ZETA FUNCTIONS ON INFINITE EXTENSIONS

ANUP B. DIXIT

ABSTRACT. For an infinite extension I/Q, various attempts have been made to define an appro-
priate zeta-function, which encapsulates vital arithmetic information over K, such as the prime
splitting behaviour. In this article, we discuss a few such zeta-functions. We explore implication
of a hypothesis by Kumar Murty in relation to a problem of Malle and Roberts. Additionally, we
address a gap in the proof of “basic inequality” due to Tsfasman-VIadut in the theory of asymptot-
ically exact families. Finally, we introduce a new zeta-function associated to K/Q and highlight its
connections to several important themes in number theory.

1. Introduction

For a finite extension K /Q, the Dedekind zeta-function is defined on fR(s) > 1 as
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where a runs over all non-zero integral ideals of K. This series is absolutely convergent on the
half plane PR(s) > 1. The unique factorization of fractional ideals of K into prime ideals can be
reformulated as the Euler product for (x(s) on fR(s) > 1 as
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where p runs over all non-zero prime ideals of Of. The function (x (s) has an analytic continuation
to the whole complex plane except for a simple pole at s = 1. It encodes important arithmetic
properties over K. For instance, Landau’s prime ideal theorem [12], which states that

#{PEOK:NpSm}~li(x)::[;i

logt
is a consequence of the fact that (x(s) has a simple pole at s =1 and (x (1 +it) # 0 for all ¢t € R*.
Thus, remarkably the analytic study of (x(s) helps unveil profound arithmetic data, especially
about the distribution of prime ideals. One of the key features of (x (), owing to its Euler product,
is that it fully captures the splitting behavior of primes in the extension K/Q. In fact, the simple
pole of (x(s) at s = 1 immediately establishes that the set of primes that split completely in K/Q
has Dirichlet density 1/[K : Q].

For infinite extension K/Q, the analogous theory is fundamentally quite different. In this article,
we explore this theme and introduce zeta-functions associated to infinite extensions over Q. Any
infinite extension K/Q can be realized as

K=..o0K,2K,.12...0K;=Q
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a tower of number fields such that K = U, K,. Note that lim,_.. (k, does not exist as a function
on C\{1}. Indeed, the order of zero of (i (s) at s =0 is the rank of the unit group, which tends to
infinity as the degree of K, tends to infinity. Thus, if the limit lim,_ . (x, (s) existed, it would be
identically 0. On the other hand, from the Dirichlet series representation, we have (g, (2) > 1 for all
n. So, the naive approach of taking limits fails to define a meaningful function. This has inspired
numerous attempts in the literature to define a zeta-function for infinite extensions. In this article,
we shall explore this theme in detail.

2. The Frobenius class

Let K/Q be a Galois extension with Galois group G of order ng. The group G naturally acts on
the prime ideals of K. For a rational prime p, suppose its factorization is given by

POK =p1 PPy,
where p1,p2,...,pr ¢ Ok are the prime ideals in Ok lying above p. Let F;, = Ok [p; denote the
residue field corresponding to p;. We call e; and f; the ramification and inertia degrees of p; over p.
Since the action of GG preserves pOg and acts transitively on p1,...,9,, we have uniform ramification
and inertia degrees, i.e., e =ey =--=¢€, and f; = fo =--- = f,. Consequently, nx =efr.

The stabilizer of p; in G is called its decomposition group
Dy, jp={ceG:0(pi)=pi}.

Since G acts transitively on p1,p2,...,pr, on varying p;, the subgroups D, , are conjugates of each
other.

Fixing a prime ideal p = p;, any automorphism o € D, induces an automorphism on the residue
field Og/p ~ F, with ¢ = p/. Since o acts trivially on Z[pZ ~ Fyp, this gives rise to a surjective
homomorphism

Dy = Gal(F,/F,).
The kernel of this map, known as the inertia group I,, consists of elements in Dy, that act trivially
on the residue field. This leads to the short exact sequence

0— Ip/p - Dp/p g Gal(IE‘q/Fp) -0,
with |1, | = e and |Gal(F,/F,)| = f.

