
ZETA FUNCTIONS ON INFINITE EXTENSIONS

ANUP B. DIXIT

Abstract. For an infinite extension K/Q, various attempts have been made to define an appro-
priate zeta-function, which encapsulates vital arithmetic information over K, such as the prime
splitting behaviour. In this article, we discuss a few such zeta-functions. We explore implication
of a hypothesis by Kumar Murty in relation to a problem of Malle and Roberts. Additionally, we
address a gap in the proof of “basic inequality” due to Tsfasman-Vlăduţ in the theory of asymptot-
ically exact families. Finally, we introduce a new zeta-function associated to K/Q and highlight its
connections to several important themes in number theory.

1. Introduction

For a finite extension K/Q, the Dedekind zeta-function is defined on R(s) > 1 as

ζK(s) ∶= ∑
0≠a⊂OK

1

Nas
,

where a runs over all non-zero integral ideals of K. This series is absolutely convergent on the
half plane R(s) > 1. The unique factorization of fractional ideals of K into prime ideals can be
reformulated as the Euler product for ζK(s) on R(s) > 1 as

ζK(s) = ∏
p⊂OK

(1 −
1

Nps
)
−1
,

where p runs over all non-zero prime ideals of OK . The function ζK(s) has an analytic continuation
to the whole complex plane except for a simple pole at s = 1. It encodes important arithmetic
properties over K. For instance, Landau’s prime ideal theorem [12], which states that

#{p ⊆ OK ∶ Np ≤ x} ∼ li(x) ∶= ∫
x

2

dt

log t

is a consequence of the fact that ζK(s) has a simple pole at s = 1 and ζK(1 + it) ≠ 0 for all t ∈ R∗.
Thus, remarkably the analytic study of ζK(s) helps unveil profound arithmetic data, especially
about the distribution of prime ideals. One of the key features of ζK(s), owing to its Euler product,
is that it fully captures the splitting behavior of primes in the extension K/Q. In fact, the simple
pole of ζK(s) at s = 1 immediately establishes that the set of primes that split completely in K/Q
has Dirichlet density 1/[K ∶ Q].

For infinite extension K/Q, the analogous theory is fundamentally quite different. In this article,
we explore this theme and introduce zeta-functions associated to infinite extensions over Q. Any
infinite extension K/Q can be realized as

K = . . . ⊃Kn ⊃Kn−1 ⊃ . . . ⊃K1 = Q
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a tower of number fields such that K = ⋃nKn. Note that limn→∞ ζKn does not exist as a function
on C/{1}. Indeed, the order of zero of ζK(s) at s = 0 is the rank of the unit group, which tends to
infinity as the degree of Kn tends to infinity. Thus, if the limit limn→∞ ζKn(s) existed, it would be
identically 0. On the other hand, from the Dirichlet series representation, we have ζKn(2) > 1 for all
n. So, the naive approach of taking limits fails to define a meaningful function. This has inspired
numerous attempts in the literature to define a zeta-function for infinite extensions. In this article,
we shall explore this theme in detail.

2. The Frobenius class

Let K/Q be a Galois extension with Galois group G of order nK . The group G naturally acts on
the prime ideals of K. For a rational prime p, suppose its factorization is given by

pOK = p
e1
1 pe22 ⋯p

er
r ,

where p1,p2, . . . ,pr ⊂ OK are the prime ideals in OK lying above p. Let Fpfi = OK/pi denote the
residue field corresponding to pi. We call ei and fi the ramification and inertia degrees of pi over p.
Since the action of G preserves pOK and acts transitively on p1, . . . ,pr, we have uniform ramification
and inertia degrees, i.e., e1 = e2 = ⋯ = er and f1 = f2 = ⋯ = fr. Consequently, nK = efr.

The stabilizer of pi in G is called its decomposition group

Dpi/p = {σ ∈ G ∶ σ(pi) = pi} .

Since G acts transitively on p1,p2, . . . ,pr, on varying pi, the subgroups Dpi/p are conjugates of each
other.

Fixing a prime ideal p = pi, any automorphism σ ∈Dp/p induces an automorphism on the residue

field OK/p ≃ Fq with q = pf . Since σ acts trivially on Z/pZ ≃ Fp, this gives rise to a surjective
homomorphism

Dp/p↠ Gal(Fq/Fp).
The kernel of this map, known as the inertia group Ip/p, consists of elements in Dp/p that act trivially
on the residue field. This leads to the short exact sequence

0→ Ip/p →Dp/p → Gal(Fq/Fp)→ 0,

with ∣Ip/p∣ = e and ∣Gal(Fq/Fp)∣ = f .

When the inertia group Ip/p is trivial, the prime p is said to be unramified, and in this case
Dp/p ≅ Gal(Fq/Fp). Since Fq/Fp is a finite field extension, its Galois group is cyclic, generated by
the Frobenius automorphism given by

Frob ∶ x↦ xp.

The preimage of Frob under the projection Dp/p → Gal(Fq/Fp) is called the Frobenius element
Frobp/p. Moreover, its conjugacy class in Gal(K/Q) remains unchanged regardless of the choice of
p and we denote it by Frobp.

If p is ramified, the definition of Frobp/p is determined up to multiplication by Ip/p.

Since Gal(K/Q) is finite, it contains only finitely many conjugacy classes. Meanwhile, all but
finitely many rational primes are unramified in K. This naturally leads to the question: how are
the infinitely many Frobp distributed among the finitely many conjugacy classes in G. The answer
to this question is the famous Chebotarev density theorem.
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Theorem 2.1 (Chebotarev [24]). Let K/Q be a finite Galois extension with Gal(K/Q) = G. Let C
be a conjugacy class of G. Then, the set

{p prime ∶ p is unramified in K and Frobp = C}

has natural density
∣C∣
∣G∣ .

