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Abstract. Nonclassicality and entanglement are notions fundamental to quantum information processes
involving continuous variable systems. That these two notions are intimately related has been intuitively
appreciated for quite some time. An aspect of considerable interest is the behaviour of these attributes of
a state under the action of a noisy channel. Inspired by the notion of entanglement-breaking channels, we
define the concept of nonclassicality-breaking channels in a natural manner. We show that the notion of
nonclassicality-breaking is essentially equivalent—in a clearly defined sense of the phrase ‘essentially’—to
the notion of entanglement-breaking, as far as bosonic Gaussian channels are concerned. This is notwith-
standing the fact that the very notion of entanglement-breaking requires reference to a bipartite system,
whereas the definition of nonclassicality-breaking makes no such reference. Our analysis rests on our clas-
sification of channels into nonclassicality-based, as against entanglement-based, types of canonical forms.
Our result takes one’s intuitive understanding of the close relationship between nonclassicality and entan-
glement a step closer.
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Two notions that have been particularly well explored
in the context of quantum information of continuous vari-
able states are nonclassicality and entanglement. The
‘older’ notion of entanglement has become one of renewed
interest in recent decades for its central role and appli-
cations in (potential as well as demonstrated) quantum
information processes, while the concept of nonclassical-
ity which emerges directly from the diagonal represen-

tation had already been well explored in the quantum
optical context, long before the emergence of the present
quantum information era. While nonclassicality can be
defined even for states of a single mode of radiation, the
very notion of entanglement requires two or more par-
ties. Nevertheless, it turns out that the two notions are
not entirely independent of one another; they are rather
intimately related. In fact, nonclassicality is a prerequi-
site for entanglement. Since a nonclassical bipartite state
whose nonclassicality can be removed by local unitaries
could not be entangled, one can assert, at least in some
intuitive sense, that ‘entanglement is nonlocal nonclassi-

cality’.
An important aspect in the study of nonclassicality

and entanglement is in regard of their evolution under
the action of a channel. A noisy channel acting on a state
can degrade its nonclassical features. Similarly, bipartite
entanglement can be degraded by channels acting locally
on the constituent parties or modes. In fact, there are
channels that render every bipartite state separable by
acting on just one of the parties [1]. Such channels are
said to be entanglement-breaking.
A class of channels that has been of particular interest

in the continuous variable quantum information process-
ing context is the family of Gaussian channels. These are
physical processes that map Gaussian states into Gaus-
sian states. A (centered) Gaussian state is completely
specified by its variance matrix V , and under the action
of Gaussian channel Γ specified by the pair of matrices
(X, Y ), Y ≥ 0 we have V → V ′ = XT V X + Y .

In this work we address the following issue : which

Gaussian channels have the property that they rid every

input state of its nonclassicality? We recall that the den-
sity operator ρ̂ representing any state of radiation field is
‘diagonal’ in the coherent state ‘basis’, and this happens
because of the over-completeness property of the coher-
ent state basis. An important notion that arises from the
diagonal representation is the classicality-nonclassicality

divide. Since coherent states are the most elementary
of all quantum mechanical states exhibiting classical be-
havior, any state that can be written as a convex sum
of these elementary classical states is deemed classical.
Any state which cannot be so written as a convex sum of
coherent states is deemed nonclassical. This classicality-
nonclassicality divide leads to the following natural def-
inition, inspired by the notion of entanglement breaking
channels :
Definition : A channel Γ is said to be nonclassicality-

breaking if and only if the output state ρ̂out = Γ(ρ̂in)
is classical for every input state ρ̂in, i.e., if and only if
the diagonal ‘weight’ function of every output state is a
genuine probability distribution.
Now, the close connection between nonclassicality

and entanglement alluded to earlier raises a related
and important second issue : what is the connec-

tion, if any, between entanglement-breaking channels and

nonclassicality-breaking channels? To appreciate the
nontriviality of this second issue, it suffices to sim-
ply emphasize that the very definition of entanglement-
breaking refers to bipartite states whereas the notion of
nonclassicality-breaking makes no such reference. In this
paper we show that both these issues can be completely
answered in the case of bosonic Gaussian channels. To
this end we first derive the nonclassicality-based canoni-
cal forms for Gaussian channels.
Let S denote an element of the symplectic group

Sp(2n, R) of linear canonical transformation and U(S)
the corresponding unitary (metaplectic) operator. When



Canonical form Nonclassicality-breaking Entanglement-breaking Complete-positivity
condition condition condition