When the inertia group I, is trivial, the prime p is said to be unramified, and in this case
Dy, = Gal(F,/F,). Since Fy/IF, is a finite field extension, its Galois group is cyclic, generated by
the Frobenius automorphism given by

Frob:xw— oP.

The preimage of Frob under the projection D, - Gal(F,/Fp) is called the Frobenius element
Froby,. Moreover, its conjugacy class in Gal(K/Q) remains unchanged regardless of the choice of
p and we denote it by F'rob,,.

If p is ramified, the definition of F'rob,, is determined up to multiplication by I/,

Since Gal(K/Q) is finite, it contains only finitely many conjugacy classes. Meanwhile, all but
finitely many rational primes are unramified in K. This naturally leads to the question: how are
the infinitely many F'rob, distributed among the finitely many conjugacy classes in G. The answer
to this question is the famous Chebotarev density theorem.
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Theorem 2.1 (Chebotarev [24]). Let K/Q be a finite Galois extension with Gal(K/Q) =G. Let €
be a conjugacy class of G. Then, the set

{p prime: p is unramified in K and Frob, = Qﬁ}

has natural density %'
More precisely, suppose 7(x) denotes the number of rational primes < z and 7¢(x, K/Q) counts
the primes p <« for which Frob, = €, then the Chebotarev density theorem asserts that
7('@(.%, K/Q) |Q:| )
— =2~ as x — oo.
() G|
In other words, the Frobenius classes are equidistributed with respect to the uniform discrete mea-
sure on G. Let € be the disjoint union of conjugacy classes €;, then we call € as a conjugacy set.
Clearly

W@(J:aK/Q) = ZWQ(:C’K/Q)

When G = Gal(K/Q) is abelian, the Frobenius classes F'rob,’s are singletons. A key example of
an abelian extension is the cyclotomic field K = Q((,), where (, is the primitive n-th root of unity.
This extension is abelian because any automorphism o € Gal(K/Q) is uniquely determined by its
action on (,, which must also be mapped to another primitive n-th root of unity. Specifically, if
0((n) = ¢),- Then, the map o — r(o) defines an isomorphism

Gal(K/Q) = (ZInZ)".

For a prime p + n, p is unramified in Q((,). In this case, the Frobenius element is defined as

Froby(Gn) = G-
Thus, for any r coprime to n, we obtain the equivalence
ptn, Frob,=r € (Z/nZ)" < p=r mod n.

Thus, Chebotarev density theorem for Q((,,) recovers the classical Dirichlet’s theorem for primes
in arithmetic progressions. Hence, for general Galois extensions, Chebotarev can be viewed as a
generalization of Dirichlet’s theorem.

Let K/Q be a Galois extension of degree n. A prime p splits completely in K,

POk =p1p2...pn
if and only if the decomposition group Dy, = {id}. Equivalently, the Frobenius class Frob, = {id}.

Thus, Chebotarev density theorem implies that the set of primes which split completely in K has
natural density 1/n and therefore Dirichlet density 1/n.

The Dirichlet density of split primes can be deduced rather easily from the fact that (x(s) has
a simple pole at s = 1. Suppose Sk is the set of primes which split completely in K. Then, its
Dirichlet density is given by
ZpESK Z% IRT ZpESK i.s
s—>1* logs%1
Using the Euler product for (x(s), for 58(s) > 1, we obtain

1 1 1 1
logCx(s) == log(l—Nps)=np€ZSjKE+O( > ]ﬁ)zn D 2¥+0(1).

pcOx p¢SK PESK
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Since both (i (s) and ((s) have simple poles at s = 1, we have
log Cx (s) _
s—1+ log ((s)

Thus the Dirichlet density of Sk is 1/n. It is important to emphasize that the Dirichlet density is
determined by the behaviour of (i (s) at s > 1, whereas for natural density one needs to understand
Ck(s) in the larger region near the line R(s) = 1.