More precisely, suppose π(x) denotes the number of rational primes ≤ x and πC(x,K/Q) counts
the primes p ≤ x for which Frobp = C, then the Chebotarev density theorem asserts that

πC(x,K/Q)
π(x)

∼
∣C∣

∣G∣
as x→∞.

In other words, the Frobenius classes are equidistributed with respect to the uniform discrete mea-
sure on G. Let C be the disjoint union of conjugacy classes Ci, then we call C as a conjugacy set.
Clearly

πC(x,K/Q) =∑
i

πCi
(x,K/Q).

When G = Gal(K/Q) is abelian, the Frobenius classes Frobp’s are singletons. A key example of
an abelian extension is the cyclotomic field K = Q(ζn), where ζn is the primitive n-th root of unity.
This extension is abelian because any automorphism σ ∈ Gal(K/Q) is uniquely determined by its
action on ζn, which must also be mapped to another primitive n-th root of unity. Specifically, if
σ(ζn) = ζ

r
n. Then, the map σ ↦ r(σ) defines an isomorphism

Gal(K/Q) ≅ (Z/nZ)∗.
For a prime p ∤ n, p is unramified in Q(ζn). In this case, the Frobenius element is defined as

Frobp(ζn) = ζ
p
n.

Thus, for any r coprime to n, we obtain the equivalence

p ∤ n, Frobp = r ∈ (Z/nZ)∗⇔ p ≡ r mod n.

Thus, Chebotarev density theorem for Q(ζn) recovers the classical Dirichlet’s theorem for primes
in arithmetic progressions. Hence, for general Galois extensions, Chebotarev can be viewed as a
generalization of Dirichlet’s theorem.

Let K/Q be a Galois extension of degree n. A prime p splits completely in K,

pOK = p1p2 . . .pn

if and only if the decomposition group Dp/p = {id}. Equivalently, the Frobenius class Frobp = {id}.
Thus, Chebotarev density theorem implies that the set of primes which split completely in K has
natural density 1/n and therefore Dirichlet density 1/n.

The Dirichlet density of split primes can be deduced rather easily from the fact that ζK(s) has
a simple pole at s = 1. Suppose SK is the set of primes which split completely in K. Then, its
Dirichlet density is given by

δ(SK) ∶= lim
s→1+

∑p∈SK

1
ps

∑p
1
ps

= lim
s→1+

∑p∈SK

1
ps

log 1
s−1

.

Using the Euler product for ζK(s), for R(s) > 1, we obtain

log ζK(s) = − ∑
p⊂OK

log (1 −
1

Nps
) = n ∑

p∈SK

1

ps
+O
⎛

⎝
∑
p∉SK

1

pfs
⎞

⎠
= n ∑

p∈SK

1

ps
+O(1).
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Since both ζK(s) and ζ(s) have simple poles at s = 1, we have

lim
s→1+

log ζK(s)

log ζ(s)
= 1.

Thus the Dirichlet density of SK is 1/n. It is important to emphasize that the Dirichlet density is
determined by the behaviour of ζK(s) at s→ 1+, whereas for natural density one needs to understand
ζK(s) in the larger region near the line R(s) = 1.

3. Zeta function for conjugacy sets

It is often advantageous to work with the logarithmic derivative of the zeta-function. From the
Euler product of the Dedekind zeta-function, one can write for R(s) > 1

−
ζ ′K
ζK
(s) = ∑

q=pk
Nq(K)

log q

qs − 1
= ∑
q=pk

∞
∑
m=1
Nq(K)

log q

qms
,

where Nq(K) denotes the number of prime ideals in K with norm q. When K/Q is Galois of degree
n,

−
ζ ′K
ζK
(s) = ∑

p prime

∞
∑
m=1
(
n

ef
)
log q

qms
= ∑
p,m

(
n

e
)
log p

pfms
.

Since only finitely many primes ramify in K, we have

−
ζ ′K
ζK
(s) = ∑

p splits

n log p

ps
+O(1)

for R(s) > 1. This is similar to the statement that the Dirichlet density of split primes is 1/n.

Let G = Gal(K/Q) and C be a conjugacy set, i.e., union of conjugacy classes in G. For a prime
p, which is unramified in K, let σ = Frobp/p ∈ Gal(K/Q) denote the Frobenius element. Let Frobp,
also denoted by the Artin symbol ⟨p,K/Q⟩ denote the conjugacy class containing Frobp/p. Note
that the conjugacy class of σn is also independent of p and hence we define ⟨pn,K/Q⟩ to be the
conjugacy class containing σn. Define the zeta function corresponding to C on R(s) > 1 as

Z(K,C, s) ∶= ∑
p prime ,m≥1
⟨pm,K/Q⟩⊂C

log p

(pf)ms
. (1)

In particular, if C = {1}, then Frobp = C if and only if p splits completely in K. In this case,

Z(K,C, s) = ∑
p split

∞
∑
m=1

log p

pms
= ∑
p split

log p

ps − 1
= −

1

n

ζ ′K
ζK
(s) +O(1)

for R(s) > 1.
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4. Topology and measures on infinite extensions

An infinite algebraic extension K/Q can be realized as a tower of number fields, namely

K = . . . ⊋Kn ⊋Kn−1 ⊋ . . . ⊋K1 = Q,

where Kn’s are number fields. This representation is not unique. Moreover, K/Q is Galois if and
only if there exists a tower of number fields {Kn} such that K = ⋃nKn and Kn/Q is a finite Galois
extension for all n.

For instance K = Q(
√
2,
√
3,
√
5, . . .)/Q is an infinite Galois extension with

Gal(K/Q) ≅
∞
∏
i=1
(Z/2Z).

Another example is the infinite cyclotomic extension Q(ζp∞) ∶= ⋃∞i=1 Q(ζpi). This is a Galois exten-
sion over Q with

Gal(Q(ζp∞)/Q) ≅ Z/(p − 1)Z ×Zp,
where Zp is the ring of p-adic integers.

