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Abstract.

Entangled states using certain nonorthogonal states called “quasi-Bell states” are important

resources in quantum information systems. We consider entanglement-assisted classical communication
using quasi-Bell states. In this case, simultaneous optimization of an a priori distribution and an encoding
function is desired to compute the capacity. However, to optimize both quantities directly is computation-
ally hard, and a reduction in the computational complexity is necessary. In the present paper, we apply a
quantum version of the Arimoto-Blahut algorithms to compute the capacity. As a result, the simultaneous
optimization of the a priori distribution and the encoding function is achieved.
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1 Introduction

In quantum information systems, entanglement is
viewed as an important resource. Entangled states using
nonorthogonal states called “quasi-Bell states”[1], such
as coherent states of light, have been shown to be ca-
pable of “perfect entanglement” and are expected to be
robust against attenuations in quantum channels.

In this study, we consider the entanglement-assisted
classical communication[2] using quasi-Bell states. Using
this protocol, we can obtain two bits by transmitting
a l-qubit in the ideal qubit channel. In two previous
studies, classical information transmission using quasi-
Bell states was considered for an ideal channel[3] and a
lossy channel[4].

In these papers, an approximate encoding was assumed
that works for sufficiently large coherent amplitudes. Re-
cently, we showed the capacity of a classical communica-
tion using degraded quasi-Bell states based on rigorously
realizable encodings[5]. In Ref.[5], the capacity was com-
puted by optimizing an a priori distribution, although
a fixed encoding function was used. However, what is
more desired is the simultaneous optimization of the a
priori distribution and the encoding function. To opti-
mize both quantities directly though is computationally
hard, hence some reduction in computational complexity
is necessary.

In the present paper, we apply a quantum version of
the Arimoto-Blahut algorithm[6] to compute the capac-
ity. As a result, simultaneous optimization of the a priori
distribution and the encoding function is achieved.

2 Preliminary
2.1 Quantum Arimoto-Blahut algorithms[6]

The quantum Arimoto-Blahut algorithms are a well-
known technique for computing the capacity of a quan-
tum channel or the Holevo capacity[6]. We apply it in
part to our problem.
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Let II,, = {(p1,- - ,pn; 01, ,0n)} be the set of pos-
sible inputs. Here, {p;} is the a priori probability distri-
bution and {o;} is the set of input quantum states. Let
I(m) be the Holevo information or the quantum mutual
information for an input # = (p;,0;) € II,,. Then the
Holevo capacity is defined as

C = sup I(m). (1)

well,

In Ref.[6], a two-variable extension J(w,n") of I(r) was
introduced, which satisfies

I(r) = J(m,7) = max J(m, 7). (2)

Let the sequence {7(F)}2 | be defined by

7+ = argmax J (m, 7(F). (3)

iy

The recursion ("1 that a set of states is fixed is shown
the following equations.

P = exp (TG b, 500) ) 2040 (0

where Z(*+1) is a normalizing constant, then
I(r®) < J(@D, 7 0) < 1(xD). (5)

We can thus recursively compute I(7(*)); in the limit,
I(7(>)) is expected to be the Holevo capacity if the al-
gorithm works well.

2.2 Quasi-Bell state by coherent states

Quasi-Bell states are based on nonorthogonal states[1].
A coherent state is denoted as |a) and has amplitude a.
We use one specific state |U4) = hy(]0)4|0)5—|a)4]5)B)-

2.3 Encoding

An encoding function is a local operation for the mode
A corresponding to a classical signal i. We assume that
this encoding function is represented by the following uni-
tary operator,
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We can then define the following input quantum states:

54 = U © )6 AP U © Ip)t (7)
where i = 1,2,3,4, 6§(A®B) = |¥,)(¥,]|, and Ip is the
identity operator.

3 Computing the capacity

We consider the simultaneous optimization of the a
priori distribution and the encoding function. Here,
we use the quantum Arimoto-Blahut algorithm only to
optimize the probability distribution; the input quan-
tum states are optimized using another algorithm. Be-
cause, the input quantum states in our problem are re-
stricted to states obtained by local operations, the quan-
tum Arimoto-Blahut algorithm can not be directly ap-
plied in optimizing these states. However, because these
states can be optimized using a single-parameter fam-
ily of transformations [5], their optimization is compu-
tationally an easy problem and any algorithm is ac-
ceptable. Therefore, we assume that a recursion of
input states ot can be found by searching 6.
Then, we assume that the recursion o**1) is given by
o+ = argmaxg<g<isr Tr[E(6:(0D)) B (57, p(M)). Fig-
ure 1 shows the Holevo information J(7 ") 7r(’”)) in the
recursion process 7(") — 7("*1. Figure 2 shows the
variation of the Holevo information J(z("+1) z(r+1)y —
J(@(") (). We see that this variation approaches 0
when r 2 10. Because the limit value might be a local
maximum, we executed the algorithm many times by
changing the initial input distributions. Figure 1 is an
example. Although the values for J(7("), 7(")) are differ-
ent depending on the initial inputs for small r and are
not monotonically nondecreasing, these converge to the
same value. Therefore, the obtained value is a global
maximum and full optimization is achieved.

4 Conclusion

We applied the quantum Arimoto-Blahut algorithm to
the computation of the Holevo capacity for entanglement-
assisted classical communication when the quasi-Bell
states are used as shared initial entanglements.

The capacity was computed quickly and with high pre-
cision. As a typical example, when compared with a ran-
dom search task, which was used in our previous study,
the precision was 10000 times higher and the computa-
tion time was more than 100 times faster.
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Figure 1: Holevo information J(7("),7(")) in the recur-
sion process 7(" — 7(r+1)
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Figure 2: J(zx(r+D 7(r+1) — J(7(r) 7(r)
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