3. Zeta function for conjugacy sets

It is often advantageous to work with the logarithmic derivative of the zeta-function. From the
Euler product of the Dedekind zeta-function, one can write for 5(s) > 1

) > N (K) 5 msa

g=pk m=1

Sk () -
CK(S) q=p

where N, (K') denotes the number of prime ideals in K with norm g. When K /Q is Galois of degree
n7

S S () () e

p prime m=1

Since only finitely many primes ramify in K, we have

_%(3): 5 ”f§p+0(1)

psplits

for R (s) > 1. This is similar to the statement that the Dirichlet density of split primes is 1/n.

Let G = Gal(K/Q) and € be a conjugacy set, i.e., union of conjugacy classes in G. For a prime
p, which is unramified in K, let o = Frob,, € Gal(K/Q) denote the Frobenius element. Let Frob,,
also denoted by the Artin symbol (p, K/Q) denote the conjugacy class containing Frob,,. Note
that the conjugacy class of ¢” is also independent of p and hence we define (p", K/Q) to be the
conjugacy class containing ¢”. Define the zeta function corresponding to € on fR(s) > 1 as

log p
Z(K,€,s) = . (1)
p prirg,mzl (pf)ms
(™, K/Q)cC

In particular, if € = {1}, then Frob, = € if and only if p splits completely in K. In this case,

(K es)= Y Y 8L 5 loap ——%g—i(s)m(l)

psplit m=1 " p split P7 — 1

for R(s) > 1.
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4. Topology and measures on infinite extensions

An infinite algebraic extension K/Q can be realized as a tower of number fields, namely
K=..2K,2Kp12...2K1=Q,

where K,’s are number fields. This representation is not unique. Moreover, /Q is Galois if and
only if there exists a tower of number fields { K, } such that K = U,, K,, and K,,/Q is a finite Galois
extension for all n.

For instance K = Q(v/2,v/3,V/5,...)/Q is an infinite Galois extension with
Gal(K/Q) = [[ (Z/2Z).
i=1

Another example is the infinite cyclotomic extension Q((pe) := Uiy Q(pi). This is a Galois exten-
sion over Q with

Gal(Q(Gp~)/Q) 2 Z/(p = 1)Z x Zp,

where Zj, is the ring of p-adic integers.

Observe that the Galois groups above [[:2, (Z/2Z) or Z(p — 1)Z x Z,, are uncountable as sets.
In fact, the Galois group of an infinite Galois extension is always uncountable. The topology on
Gal(K/Q), called the Krull topology, is defined with the idea that two elements o, 7 € Gal(K/Q)
are “close” if they agree on a large finite extension K,/Q with K, c K. For ¢ € Gal(/Q), the
basic open sets are given by the cosets o Gal(K/K,,), where K = U,, K, and K,,/Q are finite Galois
extensions. With this topology, Gal(/Q) forms a compact, totally disconnected and Hausdorff
topological group.

Let p be the Haar measure on G = Gal(K/Q), with x(G) = 1. Then
/’L = llm ILLKn’
n
where ug, is the discrete probability measure on Gal(K,,/Q). This limit is interpreted in the sense

of weak convergence.

One can think of a prime in K as a system
{pn: K,,/Q is finite Galois}

such that p, is a prime ideal in K, and for m > n, the ideal p,,, lies over p,. Now, the Frobenius
element associated with a prime in K is defined as a sequence

{Fmb,@n 1 K,,/Q is finite Galois}.