Observe that the Galois groups above ∏∞i=1 (Z/2Z) or Z(p − 1)Z × Zp are uncountable as sets.
In fact, the Galois group of an infinite Galois extension is always uncountable. The topology on
Gal(K/Q), called the Krull topology, is defined with the idea that two elements σ,π ∈ Gal(K/Q)
are “close” if they agree on a large finite extension Kn/Q with Kn ⊂ K. For σ ∈ Gal(K/Q), the
basic open sets are given by the cosets σGal(K/Kn), where K = ⋃nKn and Kn/Q are finite Galois
extensions. With this topology, Gal(K/Q) forms a compact, totally disconnected and Hausdorff
topological group.

Let µ be the Haar measure on G = Gal(K/Q), with µ(G) = 1. Then

µ = lim
n
µKn ,

where µKn is the discrete probability measure on Gal(Kn/Q). This limit is interpreted in the sense
of weak convergence.

One can think of a prime in K as a system

{pn ∶Kn/Q is finite Galois}

such that pn is a prime ideal in Kn and for m > n, the ideal pm lies over pn. Now, the Frobenius
element associated with a prime in K is defined as a sequence

{Frobpn ∶Kn/Q is finite Galois}.

The conjugacy class of all sequences with p1 = p is denoted by Frobp. With respect to the Krull
topology, these Frobenius elements are dense in Gal(K/Q). But note that Gal(K/Q) is uncountable,
whereas the number of Frobenius classes are countable. Thus, it is possible to have elements in
Gal(K/Q) which are not Frobenius elements. For example, if Gal(K/Q) is abelian, then its conju-
gacy classes are singletons {σ} ∈ K/Q and hence there must be elements, which are not Frobenius
elements.
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Let C be a conjugacy class in the infintie Galois group G = Gal(K/Q). Let πC(x,K/Q) be the
number of primes p ≤ x, unramified in K, such that the Frobenius class Frobp lies in C. Serre [21]
showed that if the boundary of C has measure zero, then

πC(x,K/Q) ∼ µ(C) li(x)

as x→∞. In other words, the Chebotarev density theorem holds for conjugacy classes with positive
Haar measure, i.e., having positive density in G. This raises the question of whether we can predict
asymptotics when µ(C) = 0, but C is “sufficiently large”. To quantify this, we recall the notion of
Minkowski dimension following Serre [21].

Let K/Q be an infinite Galois extension with G = Gal(K/Q). Let K = ⋃nKn be a tower, where
Kn/Q is Galois with Galois group Gn for each n. Let C ⊂ G be a conjugacy set and Cn be the
projection of C on Gn. We say that the Minkowski dimension dimK(C) ≤ α if for each Kn/Q,

∣Cn∣≪K ∣Gn∣α.

If α < 1, then µ(C) = 0. A natural problem is to estimate πC(x,K/Q) when dimK(C) = α > 0. One
way to think about this problem is to associate a zeta function on the conjugacy set C in the infinite
group G, analogous to (1), as introduced by Kumar Murty in [16]. Write

Z(C,K, s) ∶= ∑
⟨pm,K/Q⟩⊂C

log p

(pf)ms
, (2)

where p runs over all rational primes. It is possible to develop the theory of the above zeta-function
for K/L, infinite Galois extension over any number field L. For simplicity, we restrict ourselves to
K/Q.

In [16], Kumar Murty showed that for K/Q, if a conjugacy set C ⊂ Gal(K/Q) has Minkowski di-
mension α > 0, then under GRH, the Dirichlet series Z(K,C, s) converges for R(s) > 1+α

2 . Addition-

ally, assuming Artin’s holomorphy conjecture, the region of convergence extends toR(s) > 1
2+

α
2(2+α) .

Based on these observations along with heuristics from Lang-Trotter conjecture, Kumar Murty [16]
hypothesized that Z(K,C, s) must have analytic continuation to R(s) > 1/2. Since its Dirichlet
coefficients are positive real numbers, by Landau’s theorem, it has a singularity at the abscissa of
convergence.

Hypothesis 1 (Kumar Murty). Let K/Q be an infinite Galois extension and C be a conjugacy set
of its Galois group with dimK C = α > 0. Then, the Dirichlet series Z(K,C, s) is convergent on
R(s) > 1/2 and has analytic continuation to R(s) ≥ 1/2 with a simple pole at s = 1/2.

One of the goals of this article is to discuss ramifications of this hypothesis. Towards this, we
first remind the reader of various effective versions of the Chebotarev density theorem.

5. Effective Chebotarev density theorem

Let L/K be a finite Galois extension with Galois group G and C be a union of conjugacy classes
in G. Define πC(x,L/K) as the number of prime ideals p of K, unramified in L with Np ≤ x, such
that the Frobenius class Frobp lies in C. The Chebotarev density theorem asserts that

πC(x,L/K) ∼
∣C∣

∣G∣
li(x)
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as x → ∞. In 1977, Lagarias and Odlyzko [11] established an effective version of this result, later
refined by Serre [22]. Under the assumption of GRH, they proved that

∣πC(x,L/K) −
∣C∣

∣G∣
li(x)∣≪

∣C∣

∣G∣
x1/2 (log dK + nK logx) , (3)

where dK is the absolute discriminant ∣disc(K/Q)∣ and nK is the degree [K ∶ Q]. Additionally,
assuming Artin’s holomorphy conjecture(AC), Ram Murty, Kumar Murty and Saradha [15] estab-
lished a stronger version, namely,

∣πC(x,L/K) −
∣C∣

∣G∣
li(x)∣≪ ∣C∣1/2 x1/2 nK (logML/K x) , (4)

where

ML/K ∶= [L ∶K]d
1/nK

K ∏
p ∈P (L/K)

p.

