
Adiabatic Effect in Open Quantum Systems: Implications for Quantum
Information

Subhashish Banerjee1 ∗ Kevin Valson Jacob2 † Sohan Sarangi3 ‡ Sibasish Ghosh4 §

1 Indian Institute of Technology – Rajasthan, Jodhpur, India.
2 Department of Physics, Indian Institute of Technology – Kanpur, Kanpur, Uttar Pradesh, India

3 Indian Institute of Science Education and Research – Pune, Pune, Maharastra, India. ptics and Quantum
Information Group, The Institute of Mathematical Sciences, C.I.T. Campus, Taramani,Chennai, India.

Abstract. The Adiabatic theorem plays a very prominent role in the development of quantum mechanics.
There have been many invest pert to this effect in quantum mechanics. A general applicability of these
ideas requires an extension to Open Quantum Systems. In This work, we study two recently proposed
attempts to understand adiabaticity in Open Quantum Systems, by applying them to a host of open
system models. While they agree in general, there are regimes of disagreement. We further develop a
simple intuitive approach to this problem by mapping a commonly studied open system model to a model
of spin precession.
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Adiabatic theorem refers to a situation in which the
original Hamiltonian of the system is gradually changed
to a new Hamiltonian. It played an important role in
the development of quantum mechanics [1, 2, 3]. An
energy eigenstate, of the original Hamiltonian, becomes
approximately an eigenstate for the new Hamiltonian,
if the switch-on of the energy difference is sufficiently
slow. This implies that the slowness of variation needs
to be compared with an inherent slow system frequency,
for e.g., the minimum of splitting of energy levels, say
ω. The time variation of the Hamiltonian introduces an-
other frequency, χ. For the adiabatic regime to hold,
χ � ω, which implies that the Hamiltonian does not
change significantly during the system characteristic cy-
cle of motion.

The above simple estimate, justifying the adiabatic ap-
proximation, has been subject, in a number of works, to
rigorous mathematical analysis, related to first order es-
timates of the spectral gap, of the spectral projection of
the ground state separated from the rest of the spectrum
[4, 5, 6]. These estimates have been extended to systems
without a gap [7]. In [8], rigorous estimates were made
for Hamiltonians which at any time t possess two spectral
projectors, P1(t) and P2(t), and which are spectrally iso-
lated. Considering systems with avoided level crossing,
the adiabatic analysis lead to a rigorous derivation of the
well known Landau-Zenner formula. In [9] use was made
of the adiabatic theorem to introduce the concept of topo-
logical states of matter in order to distinguish gapped
many body ground states of non-interacting systems and
mean field superconductors, respectively, regarding their
global geometrical features.
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In recent times, adiabatic approximation has been used
as a method of quantum computation [10]. The Hamil-
tonian of interest is H(t) = (1 − g(t))H0 + g(t)H1. In
most applications of the adiabatic theorem to quantum
computation one is interested to find out how certain
quantities, such as the running time of a computer pro-
gram, grow (or decrease) with the parameter, n, which
describes the size of the system [11]. In [12], the time
evolution of a quantum system in the adiabatic limit was
shown to have a geometric origin, leading to the concept
of the geometric phase, an important tool in holonomic
quantum computation.

Efforts have been made to develop an understanding
of the adiabatic effect in open quantum systems. In [13],
estimates were made for systems evolving under a Lind-
bladian evolution. Some rigorous estimates for adiabatic
evolution of Lindbladian open quantum systems, with
and without a gap, was made recently in [14]. Since an
open system evolution would, in general, be non-unitary,
it cannot be described by a Hermitian Hamiltonian. In
some recent works, attempts have made to use an ef-
fective Hamiltonian approach to this problem [15]. In
another approach[16], the adaibaticity of the open sys-
tem was analyzed using the Jordan block diagonaliza-
tion of the Lindbladian superoperator, generating the
open system evolution. Here we aim at providing simple,
physically motivated examples aimed at an understand-
ing of adiabatic effects in the context of open quantum
systems. An interesting analysis can be made from the
prespective of thermodynamics. It is easy to show that
for systems, undergoing Lindbladian evolution, where the
Lindbladian commutes with the Hamiltonian, the system
is adiabatic from the perspective of thermodynamics, but
is not informationally isolated from its environment. In
fact, this is the above discussed QND regime which is sub-
ject to decoherence. We make a comparison of the Jor-
dan block [16] and effective Hamiltonian [15] approaches
to adiabaticity in open quantum systems, by applying



them on a number of open system models. We then take
up a simple model of a two-level system, undergoing a
general open system evolution. This is then converted
into an equivalent problem of a spin precession around
an effective magnetic field, which is described in terms of
the open system parameters. From this analysis, a sim-
ple understanding is possible about the adiabatic in open
quantum systems.
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