The conjugacy class of all sequences with p; = p is denoted by Frob,. With respect to the Krull
topology, these Frobenius elements are dense in Gal(X/Q). But note that Gal(X/Q) is uncountable,
whereas the number of Frobenius classes are countable. Thus, it is possible to have elements in
Gal(K/Q) which are not Frobenius elements. For example, if Gal(K/Q) is abelian, then its conju-
gacy classes are singletons {o} € £/Q and hence there must be elements, which are not Frobenius
elements.
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Let € be a conjugacy class in the infintie Galois group G = Gal(K/Q). Let me(x,/Q) be the
number of primes p < x, unramified in K, such that the Frobenius class Frob, lies in €. Serre [21]
showed that if the boundary of € has measure zero, then

me(x, K/Q) ~ () li(x)

as x — oo. In other words, the Chebotarev density theorem holds for conjugacy classes with positive
Haar measure, i.e., having positive density in GG. This raises the question of whether we can predict
asymptotics when p(€) =0, but € is “sufficiently large”. To quantify this, we recall the notion of
Minkowski dimension following Serre [21].

Let I/Q be an infinite Galois extension with G = Gal(K/Q). Let K = U,, K,, be a tower, where
K, /Q is Galois with Galois group G,, for each n. Let € c G be a conjugacy set and €, be the
projection of € on G,,. We say that the Minkowski dimension dimy(€) < « if for each K, /Q,

€] <ic |Gnl®

If @ <1, then pu(€) = 0. A natural problem is to estimate 7¢(x,/Q) when dimy(€) = a > 0. One
way to think about this problem is to associate a zeta function on the conjugacy set € in the infinite
group G, analogous to (1), as introduced by Kumar Murty in [16]. Write

logp
Z(¢,K,s) = Z s’ (2)
e o)ee (PF)

where p runs over all rational primes. It is possible to develop the theory of the above zeta-function
for /L, infinite Galois extension over any number field L. For simplicity, we restrict ourselves to

K/Q.

In [16], Kumar Murty showed that for K£/Q, if a conjugacy set € c Gal(/Q) has Minkowski di-
mension « > 0, then under GRH, the Dirichlet series Z (K, €, s) converges for R(s) > HT‘X Addition-
2% 3ia)-
Based on these observations along with heuristics from Lang-Trotter conjecture, Kumar Murty [16]
hypothesized that Z(K,€,s) must have analytic continuation to 9(s) > 1/2. Since its Dirichlet
coeflicients are positive real numbers, by Landau’s theorem, it has a singularity at the abscissa of
convergence.

ally, assuming Artin’s holomorphy conjecture, the region of convergence extends to R(s) >

Hypothesis 1 (Kumar Murty). Let K/Q be an infinite Galois extension and € be a conjugacy set
of its Galois group with dimg € = a > 0. Then, the Dirichlet series Z(IC,€,s) is convergent on
MR(s) > 1/2 and has analytic continuation to R(s) > 1/2 with a simple pole at s =1/2.

One of the goals of this article is to discuss ramifications of this hypothesis. Towards this, we
first remind the reader of various effective versions of the Chebotarev density theorem.

5. Effective Chebotarev density theorem

Let L/K be a finite Galois extension with Galois group G and € be a union of conjugacy classes
in G. Define m¢(z, L/K) as the number of prime ideals p of K, unramified in L with Np < z, such
that the Frobenius class Froby lies in €. The Chebotarev density theorem asserts that

€]

mwe(x, L/ K) ~ @ li(x)
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as © — oo. In 1977, Lagarias and Odlyzko [11] established an effective version of this result, later
refined by Serre [22]. Under the assumption of GRH, they proved that

¢ ¢
Wg(:v,L/K)—Hli(x) < Hxlp (logdg +ngilogz), (3)
where dj is the absolute discriminant |disc(K/Q)| and ng is the degree [K : Q]. Additionally,
assuming Artin’s holomorphy conjecture(AC), Ram Murty, Kumar Murty and Saradha [15] estab-
lished a stronger version, namely,

me(z, L/K) - ] li(z)

Gl < |€|1/21:1/2nK (logML/K:U), (4)

where

My =[L:K1d™ T »p
peP(L/K)
Here P(L/K) denotes the set of rational primes p such that there is a prime ideal p in K above p
which ramifies in L. An even sharper bound was recently established by Ram Murty, Kumar Murty
and P. J. Wong in [17], assuming GRH, AC and the pair correlation conjecture (PCC) for Artin
L-functions. Under these assumptions, they showed that

me(z, L/ K) - % li(x)

where G* is the set of all conjugacy classes of G.