(κ 11, diag(a, b)) (a− 1)(b− 1) ≥ κ4 ab ≥ (1 + κ2)2 ab ≥ (1− κ2)2

(κσ3, diag(a, b)) (a− 1)(b− 1) ≥ κ4 ab ≥ (1 + κ2)2 ab ≥ (1 + κ2)2

(diag(1, 0), Y ), a, b ≥ 1, a, b being ab ≥ 1 ab ≥ 1
eigenvalues of Y

(diag(0, 0), diag(a, b)) a, b ≥ 1 ab ≥ 1 ab ≥ 1

Table 1: Here 11 is the 2× 2 identity matrix, and σ3 is the diagonal Pauli matrix.

one is looking for aspects that are invariant under local
unitary operations such as entanglement, it is clear that
a Gaussian channel Γ is ‘equivalent’ to U(S

′

) ΓU(S), for
arbitrary symplectic group elements S, S

′

∈ Sp(2n, R).
The orbits or double cosets of equivalent channels in
this sense are the ones classified and enumerated by
Holevo and others [2]. The canonical forms so determined
are useful, for instance, in the study of entanglement-
breaking Gaussian channels.
The classification of Holevo and collaborators is

entanglement-based, and so it is not suitable for our
purpose, since the notion of nonclassicality-breaking has
a more restricted local invariance. A nonclassicality-
breaking Gaussian channel Γ preceded by any Gaussian
unitary U(S) is nonclassicality-breaking if and only if Γ
itself is nonclassicality breaking. In contradistinction,
nonclassicality-breaking aspect of Γ and that of U(S) Γ
[Γ followed the Gaussian unitary U(S)] are not equiva-
lent in general. They are equivalent if and only if S is
in the intersection Sp(2n, R) ∩ SO(2n, R) of symplectic
phase space rotations, or passive elements in the quan-
tum optical sense. In the single-mode case this intersec-
tion is just the rotation group SO(2) ⊂ Sp(2, R). We
thus need to classify single-mode Gaussian channels Γ
into orbits or double cosets U(R) ΓU(S), S ∈ Sp(2, R),
R ∈ SO(2) ⊂ Sp(2, R). Equivalently, we classify (X,Y )
into orbits (SXR, RT Y R). It turns out that there are
three distinct canonical forms for (X, Y ), shown in Ta-
ble 1.
With these nonclassicality-based canonical forms of

(X,Y ) on hand, we now derive the necessary and suf-
ficient conditions for a single-mode Gaussian channel to
be nonclassicality-breaking. For channels with nonsin-
gular X, we first arrive at a sufficient condition on the
channel parameters to ensure nonclassicality-breaking by
asking as to when will the channel transform the input
state’s ‘diagonal weight’ function to a valid ‘Q’ function,
the Q function being always pointwise nonnegative in
the complex plane. We then derive a necessary condi-
tion by looking at the signature of the output diagonal
weight function for a particular input state evaluated at
a particular phase space point at the output. Surpris-
ingly, we find these two conditions to be one and the
same. The proof for channels with singular X is ob-
tained in an analogous manner. The canonical forms and
the corresponding necessary and sufficient conditions for
nonclassicality-breaking are listed in Table 1. The condi-
tions for entanglement-breaking and complete-positivity
are also listed for comparison.

As evident from Table 1, it is clear that the
nonclassicality-breaking condition is stronger than the
entanglement-breaking condition for all the three canon-
ical forms. Thus, a nonclassicality-breaking chan-
nel is necessarily entanglement-breaking. But there
are channel parameter ranges wherein the channel
is entanglement-breaking, though not nonclassicality-
breaking. But this turns out to be a ‘weak’ failure : if
at all the output of an entanglement-breaking channel is
nonclassical, the nonclassicality is of a ‘weak’ kind in the
following sense. For every entanglement-breaking chan-
nel, there exists a particular value of squeeze-parameter
r0, depending only on the channel parameters and not on
the input state, so that the entanglement-breaking chan-
nel followed by unitary squeezing of extent r0 always re-
sults in a nonclassicality-breaking channel. It is in this
precise sense that nonclassicality-breaking channels and
entanglement-breaking channels are essentially one and
the same.
To conclude, we have explored the notion of

nonclassicality-breaking and its relation to entanglement-
breaking [3]. We have shown that the two notions are
effectively equivalent in the context of bosonic Gaussian
channels, even though at the level of definition the two
notions are quite different, the latter requiring reference
to a bipartite system. Our analysis shows that some
nonclassicality could survive an entanglement-breaking
channel, but this residual nonclassicality would be of a
particular weaker kind : Not only the output nonclassi-
cality is no more than squeezing-type nonclassicality, but
also, and perhaps more importantly, the nonclassicality
of all output states can be removed by one fixed squeezing
transformation. Though we have presented details of the
analysis only in the case of single-mode bosonic Gaussian
channels, we believe the analysis is likely to generalize to
the case of n-mode channels in a reasonably straight for-
ward manner.
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