Here P (L/K) denotes the set of rational primes p such that there is a prime ideal p in K above p
which ramifies in L. An even sharper bound was recently established by Ram Murty, Kumar Murty
and P. J. Wong in [17], assuming GRH, AC and the pair correlation conjecture (PCC) for Artin
L-functions. Under these assumptions, they showed that

∣πC(x,L/K) −
∣C∣

∣G∣
li(x)∣≪ ∣C∣1/2 x1/2 (

∣G#∣

∣G∣
)

1/2
n
1/2
K (logML/K x) , (5)

where G# is the set of all conjugacy classes of G.

In [16], Kumar Murty used the bounds (3) and (4) to obtain convergence of the zeta function
Z(K,C, s) in the regions R(s) > (1 + α)/2 (under GRH) and R(s) > 1

2 +
α

2(2+α) (under GRH and

AC). However, on employing (5), one can obtain better regions of convergence under GRH, AC and
PCC, at least in specific cases. We demonstrate this with an explicit example. For small conjugacy
classes, the bound in (5) is comparable to (4). On the other hand, if the conjugacy classes are
larger, then the number of conjugacy classes is smaller and the bound in (5) is significantly more
effective. This opens the possibility of constructing infinite extensions with interesting properties.

Example. Consider the infinite Galois extension K/Q given by a tower K = ⋃nKn with Galois
group G, constructed as follows. We begin withK1 = Q and takeK2/K1 to be a quadratic extension.
Next, let L3/Q be a Galois extension with Galois group S3, chosen so that L3 and K2 are linearly
disjoint over Q, i.e., L3 ∩K2 = Q. Define K3 ∶=K2 ⋅L3, their compositum. Inductively, we construct
Ln/Q a Galois extension with Galois group Sn such that Ln∩Kn−1 = Q. Such extensions can always
be constructed. Defining Kn =Kn−1 ⋅Ln, we obtain the Galois group

Gal(Kn/Q) = Gn ≅ Sn × Sn−1 × . . . × S2

and G = lim
←Ð

Gn is the inverse limit.

It is easy to compute the number of conjugacy classes of Gn. Indeed, the number of conjugacy
classes of Sn is precisely given by the number of partitions of n, denoted by pn. By the famous
Hardy-Ramanujan [8] asymptotic formula for pn, we have

∣S#
n ∣ ∼

1

4n
√
3
exp
⎛

⎝
π

√
2n

3

⎞

⎠
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as n→∞. Therefore, the number of conjugacy classes of Gn is given by

∣G#
n ∣ = ∣S

#
n ∣ × ∣S

#
n−1∣ ×⋯ × ∣S

#
2 ∣ ∼

n

∏
l=2

1

4l
√
3
exp
⎛

⎝
π

√
2l

3

⎞

⎠

as n→∞. Hence,

∣G#
n ∣

∣Gn∣
≪

n

∏
l=2

eβ
√
l

l ⋅ l!
,

where β = π
√
2/3 > 0 is an absolute constant. Let C ⊂ G be a conjugacy set with Minkowski

dimension α > 0, meaning that its projection Cn onto Gn satisfies ∣Cn∣ ≪ ∣Gn∣
α. Applying (5), we

deduce that for any x > 2

∣πCn(x,Kn/Q) −
∣Cn∣

∣Gn∣
li(x)∣≪ ∣Cn∣

1/2 x1/2 (
∣G#
n ∣

∣Gn∣
)

1/2
(logMKn/Q x)

≪ ∣Cn∣
1/2 x1/2

⎛

⎝

n

∏
l=1

eβ
√
l

l ⋅ l!

⎞

⎠

1/2
(logMKn/Q x) . (6)

Denote by
ψC(x,K/Q) ∶= ∑

pm<x
⟨pm,K/Q⟩⊂C

log p.

Using partial summation, (6) gives

ψCn(x,Kn/Q) =
∣Cn∣

∣Gn∣
x +O

⎛
⎜
⎝
∣Cn∣

1/2 x1/2
⎛

⎝

n

∏
l=1

eβ
√
l

l ⋅ l!

⎞

⎠

1/2
(logMKn/Q x) logx

⎞
⎟
⎠
.

Suppose there exists a finite set of primes S such that K/Q is unramified over all rational primes
outside S. Then,

logMKn/Q = lognKn +∑
p∈S

log p = lognKn +O(1).

Choosing
x = xn ∼ ∣Gn∣

1−α

and using the facts that ∣Gn∣ =∏l≤n l! and ∏l≤n eβ
√
l ≪ eβn

3/2
≪ logxn, we deduce that

ψCn(x,Kn/Q)≪ (logxn)3,
where the implied constants are absolute and independent of Kn. By definition,

ψC(x,K/Q) ≤ ψCn(x,Kn/Q)
for all x > 1. Since xn → ∞ as n → ∞, we get that ψC(x,K/Q) ≪ (logx)3 for sufficiently large x.
Consequently the integral

∫
∞

1

ψC(x,K/Q)
xs+1

dx

converges for R(s) > 0. Since

Z(C,K, s) = s∫
∞

1

ψC(x,K/Q)
xs+1

dx,

we conclude that Z(K,C, s) is absolutely convergent for R(s) > 0.

This is partially compatible and also partially contradictory to Hypothesis 1. On the one hand,
by convergence of the Dirichlet series, Z(C,K, s) has analytic continuation to R(s) > 0. On the
other hand, this also implies that the associated zeta-function does not have a pole at s = 1/2.



ZETA FUNCTIONS ON INFINITE EXTENSIONS 9

Although this example is conditional on GRH, AC and PCC, it does not necessarily suggest that
the Hypothesis 1 is incompatible with GRH, AC or PCC. We elaborate on this below.

