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Abstract. We report an experimental study of recently formulated entropic Leggett-Garg inequality
(ELGI) by Usha Devi et al. (Phys Rev A 87 052103,(2013)). This inequality places a bound on the statis-
tical measurement outcomes of dynamical observables describing a macrorealistic system. Such a bound
is not necessarily obeyed by quantum systems, and therefore provides an important way to distinguish
quantumness from classical behavior. Here we study ELGI using a two-qubit nuclear magnetic resonance
system. The experimental results show a clear violation of ELGI by over four standard deviations. We
also study the reason of violation of ELGI.
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1 Introduction

Macrorealism a notion imposed on classical objects,
is based on two criteria: (i) the object remains in one or
the other of many possible states at all times, and (ii) the
measurements are noninvasive, i.e., they reveal the state
of the object without disturbing the object or its future
dynamics. Quantum systems are incompatible with these
criteria and therefore violate bounds on correlations de-
rived from them. For instance, Leggett-Garg inequality
(LGI) sets up macrorealistic bounds on linear combina-
tions of two-time correlations of a dichotomic observable
belonging to a single dynamical system [1]. In this sense,
LGI is regarded as a temporal analogue of Bell’s inequal-
ity. Quantum systems do not comply with LGI, and
therefore provide an important way to distinguish the
quantum behavior from macrorealism. Violations of LGI
by quantum systems have been investigated and demon-
strated experimentally in various systems [2, 3].

For understanding the quantum behavior it is impor-
tant to investigate it through different approaches, par-
ticularly from an information theoretical point of view.

Recently Usha Devi et al. [4] have introduced an en-
tropic formulation of LGI in terms of classical Shannon
entropies associated with classical correlations.

Here we report an experimental demonstration of vi-
olation of entropic LGI (ELGI) in an ensemble of spin
1/2 nuclei using nuclear magnetic resonance (NMR) tech-
niques. Although NMR experiments are carried out at a
high temperature limit, the nuclear spins have long coher-
ence times, and their unitary evolutions can be controlled
in a precise way. The large parallel computations carried
out in an NMR spin ensemble assists in efficiently extract-
ing the single-event probabilities and joint-probabilities.
The simplest ELGI study involves three sets of two-time
joint measurements of a dynamic observable belonging to
a ‘system’ qubit.

Further, it has been argued in [4] that the violation of
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ELGI arises essentially due to the fact that the joint prob-
abilities do not originate from a legitimate grand proba-
bility (of which the joint probabilities are the marginals).
Here we also describe extracting the three-time joint
probability (grand probability) using a three-qubit sys-
tem, and demonstrate experimentally that it can not re-
produce all the marginal probabilities substantiating this
feature.

2 Entropic Leggett-Garg Inequality

Usha Devi et al. have formulated the following entropic
Leggett-Garg Inequaltiy [4]:

n∑
k=2

H(Qk|Qk−1) ≥ H(Qn|Q1). (1)

The above equation says the information gained when we
measure a dynamical observable n− 1 times will always
be greater than or equal to when we measure is only once.
The above inequality (1) scaled in units of log2(2s + 1)
is termed as the information deficit D. For n-equidistant
measurements, it can be written as [4]

Dn(θ) =
(n− 1)H[θ/(n− 1)]−H[θ]

log2(2s+ 1)
≥ 0. (2)

3 Experimental Results

To calculate the entropies required to obtain informa-
tion deficit, we need to extract the probabilities of the
measurement of an dynamical observable. For this pur-
pose, we utilize an ancilla qubit initialized in the state
|0〉〈0|. The CNOT gate encodes the probability of the
outcomes in the diagonal elements of ancilla qubit since,

[
P (0i) a
a† P (1i)

]
S

⊗
[
1 0
0 0

]
A

CNOT−−−−→


P (0i) 0 0 a

0 0 0 0
0 0 0 0
a† 0 0 P (1i)


SA

,

where a is the off-diagonal element of the system density
matrix. The probabilities P (0i) and P (1i) can now be
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retrieved by tracing over the system qubit and reading
the diagonal elements of the ancilla state.

In order to extract these probabilities noninvasively
we employ ‘ideal negative result measurement’ (INRM)
procedure [3]. The idea is as follows. The CNOT gate is
able to flip the ancilla qubit only if the system qubit is in
state |1〉, and does nothing if the system qubit is in state
|0〉. Therefore after the CNOT gate, if we measure the
probability of unflipped ancilla, this corresponds to an
‘interaction-free’ or ‘non-invasive measurement’ of P (q =
0). Similarly, we can implement an anti-CNOT gate,
which flips the ancilla only if the system qubit is in state
|0〉, and does nothing otherwise, such that the probability
of unflipped qubit now gives P (q = 1). Note that in
both the cases, the probabilities of states wherein the
system interacted with the ancilla, resulting in its flip,
are discarded.

The theoretical and experimental values of D3 for var-
ious rotation angles θ are shown in Fig. 1(a). We find
a general agreement between the mean experimental D3

values with that of the quantum theory. The error bars
indicate the standard deviations obtained by a series of
independent measurements. According to quantum the-
ory, a maximum violation of D3 = −0.134 should oc-
cur at θ = π/4, experimentally we obtained D3(π/4) =
−0.114±0.027. Thus we found a clear violation of ELGI
over 4 standard deviations.

4 Reason for Violation

In principle, it is possible to generate the two-time joint
probabilities as marginals P ′(qi, qj) of three-time joint
probabilities:

P ′(q1, q2) =
∑
q3

P (q1, q2, q3);

P ′(q2, q3) =
∑
q1

P (q1, q2, q3);

P ′(q1, q3) =
∑
q2

P (q1, q2, q3). (3)

In a macrorealistic world P ′(qi, qj) = P (qi, qj), where
P (qi, qj) stands for the two-time joint probabilities that
are obtained directly from experiments

The experimental results of P (q1, q2) and P ′(q1, q2) are
shown in Fig. 1(b). It is evident that the marginals
agree quite well with the corresponding joint probabil-
ities. Similarly experimental results of P (q1, q3) and
P ′(q1, q3) are also shown in Fig. 1(b). However, here we
see significant deviation of marginal probabilities from
joint probabilities.

These results show, in contrary to the macrorealis-
tic theory, that the grand probability P (q1, q2, q3) can
not reproduce all the two-time joint probabilities as the
marginals. Therefore the grand probability is not legit-
imate in the quantum case, which is the fundamental
reason for the violation of ELGI by quantum systems [4].
It is interesting to note that even for those values of θ

for which D3 is positive, the three-time joint probability
is illegitimate. Therefore, while the violation of ELGI
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Figure 1: (a) Information deficit D3 versus θ by INRM

procedure . The boxed area in the left plot is magnified in

the right plot. The mean experimental D3 (in bits) values

are shown as symbols. The curves indicate theoretical D3

(in bits). The horizontal line D3 = 0 indicates the lower

bound of the macrorealism territory. (b) Joint probabilities

P (q1, q2), marginal probabilities P ′(q1, q2), and joint proba-

bilities P (q1, q3), marginal probabilities P ′(q1, q3). The lines

correspond to theoretical values and the symbols are mean

experimental values.

indicates the quantumness of the system, its satisfaction
does not rule out the quantumness.

One distinct feature of the entropic LGI is that, the
dichotomic nature of observables assumed in the original
formulation of LGI can be relaxed, thus allowing one to
study the quantum behavior of higher dimensional sys-
tems such as spin > 1/2 systems.
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