [4] and quantum cryptography [5], there is no
good general measure of their incompatibility, although
entropic uncertainty relations (EURs) [2] have often been
considered for this purpose.

Consider, for example, the EUR due to Maassen and
Uffink [3]. For any quantum state ρ ∈ H with dimH = d,
and measurement of any two observables A and B with
eigenvectors {|ai〉} and {|bi〉}, respectively, it was shown
that [3]

1

2
(H (A|ρ) +H (B|ρ)) ≥ − log c, (1)

where c = max |〈a|b〉|: |a〉 ∈ {|ai〉} , |b〉 ∈ {|bi〉}, and

H (X|ρ) = −
∑d

i=1 〈xi |ρ|xi〉 log 〈xi |ρ|xi〉 is the Shannon
entropy. The incompatibility of the observables A and B
can be measured by either the sum of the entropies [LHS
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of (1)] minimized over all ρ or the lower bound when
equality is achieved for some state. A set of observables
is said to be more incompatible than another if the sum
(or the lower bound) takes on a larger value. It is clear
that a pair of observables is most incompatible when the
observables are mutually unbiased. Incompatibility of
more than two observables can be similarly quantified
via a generalized form of the inequality (1), when such
an inequality can be found (see [2] for a recent review).

However, (1) is not a satisfactory measure of incom-
patibility for all pairs of incompatible observables, since
both sides of the inequality can be zero even when the
observables do not commute. This happens, for example,
when the noncommuting observables A and B are such
that they commute on a subspace. For such a pair of ob-
servables both sides of inequality (1) are identically zero
even though the observables are known to be incompati-
ble. Thus, uncertainty relations cannot be considered as
a valid measure of incompatibility for all sets of noncom-
muting observables, thus motivating the present work.
Furthermore, incompatibility of more than two observ-
ables is much less understood because uncertainty rela-
tions (in cases where they are indeed a good measure) are
known only for some special classes of observables [2].

Here, we present an operational approach to quanti-
fying the incompatibility of any set of N noncommut-
ing observables. Since noncommuting observables do not
have a complete set of common eigenkets, some of the
eigenstates, if not all, corresponding to different noncom-
muting observables must be nonorthogonal. We therefore
suggest a measure that quantifies incompatibility of the
observables as manifest in the nonorthogonality of their
eigenstates. We show that our measure applies to any set
of noncommuting observables, even when the observables
commute on a subspace.

Operational Setting: To define our measure of in-
compatibility, we adopt an operational approach, best
understood in the setting of quantum cryptography. We
imagine a quantum key distribution (QKD) protocol be-



tween Alice and Bob, in presence of an eavesdropper
employing an intercept-resend attack. Alice transmits
quantum states drawn randomly from an ensemble S of
equiprobable pure states, where the pure states are taken
to be the eigenstates of the noncommuting observables
whose incompatibility we wish to quantify. For a set
Π =

{
Π1,Π2, ...,ΠN

}
of N noncommuting observables

acting on a Hilbert space Hd of dimension d, the sig-
nal ensemble is defined as a set of pure states S (Π) ={

Πi
j = |ψi

j〉〈ψi
j |
}

, with i = 1, ..., N and j = 1, ..., d, where

|ψi
j〉 is the jth eigenvector of the observable Πi. Alice

transmits pure states Πi
j drawn randomly and equiprob-

ably from the set S (Π).
The eavesdropper employs an intercept-resend strat-

egy comprising of a POVM M = {Ma}, and a state
reconstruction procedure A : a → σa such that when
the measurement outcome is a, the eavesdropper substi-
tutes the intercepted state with the state σa and sends
this state to Bob. Our measure is defined as the comple-
ment of the accessible fidelity [6] of the set S. Intuitively,
this measure corresponds to the “amount of information”
that is inaccessible to an eavesdropper.

The average fidelity of S (Π) is given by:

FS(Π) (M,A) =
1

Nd

∑
ija

Tr
(
Πi

jMa

)
Tr
(
Πi

jσa
)
. (2)

The optimal fidelity is obtained by maximizing the aver-
age fidelity over all measurements and state reconstruc-
tion procedures:

FS(Π) = sup
M

sup
A

1

Nd

∑
ija

Tr
(
Πi

jMa

)
Tr
(
Πi

jσa
)
. (3)

The optimal fidelity represents the best possible average
fidelity an eavesdropper can obtain. The measure of in-
compatibility of the noncommuting observables in the set
Π is now defined as

Q (Π) = 1− FS(Π). (4)

It is clear from the definition that the measure is applica-
ble even when the noncommuting observables

{
Πi
}

have
one or more common eigenvectors. We will say that a
set of observables Π1 is more incompatible than another,
say, Π2, if the former takes on a larger Q value. It is in-
teresting to note that the comparison holds regardless of
the number of observables in each set and the dimension
of the Hilbert space.

We show that Q has the following desirable property.
It is zero when the observables commute, strictly greater
than zero when they do not (note that the approach
based on an uncertainty relation fails in this regard), and
maximum when they are mutually unbiased.

Result 1 Q = 0 for commuting observables and Q > 0
when the observables do not commute.

We also obtain nontrivial upper bounds for any N non-
commuting observables, and show that they are tight
when N ≤ d + 1, by computing the measure exactly

for any N mutually unbiased observables, namely, ob-
servables whose eigenvectors form mutually unbiased
bases [7, 4]. For N mutually unbiased observables,
Π1,Π2, ...,ΠN , their eigenvectors satisfy:

Tr
(
Πi

jΠ
i
k

)
= δjk; Tr

(
Πi

jΠ
k
l

)
=

1

d
when i 6= k. (5)

Result 2 (Upper Bounds) Any set Π of N noncom-
muting observables acting on Hd with dimHd = d satis-
fies:

Q (Π) ≤
(

1− 1

N

)(
1− 1

d

)
, N ≤ d+ 1 (6)

Q (Π) ≤ d− 1

d+ 1
, N ≥ d+ 1 (7)

Result 3 Let Π =
{

Π1,Π2, ...,ΠN
}

be a set of N ≤
d + 1 mutually unbiased observables acting on Hd with
dimHd = d. Then,

Q (Π) =

(
1− 1

N

)(
1− 1

d

)
(8)

We refer to the arxiv pre-print [8] for further details
and proofs. In conclusion, we note that the underlying
physical principle defining our measure and the security
of QKD protocols such as BB84 [5] and its generalizations
is the same. Thus, the exact expression of incompatibility
of any N mutually unbiased observables obtained here is
expected to help analyze the security of such protocols.
Like EURs, the results presented here might also have
potential applications in quantum cryptography and en-
tanglement detection [9].
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