In the example above, two conditions are implicitly imposed on the infinite extension K/Q. The
first is that its Galois group G has a conjugacy set with positive Minkowski dimension and the
second is that it is unramified over all rational primes outside a finite set S. It is easy to see that
the first condition is satisfied. Indeed, consider the conjugacy class Cn ⊂ Sn consisting of product of
disjoint [n2 ] number of 2-cycles. In other words, the conjugacy class in Sn containing the element

(12)(23)⋯((2[n2 ] − 1)(2[
n
2 ])). Then, ∣Cn∣ = [

n
2 ]!. Clearly, ∣Cn∣ ≤ ∣Sn∣

1/2 because

(
n

[n/2]
) =

n!

[n/2]!(n − [n/2])!
∼

n!

([n/2]!)2
≥ 1.

Furthermore, using Stirling’s approximation one can verify that for any ϵ > 0 and sufficiently large
n,

(n!)1/2−ϵ ≪ [
n

2
]!.

Taking the conjugacy set C′n ∶= C2 × C3 ×⋯ × Cn of Gn, one can obtain a conjugacy set C of G with
Minkowski dimension 1/2.

The second condition which claims that all but finitely many primes are unramified in K is rather
subtle. Recall that the inverse Galois problem asks for a number field K/Q with a Galois group
G. This problem remains open in general. For certain Galois groups, such as Sn (or An), it is easy
to construct such extensions over any given number field K. However, if one puts the additional
condition that the extension must be unramified outside a prescribed finite set of places S, then it
becomes a rather difficult question. This problem is raised by Malle and Roberts in [14].

Question of Malle-Roberts: For any positive integer n ≥ 2 and a finite set of primes S, is it possi-
ble to always construct a Galois extension overQ with Galois group Sn which is unramified outside S.

Towards this, they produce number fields which are ramified only over primes 2 and 3 and have
Galois group Sn for n = 9,10,11,12,17,18,25,28,30,33. If such Galois extensions could be con-
structed for all n, it would imply that the existence of an infinite Galois extension as shown in
the example above. But this would violate Hypothesis 1 because the corresponding zeta-function
does not have a pole at s = 1/2. In other words, Hypothesis 1 has the following implication on the
problem of Malle-Roberts.

Hypothesis 1 implies that for a finite set of primes S, there exists an integer N ≥ 1 such that
for any n ≥ N , there are no Galois extensions over Q with Galois group Sn, which are unramified
outside S.

For certain groups, one can construct extensions with a prescribed finite set of ramifying primes.
For instance, if S = {p, l} for distinct primes p and l, then it is possible to prove, using modular
forms, that there are infinitely many fields with Galois group of the form PGL2(Fln) which are
unramified outside S (see [19]).

6. Tsfasman-Vlăduţ zeta-functions

Another interesting zeta-function for infinite extensions arises from the work of Tsfasman and
Vlăduţ in [25]. In fact, they introduce the zeta-function for any family of number fields {Ki}, with
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a smoothness condition on the splitting of primes. Such families are called asymptotically exact
families. In particular, towers of number fields are asymptotically exact. We define it more precisely
below.

For a number field K and a rational prime power q, recall that Nq(K) denotes the number of
prime ideals in K with norm q and dK , the absolute discriminant ∣disc(K/Q)∣. A family of number
fields K ∶= {Kn}n is said to be asymptotically exact if the following limits exist:

ϕR(K) = lim
n→∞

r1(Kn)

log dKn

, ϕC(K) = lim
n→∞

r2(Kn)

log dKn

, ϕq(K) ∶=
Nq(Kn)

log dKn

,

for all prime powers q = pk. Here r1(K) and r2(K) denote the number of real and complex
embeddings (upto conjugation) of K respectively. Call nK ∶= [K ∶ Q]. Clearly, r1(K)+2r2(K) = nK
and Nq(K) ≤ nK . By Minkowski’s bound, nK/ log

√
dK is bounded above by an absolute constant

≤ 1. Thus, all the above limits ϕR, ϕC and ϕq, if exist, are also absolutely bounded. Now, Tsfasman
and Vlăduţ define the zeta-function for K = {Kn}n on R(s) > 1 as

ξK(s) ∶= ∏
q=pk
(1 −

1

qs
)
−ϕq

. (7)

Since ϕq’s are real numbers, we have to choose the principal branch of logarithm to define the above
product. The logarithmic derivative of ξK(s) is given by

−
ξ′K
ξK
(s) = ∑

q=pk
ϕq(K) log q

qs − 1
(8)

for R(s) > 1.

An infinite extension K/Q can be realized as a tower K = ⋃nKn. It is easy to see that any tower
of number fields K = ⋃nKn is an asymptotically exact family. Here, the associated zeta-function
is non-trivial if ϕq > 0 for some prime power q = pk. Such extensions are called asymptotically good
towers. Note that if ϕq > 0, then for sufficiently large n,

0 <
Nq(Kn)

log
√
dKn

≤
nKn

log
√
dKn

=
r1(Kn) + 2r2(Kn)

log
√
dKn

.

Thus, for asymptotically good towers, we also have ϕR(K) + 2ϕC(K) > 0. Here, the zeta-function
captures the splitting of primes in the infinite extension. Note that we do not require the extensions
to be Galois in this case. There is however one limitation. Even if a prime p splits completely in
K/Q, the invariant ϕpk may still be 0 for all k. Meanwhile, for special infinite extensions such as

the Hilbert class field towers, where
nKn

log dKn
is a constant, this zeta-function effectively captures the

splitting of primes.

Applying Weil’s explicit formula, Tsfasman-Vlăduţ [25, p. 20] proved that the series in (8) is
convergent on R(s) ≥ 1 and under GRH, the region of convergence can be extended to R(s) ≥ 1/2.
However, their proof has certain inaccuracies, which can be fixed with minor modifications. We
discuss the correct argument below.

Recall that for a number field K/Q, the logarithmic derivative of the Dedekind zeta-function is
defined on R(s) > 1 by

−
ζ ′K
ζK
(s) ∶= ∑

q=pk
Nq(K)

log q

qs − 1
.
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This series is convergent only on R(s) > 1 and has a simple pole at s = 1 owing to the pole of
ζK(s) at s = 1. However, when we consider the limiting zeta-function as in (7) over a tower of
number fields, the pole at s = 1 disappears! This fact appears in [25, GRH Theorem A], stated in
Proposition 6.2. But, there is a gap in the original argument, which we shall fix below.