1/2 ‘G#’ i 1/2
< |Q:| / Z‘l/g (W) e (IOgML/Kl’), (5)

In [16], Kumar Murty used the bounds (3) and (4) to obtain convergence of the zeta function
Z(K,€,s) in the regions R(s) > (1 + «)/2 (under GRH) and R(s) > % + ﬁ (under GRH and
AC). However, on employing (5), one can obtain better regions of convergence under GRH, AC and
PCC, at least in specific cases. We demonstrate this with an explicit example. For small conjugacy
classes, the bound in (5) is comparable to (4). On the other hand, if the conjugacy classes are
larger, then the number of conjugacy classes is smaller and the bound in (5) is significantly more

effective. This opens the possibility of constructing infinite extensions with interesting properties.

Example. Consider the infinite Galois extension /Q given by a tower K = U,, K,, with Galois
group G, constructed as follows. We begin with K7 = Q and take K5/K; to be a quadratic extension.
Next, let L3/Q be a Galois extension with Galois group S3, chosen so that Lg and Ky are linearly
disjoint over Q, i.e., Lsn Ko = Q. Define K3 := K5- L3, their compositum. Inductively, we construct
L, /Q a Galois extension with Galois group S,, such that L, nK,_1 = Q. Such extensions can always
be constructed. Defining K, = K,,_1 - L,,, we obtain the Galois group

Gal(K,/Q) =G, = Sy x Sp-1 % ... xSy
and G =1im G,, is the inverse limit.
P
It is easy to compute the number of conjugacy classes of G,,. Indeed, the number of conjugacy

classes of Sy, is precisely given by the number of partitions of n, denoted by p,. By the famous
Hardy-Ramanujan [8] asymptotic formula for p,, we have

1 2n
SH#| o e -
157 T3 XP(W 3)
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as n — oo. Therefore, the number of conjugacy classes of Gy, is given by
n

1 21
G| = |87 x |87 | x - x|SF|~ ] ——= exp|m\/ =
IGT| =157 1% 1S4 Iglguﬂp 3

as n — oco. Hence,
G|y
< ,
where 8 = m/2/3 > 0 is an absolute constant. Let € c G be a conjugacy set with Minkowski
dimension « > 0, meaning that its projection €, onto G, satisfies |€,| < |G,|*. Applying (5), we
deduce that for any = > 2

1/2
1€yl . 12 _1/2 GH|
e, (z, K, /Q) - G |lz($) <€, x m (logMKn/@ 33)
1/2
n 66\/2
< |Q:n|1/2x1/2 (H i (logMKn/Qx). (6)
=1 :
Denote by
Ye(z,K[Q):= > logp.
<x
(" K[ Q)ce
Using partial summation, (6) gives
1/2
¢, n eﬁ\/i
Ve, (0,6,Q) = 2 + O e, 22 (H — ) (1o My, g 7)o«
n =1 b b

Suppose there exists a finite set of primes S such that I/Q is unramified over all rational primes
outside S. Then,

log Mg, g =logng, + ) logp =logng, +O(1).
peS

Choosing
x =z, ~ |G
and using the facts that |G| = [Tj<, I! and [1;<, AV« PP log x,,, we deduce that

d}Cn (:Ea Kn/@) < (log :En)ga
where the implied constants are absolute and independent of K,,. By definition,

¢¢(Z‘JC/Q) < 1/)¢n (x, Kn/@)

for all x > 1. Since x,, - oo as n — oo, we get that 1¢(z,)/Q) < (logz)? for sufficiently large x.
Consequently the integral

1 x8+1
converges for R(s) > 0. Since

Z(€,K,s)=s 100de

rstl ’

we conclude that Z (K, €, s) is absolutely convergent for JR(s) > 0.
This is partially compatible and also partially contradictory to Hypothesis 1. On the one hand,

by convergence of the Dirichlet series, Z(€, I, s) has analytic continuation to 9(s) > 0. On the
other hand, this also implies that the associated zeta-function does not have a pole at s = 1/2.
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Although this example is conditional on GRH, AC and PCC, it does not necessarily suggest that
the Hypothesis 1 is incompatible with GRH, AC or PCC. We elaborate on this below.

