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Abstract. We study the one-shot zero-error classical capacity of quantum channels assisted by quan-
tum non-signalling correlations, and the reverse problem of simulation. Both lead to simple semi-definite
programmings whose solutions can be given in terms of the conditional min-entropies. We show that
the asymptotic simulation cost is precisely the conditional min-entropy of the Choi-Jamiołkowski matrix
of the given channel. For classical-quantum channels, the asymptotic capacity is reduced to a quan-
tum fractional packing number suggested by Harrow, which leads to an operational interpretation of the
celebrated Lovász ϑ function as the zero-error classical capacity of a graph assisted by quantum non-
signalling correlations.

Keywords: Zero-error classical communication, Lovász ϑ function, Quantum non-signalling correlations

When a communication channel N from Alice (A) to
Bob (B) can be used to simulate another channelM that
is also from A to B? We can abstractly represent the sim-
ulation process as the FIG.1. This problem has many
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Figure 1: A general simulation network: a). We have
abstractly represented the general simulation procedure
for implementing a channel M using another channel
N just once, and the correlations between A and B; b).
This is just an equivalent way to redraw a), and we
have highlighted all correlations between A an B, and
their pre- and/or post- processing as Π, a quantum non-
signalling correlation.

variants according to the resources available to A and
B. In particular, the case when A and B can access un-
limited amount of shared entanglement has been com-
pletely solved. Let CE(N ) denote the entanglement-
assisted classical capacity of N [1]. It was shown that,
in the asymptotic setting, to optimally simulate M,
we need to apply CE(M)/CE(N ) times of N [2]. In
other words, the entanglement-assisted classical capac-
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ity uniquely determines the property of the channel in
the simulation process.

We are interested in the zero-error case first studied
by Shannon in 1956 [3]. It is well known that deter-
mining the zero-error classical capacity is generally ex-
tremely difficult even for classical channels. Remark-
ably, by allowing a feedback link from the receiver to
the sender, Shannon proved that the zero-error classical
capacity is given by an interesting quantity which was
later called the fractional packing number. This num-
ber only depends on the bipartite graph induced by the
classical channel under consideration, and has a simple
linear programming characterization. Recently Cubitt
et al introduced classical non-signalling correlations into
the zero-error simulation problems for classical chan-
nels, and proved that the well-known fractional packing
number gives precisely the zero-error classical capacity
of the channel [4].

A class of quantum non-signalling correlations has
been introduced as a natural generalization of classical
non-signalling correlations [5] [6]. Any such correlation
is described by a two-input and two-output quantum
channel with non-signalling constraints between A and
B (refer to Π : L(Ai ⊗ Bi) → L(Ao ⊗ Bo) in FIG.1).
We imitate the approach in [4] to study the zero-error
classical capacity of a general noisy quantum channels
and the reverse problem of simulation, both assisted by
this more general class of quantum non-signalling cor-
relations. Let N be a quantum channel with a Kraus
operator sum representation N (ρ) =

∑
k EkρE

†
k, where∑

k E
†
kEk = I . Let K = span{Ek} denote the Kraus op-

erator space of N . The Choi-Jamiołkowski matrix of N
is given by JAB = (idA ⊗N )ΦAA′ with ΦAA′ the unnor-
malized maximally entangled state. Let PAB denote the



projection on the support of JAB .
The one-shot zero-error classical capacity of N as-

sisted by quantum non-signalling correlations only de-
pends on the Kraus operator space K, and is given by
the integer part of following SDP

Υ(K) = max TrSA s.t. 0 ≤ UAB ≤ SA ⊗ IB ,
TrA UAB = IB ,

TrPAB(SA ⊗ IB − UAB) = 0.

Similarly, the exact simulation problem has a SDP for-
mulation. The one-shot zero-error classical cost of sim-
ulating a quantum channel N with Choi matrix JAB is
given by d2−Hmin(A|B)J e messages per channel realiza-
tion, where Hmin(A|B)J is the conditional min-entropy
defined as follows [7]:

2−Hmin(A|B)J = min Tr ΓB , s.t., JAB ≤ IA ⊗ ΓB .

Since the conditional min-entropy is additive, it fol-
lows immediately that the asymptotic simulation cost of
a channel is given by −Hmin(A|B)J bits per channel re-
alization.

Let us now introduce the asymptotic zero-error chan-
nel capacity of K as follows,

C0,NS(K) = sup
n≥1

log Υ(K⊗n)

n
,

In general, one-shot solutions do not give the asymp-
totic results, and feasible formulas for the asymptotic
cases remain unknown. Nevertheless, for the case K
corresponds to a cq-channel N : i → ρi, we show that
the zero-error classical capacity is given by the solution
of the following simplified SDP

A(K) = max
∑
i

si, s.t. 0 ≤ si,
∑
i

siPi ≤ I,

and Pi is the projection on the support of ρi. A(K) was
introduced by A. Harrow as a natural generalization of
the Shannon’s classical fractional packing number [8],
and can be named as semidefinite (fractional) packing num-
ber associated with a set of projections {Pi}. Then our
result can be summarized as

C0,NS(K) = logA(K).

This capacity formula naturally generalizes the result in
[4], and has two interesting corollaries. First, it implies
that the zero-error classical capacity of cq-channels as-
sisted by quantum non-signalling correlations is addi-
tive, i.e.,

C0,NS(K0 ⊗K1) = C0,NS(K0) + C0,NS(K1),

for any two Kraus operator spaces K0 and K1 corre-
sponding to cq-channels.

Second, and more importantly, we show that for any
undirected classical graphG, the Lovász ϑ function ϑ(G)
[9], is an achievable lower bound of the zero-error clas-
sical capacity assisted by quantum non-signalling cor-
relations of any quantum channel N that has G as its

non-commutative graph in the sense of [11]. To the best
of our knowledge, this is the first complete operational
interpretation of the Lovász ϑ function since 1979. Pre-
viously it was shown that the Lovász ϑ function is an
upper bound for the zero-error entanglement-assisted
classical capacity of a graph [10][11].
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