The proof of this statement is an application of Weil’s explicit formula. We use the formulation
of Guinand (see [18, p 122]).

Theorem 6.1 (Guinand-Weil explicit formula). Let F (x) be a differentiable, even, positive function
defined on the whole real line R such that F (0) = 1 and there exist positive constants c and ϵ such
that

F (x), F ′(x) ≤ c e−(1/2+ϵ)∣x∣

as ∣x∣→∞. Define

ϕ(s) ∶= ∫
∞

−∞
F (x)e(s−1/2)x dx.

Let K/Q be a number field. Denote by nK and dK the degree and absolute discriminant of K over
Q. Let r1 and r2 denote the number of real and complex embedding (upto conjugation) of K. Then,
we have

log dK = r1
π

2
+nK(γ + log 8π) − nK ∫

∞

0

1 − F (x)

2 sinhx/2
dx

− r1∫
∞

0

1 − F (x)

2 coshx/2
dx − 4∫

∞

0
F (x) coshx/2dx +∑

ρ

′ϕ(ρ)

+ 2∑
p

∞
∑
m=1

N(p)−m/2F (m logN(p)) logN(p),

where in the first sum ρ runs over all zeros of the Dedekind zeta function ζK(s) in the critical strip,
where ρ and ρ are grouped together, p runs over the non-zero prime ideals of K and N(p) denotes
the norm of p.

We are now ready to state and prove the result of Tsfasman-Vlăduţ.

Proposition 6.2 (GRH Theorem A,[25]). For any asymptotically exact family K = {Kn}n, the
zeta-function ξK(s) given by (7) is convergent for R(s) ≥ 1/2 under the assumption of GRH.

Proof. Assume GRH holds. For y > 0, taking

F (x) = e−yx
2

.

and applying Theorem 6.1, we obtain

1 =
r1(K)

log dK

π

2
+

nK
log dK

(γ + log 8π) −
nK

log dK
∫
∞

0

1 − e−yx
2

2 sinhx/2
dx −

r1(K)

log dK
∫
∞

0

1 − e−yx
2

2 coshx/2
dx

−
4

log dK
∫
∞

0
e−yx

2

coshx/2dx +
1

log dK
R∑

t
∫
∞

−∞
eitx−yx

2

dx

+
2

log dK
∑
p

∞
∑
m=1

N(p)−m/2e−ym
2 log2N(p) logN(p),

where the first sum runs over all real t such that ζK(1/2 + it) = 0. In a tower of number fields
K = ⋃nKn, all the terms in the RHS above are either > 0 or tend to 0 as n tends to infinity (see
[25] for details). Therefore, only considering the last term, we deduce that

1

log dK
∑
p

∞
∑
m=1

N(p)−m/2e−ym
2 log2N(p) logN(p)≪ 1. (9)
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The partial sum of the above summation is

∑
q≤z

Nq(K)

log dK

∞
∑
m=1

q−m/2e−ym
2 log2 q log q ≤∑

q≤z

Nq(K)

log dK

∞
∑
m=1

q−m/2 log q

=∑
q≤z

Nq(K)

log dK

log q
√
q − 1

. (10)

For the lower bound, using the fact that e−ym
2 log2 q ≥ 1− ym2 log2 q and choosing y = (log log dK)

−1,
we get

∑
q≤log log dK

Nq(K)

log dK

∞
∑
m=1

q−m/2e−ym
2 log2 q log q ≥ ∑

q≤log log dK

Nq(K)

log dK
∑

m≤log1/4(log dK)
q−m/2(1 − ym2 log2 q) log q

≥ (1 −
(log log log dK)

2

√
log log dK

)

2

∑
q≤log log dK

Nq(K)

log dK
∑

m≤log1/4(log dK)
q−m/2 log q

= (1 −
(log log log dK)

2

√
log log dK

)

2

∑
q≤log log dK

Nq(K)

log dK

log q
√
q − 1

(1 +O(q− log
1/4(log dK))) .

In other words, we have shown that

(1 − ϵK) ∑
q≤log log dK

Nq(K)

log dK

log q
√
q − 1

≤ ∑
q≤log log dK

Nq(K)

log dK

∞
∑
m=1

q−m/2e−ym
2 log2 q log q

≤ ∑
q≤log log dK

Nq(K)

log dK

log q
√
q − 1

,

where ϵK → 0 as dK →∞. Now, by (9), the summation in the RHS is uniformly bounded indepen-
dent of K. Therefore, we can take limits and conclude that

∑
q=pk

ϕq(K) log q
√
q − 1

is bounded. This completes the proof that the zeta function (7) is convergent on R(s) ≥ 1/2 under
GRH. □

The proof of the same statement due to Tsfasman-Vlăduţ [25] follows along the same lines,
but has two minor issues. The upper bound as in (10) is given in terms of a infinite sum, which
is divergent. The more serious issue is the interchange of limits and summation, which requires
uniform convergence. Although it was shown [25, Lemma 2.3] that for any extension L/K,

∑
q≤x

Nq(K) log q

log dK
≥ ∑
q≤x

Nq(L) log q

log dL
,

it does not imply that

∑
q≤x

Nq(K)

log dK

log q
√
q
≥ ∑
q≤x

Nq(L)

log dL

log q
√
q
.

Hence, monotonicity does not justify the convergence of the series and one has to allude to uniform
convergence, as shown in our argument above.