In the example above, two conditions are implicitly imposed on the infinite extension K/Q. The
first is that its Galois group G has a conjugacy set with positive Minkowski dimension and the
second is that it is unramified over all rational primes outside a finite set S. It is easy to see that
the first condition is satisfied. Indeed, consider the conjugacy class &€, c S,, consisting of product of
disjoint [5] number of 2-cycles. In other words, the conjugacy class in S, containing the element

(12)(23)--((2[5]1-1)(2[5])). Then, |€,|=[5]!. Clearly, |€,| < |Sn|'/? because

n n! n!
([n/Z]) /2l (- [n/2D)! " ([n/2])? 2

Furthermore, using Stirling’s approximation one can verify that for any € > 0 and sufficiently large

n,
1y1/2—€ I:E:Il
(n!) « 5 |"

Taking the conjugacy set €/, := €5 x €3 x -+- x €, of G, one can obtain a conjugacy set € of G with
Minkowski dimension 1/2.

The second condition which claims that all but finitely many primes are unramified in K is rather
subtle. Recall that the inverse Galois problem asks for a number field K/Q with a Galois group
G. This problem remains open in general. For certain Galois groups, such as S, (or A,), it is easy
to construct such extensions over any given number field K. However, if one puts the additional
condition that the extension must be unramified outside a prescribed finite set of places S, then it
becomes a rather difficult question. This problem is raised by Malle and Roberts in [14].

Question of Malle-Roberts: For any positive integer n > 2 and a finite set of primes 5, is it possi-
ble to always construct a Galois extension over Q with Galois group .S, which is unramified outside S.

Towards this, they produce number fields which are ramified only over primes 2 and 3 and have
Galois group S, for n = 9,10,11,12,17,18,25,28,30,33. If such Galois extensions could be con-
structed for all n, it would imply that the existence of an infinite Galois extension as shown in
the example above. But this would violate Hypothesis 1 because the corresponding zeta-function
does not have a pole at s = 1/2. In other words, Hypothesis 1 has the following implication on the
problem of Malle-Roberts.

Hypothesis 1 implies that for a finite set of primes S, there exists an integer N > 1 such that
for any n > N, there are no Galois extensions over Q with Galois group Sy, which are unramified
outside S.

For certain groups, one can construct extensions with a prescribed finite set of ramifying primes.
For instance, if S = {p,{} for distinct primes p and [, then it is possible to prove, using modular
forms, that there are infinitely many fields with Galois group of the form PGLo(F;n) which are
unramified outside S (see [19]).

6. Tsfasman-Vladut zeta-functions

Another interesting zeta-function for infinite extensions arises from the work of Tsfasman and
Vladut in [25]. In fact, they introduce the zeta-function for any family of number fields {K;}, with
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a smoothness condition on the splitting of primes. Such families are called asymptotically exact
families. In particular, towers of number fields are asymptotically exact. We define it more precisely
below.

For a number field K and a rational prime power g, recall that M;(K) denotes the number of
prime ideals in K with norm ¢ and dg, the absolute discriminant |disc(K/Q)|. A family of number
fields K := {K,, }, is said to be asymptotically exact if the following limits exist:

62(K) = lim r1(Kn )7 6e(K) = lim r2(Kn) Ny ()

noood noood logdKn

7¢q()

for all prime powers ¢ = p*. Here 71 (K) and 73(K) denote the number of real and complex
embeddings (upto conjugation) of K respectively. Call ng = [K : Q]. Clearly, r1(K)+2ro(K) =ng
and NV (K) < ng. By Minkowski’s bound, nk/log/dk is bounded above by an absolute constant
< 1. Thus, all the above limits ¢, ¢c and ¢y, if exist, are also absolutely bounded. Now, Tsfasman
and Vladut define the zeta-function for K = {K,,}, on R(s) > 1 as

