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Abstract. This talk will describe recent progresses in the development of quantum algorithms for matrix
multiplication. I will start with the case of Boolean matrices, and discuss the time complexity and query
complexity of Boolean matrix multiplication in the quantum setting. I will then focus on other kinds of
matrix products, in particular matrix products over algebraic structures known as semirings (such as the
distance matrix product or the max-min matrix product), and describe new quantum algorithms, which
are faster than the best known classical algorithms, for some of these products. Finally I will present
several open problems related to the complexity of matrix multiplication. Part of this talk will be based
on a recent joint work with Harumichi Nishimura.
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1 Boolean Matrix Multiplication

Multiplying two Boolean matrices, where addition is
interpreted as a logical OR and multiplication as a logi-
cal AND, is a fundamental problem that have found ap-
plications in many areas of computer science, and in par-
ticular in the design of graph algorithms. The product
of two n×n Boolean matrices can be trivially computed
in time O(n3). The best known algorithm is obtained
by seeing the input matrices as integer matrices, com-
puting the product, and converting the product matrix
to a Boolean matrix. This gives a classical algorithm
for Boolean matrix multiplication with time complexity
Õ(nω), where ω denotes the exponent of square matrix
multiplication over a ring (the best known upper bound
on ω is ω < 2.3727, by Vassilevska Williams [9]).

In the quantum setting, there exists a straightforward
Õ(n2√p)-time algorithm that computes the product of
an n×p Boolean matrix A by a p×n Boolean matrix B:
for each pair of indexes (i, j) ∈ {1, . . . , n} × {1, . . . , n},
check if there exists an index k ∈ {1, . . . , p} such that
A[i, k] = B[k, j] = 1 in time Õ(

√
p) using Grover’s quan-

tum search algorithm. While for square matrices (i.e.,
n = p) this algorithm does not give any improvement
over the Õ(nω)-time classical algorithm mentioned above,
for rectangular matrices (e.g., for p ≥ n3) this already
outperforms the best known classical algorithm for rect-
angular matrix multiplication [5]. Even for square ma-
trices, Buhrman and Špalek [1] observed that a similar
approach leads to a quantum algorithm that computes
the Boolean product AB in Õ(n3/2

√
ℓ) time, where ℓ

denotes the number on non-zero entries in AB, which
is better than the complexity of the best known classi-
cal algorithms when ℓ is small enough (concretely, when
ℓ ≤ n1.60). This bound has been further improved re-
cently: Jeffery, Kothari and Magniez [3] showed that the
quantum query complexity of computing the product of
two n×n Boolean matrices with ℓ non-zero entries in the
product is Õ(n

√
ℓ), and gave a matching (up to polyloga-

rithmic factors) lower bound Ω(n
√

ℓ), while Le Gall [4, 6]
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obtained the upper bound Õ(n
√

ℓ + ℓ
√

n) in the time
complexity setting.

Instead of assuming that the output matrix is sparse,
it is also natural to consider the case where the input
matrices are sparse. In this setting quantum algorithms
faster than the best known classical algorithms can be
constructed as well, as stated in the following theorem.

Theorem 1 ([7]) Let A and B be two n × n Boolean
matrices each containing at most m non-zero entries.
There exists a quantum algorithm that computes, with
high probability, the Boolean matrix product AB and has
time complexity

Õ(n2) if m ≤ n1.1514,

Õ
(
m0.5168n1.4049

)
if n1.1514 ≤ m ≤ nω−1/2,

Õ(nω) if nω−1/2 ≤ m ≤ n2.

The complexity of the algorithm of Theorem 1 is the
function of logn(m) represented in Figure 1, along with
the complexity of the best known classical algorithm by
Yuster and Zwick [10]. This quantum algorithm performs
better whenever n1.1514 < m < nω−1/2.

2 Matrix Products over other Semirings

The straightforward Õ(n5/2)-time quantum algorithm
for Boolean matrix multiplication described in the previ-
ous section can actually be generalized to compute matrix
products over several other algebraic structures known as
semirings. For instance, let us consider the (max, min)-
product and the distance product defined as follows.

Definition 2 Let A and B be two n × n matrices with
entries in Z. The (max, min)-product of A and B is the
n × n matrix C defined as

C[i, j] = max
k∈{1,...,n}

{min(A[i, k], B[k, j])}

for all (i, j) ∈ {1, . . . , n} × {1, . . . , n}.
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Figure 1: The upper bounds of Theorem 1 (in solid lines).
The horizontal axis represents the logarithm of m with
respect to basis n (i.e., the value logn(m)). The vertical
axis represents the logarithm of the complexity with re-
spect to basis n. The dashed lines represent the upper
bounds of the classical algorithm obtained in [10].

Definition 3 Let A and B be two n × n matrices with
entries in Z ∪ {∞}. The distance product of A and B is
the n × n matrix C defined as

C[i, j] = min
k∈{1,...,n}

{A[i, k] + B[k, j]}

for all (i, j) ∈ {1, . . . , n} × {1, . . . , n}.

The (max, min)-product has mainly been studied in the
field in fuzzy logic under the name composition of rela-
tions and in the context of computing the all-pairs bot-
tleneck paths of a graph (i.e., computing, for all pairs
(s, t) of vertices in a graph, the maximum flow that can
be routed between s and t). The distance product has
a multitude of applications in the design of graph algo-
rithms, mostly related to computations of all-pairs short-
est paths problems. It is straightforward to construct
Õ(n5/2)-time quantum algorithms computing these two
products by using variants of quantum search (more pre-
cisely, by using a Õ(

√
n)-time quantum algorithm to find

the minimal or maximal element in a list of size n).
This exponent 5/2 can actually be improved. For the

(max,min)-product, in particular, a significant improve-
ment can be obtained.

Theorem 4 ([7]) There exists a quantum algorithm
that computes, with high probability, the (max,min)-
product of two n × n matrices in time O(n2.4728).

In comparison, the best known classical algorithm for the
(max,min)-product, by Duan and Pettie [2], has time
complexity Õ(n(3+ω)/2) = O(n2.6864). As an applica-
tion of Theorem 4, a O(n2.4728)-time quantum algorithm
computing the all-pairs bottleneck paths of a graph of n
vertices can be immediately obtained, while classically
the best upper bound for this task is O(n2.6864), again
from [2]. Similar techniques can be used to speed up the

computation of the distance product as well [7]. Namely,
it is possible to construct a quantum algorithm comput-
ing the ℓ most significant bits of each entry of the distance
product of two n × n matrices with time complexity

Õ
(
20.6397ℓn(5+ω)/3

)
≤ O(20.6397ℓn2.4576).

In comparison, the best known classical algorithm for
the same problem by Vassilevska and Williams [8] has
complexity Õ

(
2ℓn(3+ω)/2

)
≤ O(2ℓn2.6864).

These results are, to the best of our knowledge, the first
quantum algorithms for matrix multiplication over semir-
ings other than the Boolean semiring improving over
the straightforward Õ(n5/2)-time quantum algorithm,
and the first nontrivial quantum algorithms offering a
speedup with respect to the best classical algorithms for
matrix multiplication when no assumptions are made on
the sparsity of the matrices involved. This shows that,
while it is still open whether quantum algorithms can
outperform the classical Õ(nω)-time algorithm for matrix
multiplication of (dense) matrices over a ring, quantum
computation can offer a speedup for matrix multiplica-
tion over other algebraic structures.
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