A similar modification to Tsfasman-Vlăduţ’s argument can be undertaken to show the conver-
gence, and hence the analytic continuation of the zeta-function (7) on R(s) ≥ 1 unconditionally.
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Several interesting open questions arise from the study of ξK(s). Since the Dirichlet coefficients
are all positive, by Landau’s theorem, there is a singularity on the real point at its abscissa of
absolute convergence. It is still not known whether one can find an infinite extension K/Q such that
the abscissa of absolute convergence of ξK(s) is > −∞. In other words, an extension where infinitely
many ϕq(K) are positive.

7. Zeta function over splitting primes

We now introduce another zeta-function attached to an infinite extension, which more precisely
captures the splitting behaviour of primes, in a similar spirit as the Tsfasman-Vlăduţ zeta-functions.
Let K/Q be an infinite extension given by a tower K = ⋃∞n=1Kn. For all prime powers q = pk, we
define the invariants

ψq(K) ∶= lim
n→∞

Nq(Kn)

nKn

.

This limit exists and is well-defined, meaning it is independent of the chioce of tower {Kn} and
satisfies 0 ≤ ψq(K) ≤ 1. For instance, if a prime p splits completely in K, then ψp(K) = 1. The
existence of this limit can be deduced from the following inequality (see [5, Lemma 4.1]).

Let L/K be an extension of number fields. Then for any x > 0 and any prime p,

∑
pk≤x

Npk(K) log p
k

nK
≥ ∑
pk≤x

Npk(L) log p
k

nL
.

Define the zeta-function associated to the infinite extension K/Q as

ζK(s) ∶= ∏
q=pk
(1 −

1

qs
)
−ψq(K)

(11)

on R(s) > 1. Here, exponents are defined by choosing the principal branch of logarithm. Now, the
logarithmic derivative is given by

ZK(s) ∶= −
ζ ′K
ζK
(s) = ∑

q=pk
ψq(K) log q

qs − 1
(12)

for R(s) > 1. Suppose K/Q is a Galois extension with Galois group G, which is unramified outside
a finite set of places S. Then,

ZK(s) = Z(K,G, s)P (s),
where P (s) is a Dirichlet polynomial and Z(K,G, s) is as in Section 5. Hence, ZK(s) converges
if and only if Z(K,G, s) converges. Thus, this zeta-function is closely related to the zeta-function
associated to the conjugacy set given by the entire group G.

Furthermore, ψq precisely captures the splitting nature of the primes in the infinite extension.
For instance, in a Galois extension K/Q, suppose a prime factorizes as pOKn = p

e
1p
e
2⋯p

e
g in Kn and

splits completely thereafter, then ψq(K) =
g
n , where q = Npi. Conversely, for a Galois extension K/Q

if ψpk(K) > 0, then it implies that there exists a number field Kn such that all the primes above p
in Kn split completely in K. Hence, the zeta-function ZK(s) precisely captures the splitting nature
of primes, even better than the Tsfasman-Vlăduţ zeta-function. In the later case, it is possible for
a prime to split completely, and yet the invariants ϕpk = 0 for all k.

The natural question to consider is whether the above zeta-function has an analytic continuation
to a region beyond the half-plane R(s) > 1. It is possible to construct infinite extensions where
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the series (12) diverges at s = 1. Such an extension was constructed by S. Checcoli and A. Fehm
[4]. They showed that for any family of finite solvable groups Gi, there exists a totally real infinite
Galois extension K/Q with Galois group∏∞i=1Gi, such that it has a finite local degree over all primes
p and the sum

∑
q

ψq(K) log q

q + 1

diverges. This implies that the sum in (12) diverges. Thus, unlike the earlier zeta-functions in (2)
and (7), analytic continuation for ζK(s) beyond the region R(s) > 1 will not follow from the the
convergence of the Dirichlet series.

The behaviour of ζK(s) at s = 1 provides valuable information about the infinite extension K. A
concrete instance of this is in obtaining lower bounds on the Weil height of elements in K. Recall
that for an algebraic number α ∈ Q, the logarithmic Weil height is defined as follows. Let α ∈ K∗.
Then

h(α) = ∑
v∈MK

log+ ∣α∣v,

where MK is the set of all places of K, log+ x = max(0, logx) and ∣α∣v is the normalized valuation
on α defined as:

∣α∣v ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Np)
− ordp(α)
[K ∶Q] , if v is non-archimedean corresponding to the prime ideal p,

∣σ(α)∣
[Kν ∶R]
[K ∶Q] if v is archimedean corresponding to the embedding σ of K.

A well-known theorem of Kronecker [10] states that an algebraic number α satisfies h(α) = 0 if and
only if α is a root of unity. When α is not a root of unity, obtaining lower bounds for h(α) has
been a long standing problem and the famous Lehmer’s conjecture [13] states that for such non-zero

α ∈ Q
h(α) ≥

c

[Q(α) ∶ Q]
for an absolute constant c > 0. This problem still remains open. But it is interesting to find subsets
S ⊂ Q, where a lower bound on h(α) for α ∈ S can be established. This inspires the definition of
the Northcott property (N) and the Bogomolov property (B). A set S ⊆ Q is said to satisfy the
Northcott property (N) if for any c > 0, the set

{α ∈ S ∣α non-zero and h(α) < c}

is finite. For instance, Northcott proved that algebraic numbers with bounded degree have property
(N). We say that a set S ⊂ Q satisfies the Bogomolov property (B) if there exists a constant c > 0,
such that

{α ∈ S ∣α non-zero and not a root of unity and h(α) < c}

is an empty set. If a set S satisfies property (N), then it clearly satisfies property (B).

These properties have been extensively studied for infinite extensions. For instance, F. Amoroso
and R. Dvornicich [1] have proved that Qab, the maximal abelian extension of Q satisfies property
(B). This was generalized to Kab by F. Amoroso and U. Zannier [2] for any number field K. Earlier,
in 1973, A. Schinzel [20] obtained property (B) for the infinite extension Qtr, the field of totally real
algebraic numbers. Another family of infinite extensions of Q for which we know the Bogomolov
property are totally p-adic fields, i.e., infinite Galois extensions of Q with finite local degree over a
prime p. This is the famous theorem of E. Bombieri and U. Zannier [3]. Recently, Habegger [7] has
showed that for an elliptic curve E/K, the extension Q(Etor) generated by all the torsion points of
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E satisfies property (B).