6(s) = H(1q1)¢ 7)

Since ¢,’s are real numbers, we have to choose the principal branch of logarithm to define the above
product. The logarithmic derivative of () is given by

& $q(K)logq
_g_K( s)= . qs—_l (8)
g=p¢ 4
for M(s) > 1.
An infinite extension IC/Q can be realized as a tower K = U, K. It is easy to see that any tower

of number fields K = U,, K,, is an asymptotlcally exact family. Here the associated zeta-function
is non-trivial if ¢, > 0 for some prime power ¢ = p¥. Such extensions are called asymptotically good
towers. Note that if ¢, > 0, then for sufficiently large n,

N (K ) ng, _ Tl(Kn) +27‘2(Kn)‘

log+\/dk, log\/dKn B log+\/d,

Thus, for asymptotically good towers, we also have ¢r(K) + 2¢c(K) > 0. Here, the zeta-function
captures the splitting of primes in the infinite extension. Note that we do not require the extensions
to be Galois in this case. There is however one limitation. Even if a prime p splits completely in
K/Q, the invariant ¢« may still be 0 for all k. Meanwhile, for special infinite extensions such as
the Hilbert class field towers, where

splitting of primes.

0<

IOZZZ is a constant, this zeta-function effectively captures the

Applying Weil’s explicit formula, Tsfasman-Vladut [25, p. 20] proved that the series in (8) is
convergent on PR(s) > 1 and under GRH, the region of convergence can be extended to J(s) > 1/2.
However, their proof has certain inaccuracies, which can be fixed with minor modifications. We
discuss the correct argument below.

Recall that for a number field K/Q, the logarithmic derivative of the Dedekind zeta-function is
defined on P(s) > 1 by

S ()
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This series is convergent only on fR(s) > 1 and has a simple pole at s = 1 owing to the pole of
(k(s) at s = 1. However, when we consider the limiting zeta-function as in (7) over a tower of
number fields, the pole at s = 1 disappears! This fact appears in [25, GRH Theorem A], stated in
Proposition 6.2. But, there is a gap in the original argument, which we shall fix below.

The proof of this statement is an application of Weil’s explicit formula. We use the formulation
of Guinand (see [18, p 122]).

Theorem 6.1 (Guinand-Weil explicit formula). Let F'(x) be a differentiable, even, positive function
defined on the whole real line R such that F/(0) =1 and there exist positive constants ¢ and € such
that

F(z), F'(z) < ce”(1/2+)l]

as |z| - oo. Define
o(s) = f F(z)eC 122 qq

Let K/Q be a number field. Denote by nk and di the degree and absolute discriminant of K over
Q. Letry and ro denote the number of real and complex embedding (upto conjugation) of K. Then,
we have

71' © 1-F(x)
logdi =112 log 87) - f S~
ogdic =g +ni(y+logdm) —ni | 5o

© 1 F(z) o :
_7«1/[; mda@—4fo F(:U)coshx/QdﬂU+Zp: o(p)

L2303 N(p) " F(mlog N(p)) log N (p).

p m=1

where in the first sum p runs over all zeros of the Dedekind zeta function (i (s) in the critical strip,
where p and p are grouped together, p runs over the non-zero prime ideals of K and N(p) denotes
the norm of p.

We are now ready to state and prove the result of Tsfasman-Vladut.

Proposition 6.2 (GRH Theorem A,[25]). For any asymptotically exact family K = {Ky}y, the
zeta-function x (s) given by (7) is convergent for R(s) > 1/2 under the assumption of GRH.

