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One of the many interesting features of quantum nonlocality is that the states of a multipartite
quantum system cannot always be distinguished as well by local measurements as they can when all
quantum measurements are allowed. In this work we address a basic question, which is how much
can be learned about a given quantum system using separable measurements � those which contain
the class of local measurements but nevertheless are free of entanglement between the component
systems. We consider two quantities: The separable �delity � a truly quantum quantity � which
measures how well we can �clone� the input state, and the classical probability of success, which
simply gives the optimal probability in identifying the state correctly.
We obtain lower and upper bounds on the separable �delity and give several examples in the

bipartite and multipartite settings where these bounds are optimal. Moreover the optimal values
in these cases can be attained by local measurements. We further show that for distinguishing or-
thogonal states under separable measurements, a strategy that maximizes the probability of success
is also optimal for separable �delity. We point out that the equality of �delity and success prob-
ability does not depend on an using optimal strategy, only on the orthogonality of the states. To
illustrate this, we present an example where two sets (one consisting of orthogonal states, and the
other non-orthogonal states) are shown to have the same separable �delity even though the success
probabilities are di�erent.

Suppose a composite quantum system is known to be in
one of many states, not necessarily orthogonal, such that its
parts are distributed among spatially separated observers.
The goal is to learn about the state of the system using
only local quantum operations and classical communica-
tion between the parties (LOCC). This problem, known
as local state discrimination, is of considerable interest [1�
4, 9, 12, 13, 15, 17, 20, 27], as in many instances the in-
formation obtainable by LOCC is strictly less than that
achieved with global measurements [4, 6�8]. This gives rise
to a new kind of nonlocality [4, 12, 27], conceptually dif-
ferent from that captured through the violation of Bell in-
equalities [21, 22]. Thus the problem of local state discrim-
ination and the phenomenon of nonlocality serve to explore
fundamental questions related to local access of global in-
formation [3, 10, 11], and the relationship between entan-
glement and local distinguishability [4, 12, 16? ]. Moreover,
it has found novel applications such as quantum/classical
data hiding [29�31] and secret sharing [32].

There are many celebrated results identifying sets of
states for which perfect local discrimination is possible and
sets for which it is not. In particular: any two pure states
can be optimally distinguished with LOCC [1, 36] but no
more than d maximally entangled states on Cd⊗Cd can be
[13, 14]; a complete basis of a composite space which can
be distinguished with separable measurements must be a
product basis but this condition is not su�cient in general

[4, 6, 12]; and sometimes increasing the average entangle-
ment in a set can enable state discrimination [12]. More
recent studies include distinguishing states (pure or mixed)
when many copies are provided [26�28, 34, 35].

The class of LOCC measurements does not have a simple
mathematical characterization, and optimization is often
analytically intractable. In this paper, we will focus on
the class of separable measurements � those which are free
of entanglement between the component systems. These
comprise a strict superset of LOCC measurements and are
much more amenable to analytic results (as in [18, 23]). It
should be noted however that while every LOCC protocol
can be realized by a rank one separable measurement, the
converse is known not to be true [4, 5].

The focus of this work is in quantifying imperfect lo-
cal discrimination, a question which has been settled in
the case of a pair non-orthogonal pure states [36] but has
generally not been explored as deeply. In [13] bounds on
the error probability in distinguishing bipartite orthogo-
nal states were obtained, and in [14] upper bounds on the
maximum probability of perfect local discrimination were
derived for special sets of maximally entangled states. In
a di�erent approach, a complementary relation between lo-
cally accessible information and �nal average entanglement
was observed [10, 11] which provides upper bounds on the
locally accessible information and are known to be optimal
for some classes of states. Other approaches used measure-
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ments with positive partial transpose [14, 28]; the set of
such measurements contains the separable ones as a strict
subset.
We will use two measures of distinguishability, the av-

erage �delity and the success probability. The notion of
average �delity, �rst considered by Fuchs and Sasaki in
the theory of the so called �quantumness of Hilbert space�
[24, 25] and later by Navascués in the problem of state
estimation and separability [23] can be understood as fol-
lows: Suppose a state |ψi〉 is drawn with some probability
pi from a known collection of states {pi, |ψi〉}, and the goal
is perform a measurement to maximize our knowledge of
the input state. The average �delity is de�ned as the ex-
pected value of the overlap between the input state and
the �best-guess� state that we prepare following the mea-
surement outcome. In our restricted problem, the objective
is to maximize the average �delity over all separable mea-
surements, yielding the separable �delity [23]. We derive
lower and upper bounds on the separable �delity and pro-
vide examples in bipartite and multipartite settings where
the bounds are shown to be optimal. This is shown by
an explicit local strategy for each example. These general
bounds are useful, as explicit expressions for �delity and
success probability are hard to �nd even in speci�c cases.
The second �gure of merit that we consider is the prob-

ability of identifying the state which was prepared. Note
that, while the �delity is truly a quantum quantity, the
probability of success is a classical measure of how well a
quantum protocol encodes and decodes classical informa-
tion. We show that, when the states are mutually orthog-
onal, the separable �delity coincides with the maximum
success probability, which relates our results to bounds ob-
tained in [13]. We point out that this equality between
separable �delity and probability of success depends cru-
cially on the orthogonality of the states. To illustrate this,
we present an example where two sets (one consisting of
orthogonal states, and the other non-orthogonal states) are
shown to have the same separable �delity even though the
success probabilities are di�erent.
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