Suppose K/Q is an infinite extension. In [5], the author and S. Kala discovered a peculiar relation
between the behaviour of ζK(s) at s = 1 and the above problem. They showed that if lims→1+ ζK(s)
is non-zero, then K satisfies property (B) and if this limit tends to infinity, then K satisfies property
(N). This is the first instance of infinite extensions, which are not necessarily Galois, having prop-
erty (B) or (N). On specializing to Galois extensions, they retrieve the result of Bombieri-Zannier [3].

On another front, the zeros of ζKn(s) near s = 1/2 hold information on the lower bounds of h(α)
for α ∈ Kn. This was established by the author and S. Kala in [6]. Under GRH, they proved the
Lehmer’s conjecture over infinite extensions K/Q provided there are several zeros of small height
for ζKn(s) near s = 1/2.

8. Relation to Euler-Kronecker constants

The Euler-Mascheroni constant denoted by γ is defined as

γ ∶= lim
x→∞(∑n≤x

1

n
− logx) .

It can also be described as the constant term in the Laurent expansion of the Riemann zeta-function,

ζ(s) =
1

s − 1
+ γ +O(s − 1).

The analogous notion for a number field was introduced by Y. Ihara [9] as follows. Let K be a
number field and suppose the Laurent expansion of ζK(s) near s = 1 is given by

ζK(s) =
c−1
s − 1

+ c0 +O(s − 1).

Then the Euler-Kronecker constant associated to K is defined as

γK ∶=
c0
c−1

.

One could also view γK as the constant term in the Laurent expansion of the logarithmic derivative
of ζK(s) at s = 1, i.e.,

−
ζ ′K
ζK
(s) =

1

s − 1
− γK +O(s − 1).

Recall the famous Stark’s lemma [23], which states that for a number field K/Q and any s ∈ C

−
ζ ′K(s)
ζK(s)

−
1

s − 1
+∑

ρ

1

s − ρ
=
1

2
log dK + (

1

s
−
nK
2

logπ) +
r1
2

Γ′

Γ
(
s

2
) + r2 (

Γ′

Γ
(s) − log 2) , (13)

where the summation is over the non-trivial zeros of ζK(s).

Taking s→ 1+ in (13) and dividing by nK , we obtain

−
γK
nK
=
log ∣dK ∣

2nK
−

1

nK
∑
ρ

1

ρ
+O(1), (14)

where the error term is independent of K. On the other hand, for R(s) > 1

−
ζ ′K
ζK
(s) =∑

q

Nq(K)
∞
∑
m=1

log q

qms
,
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where q runs over all prime powers. Dividing by nK , for s = 1 + σ > 1, we have

−
1

nK

ζ ′K
ζK
(1 + σ) =∑

q

Nq(K)

nK

∞
∑
m=1

log q

qms
=∑

q

Nq(K)

nK

log q

qσ+1 − 1
.

Now, by (13), for σ > 0

−
1

nK

ζ ′K
ζK
(1 + σ) =

1

σ nK
−∑

ρ

1

ρ + σ
=
log ∣dK ∣

2nK
+ (

1

(1 + σ)nK
−
logπ

2
)

+
r1
2nK

Γ′

Γ
(
1 + σ

2
) +

r2
nK
(
Γ′

Γ
(1 + σ) − log 2) . (15)

Let K = ⋃nKn be an infinite tower over Q. Putting σn = 1/
√
nKn in (15) and taking limits, we

obtain

∑
q

ψq
log q

q
= lim
i→∞
⎛

⎝

log ∣dKn ∣

2nKn

−
1

nLi

∑
ρ

1

ρ + (nLi)
−1/2
⎞

⎠
+O(1), (16)

where the implied constant is absolute.

Comparing (14) and (16), it is clear that the convergence of ζK(s) at s = 1 is intricately connected
to the bounds on −γK/nK . For instance, in the example of the infinite extension K/Q constructed
by S. Checcoli and A. Fehm [4, Theorem 1.2], the zeta-function ζK(s) tends to infinity as s → 1+.
In other words, the sum

∑
q

ψq
log q

q + 1

diverges. Using (14) and (16), one can also conclude that

−
γKi

nKi

→∞.

This should be compared with the known lower bounds on γK . In [9], Ihara proved that

γK ≥ − log ∣dK ∣

for any number field K. He also demonstrated that

lim inf
K

γK
log ∣dK ∣

≤ C,

where C = −0.16352⋯. Thus, infinite extensions K = ⋃nKn where we can show that ∣γKn ∣ does not
tend to infinity faster than the degree nK , there is hope in establishing the analytic continuation of
ζK(s) to R(s) ≥ 1.

9. Concluding remarks

The splitting of primes over infinite extensions is a fundamental theme, several aspects of which
remain mysterious. The study of zeta-functions over infinite extensions holds the key to unraveling
this mystery and warrants careful investigation. In this paper, we discuss three such zeta-functions,
one associated to the conjugacy set, second and third arising from the splitting behaviour of primes
in infinite extensions. Unlike the Dedekind zeta-function, the zeta-function attached to a conjugacy
set and the Tsfasman-Vlăduţ zeta-function exhibit the unusual property that they do not have a pole
at s = 1. Instead, they admit analytic continuation to R(s) > σa, where σa < 1 is the abscissa of their
absolute convergence. However, we do not have a single example where this analytic continuation
extends beyond the half plane R(s) > σa. Constructing such examples would provide vital new
insights on existence of number fields with interesting prime splitting conditions.
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[23] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math., 23, pp. 135-152, (1974).
[24] N. Tschebotareff, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen
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