Proof. Assume GRH holds. For y > 0, taking

F(z)=ev.
and applying Theorem 6.1, we obtain
2 2
K o 1_e YT K o 1 _e VT
:Tl( )z+ nK (v +log8m) — K [ _6 x—rl( ) c x
logdyk 2 logdx logdyg Jo  2sinhx/2 logdyg Jo  2coshx/2
4 o0 2 1 0 . 5
— —Yyx hx/2dxr + R f wtr—yx d
g drc fo e coshx/2dx oz dn ; e x
2

+

> N(p) et s N og N (p),

logdx %' n21

where the first sum runs over all real ¢ such that (x(1/2+it) = 0. In a tower of number fields
K = U, K,, all the terms in the RHS above are either > 0 or tend to 0 as n tends to infinity (see
[25] for details). Therefore, only considering the last term, we deduce that

1 = -m — m2 (0} 2
og drc > > N(p) [2g=ym 108" N(®) 16 N (p) <« 1. 9)
p m=1
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The partial sum of the above summation is

Nq(K) — /2 e Y 21og?q (1( ) -m/2
—= ) q e logq < q """ logq
2 Togdre 24 2 Togd 2
Ny (K) logq

=2 Torde

q<z 10g dK \/_ 1

For the lower bound, using the fact that emym?log®q 5 1 _ ym?log? ¢ and choosing y = (loglogdx )™,
we get

(10)

No(K) & 2 —ym?10g? Ny(K) _
s Y e ogg > 3T T > ¢ "P(1-ymPlog’q) logg
g<loglog dx 080K m=1 g<loglogdx 0g 4K m<log'/*(log dg)
2
N (1 ~ (logloglogdK)Q) Ny (K) S ™ l0gg
Vioglogdx q<loglogdy logdx mglogl/‘l(logd;{)
2
_ (1_ (logloglogdz()z) Ny(K) logq (1+O(q—log1/4(logdK)))
Vloglogdg g<loglogdx 108dK /g -1

In other words, we have shown that

(1_61() Z NQ(K) logq < Nq(K) Eq—m/Qe—meIngqlogq
g<loglogdk logdg \/6_ 1 g<loglogdg log dg m=1
Ny(K) logg
g<loglogdy log dg \/a -1
where ex — 0 as dg — o0. Now, by (9), the summation in the RHS is uniformly bounded indepen-
dent of K. Therefore, we can take limits and conclude that
Z ¢q(’c) log g
q=p* V-1
is bounded. This completes the proof that the zeta function (7) is convergent on %R(s) > 1/2 under
GRH. 0

The proof of the same statement due to Tsfasman-VI1adut [25] follows along the same lines,
but has two minor issues. The upper bound as in (10) is given in terms of a infinite sum, which
is divergent. The more serious issue is the interchange of limits and summation, which requires
uniform convergence. Although it was shown [25, Lemma 2.3] that for any extension L/K,

Ny(K) lo Ny (L) lo
Z (K) ngz (L) logq

<z log dK q<z log dL

)

it does not imply that

ZNq(K) logg S Nq(L) logq.

q<z logdK \/a _qu logdL \/a

Hence, monotonicity does not justify the convergence of the series and one has to allude to uniform
convergence, as shown in our argument above.

A similar modification to Tsfasman-Vladut’s argument can be undertaken to show the conver-
gence, and hence the analytic continuation of the zeta-function (7) on 2(s) > 1 unconditionally.
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Several interesting open questions arise from the study of £k (s). Since the Dirichlet coefficients
are all positive, by Landau’s theorem, there is a singularity on the real point at its abscissa of
absolute convergence. It is still not known whether one can find an infinite extension X/Q such that
the abscissa of absolute convergence of £x(s) is > —oo. In other words, an extension where infinitely
many ¢4(kC) are positive.

7. Zeta function over splitting primes

We now introduce another zeta-function attached to an infinite extension, which more precisely
captures the splitting behaviour of primes, in a similar spirit as the Tsfasman-Vladut zeta-functions.
Let K£/Q be an infinite extension given by a tower K = U2, K. For all prime powers ¢ = Pk, we

define the invariants NAK
a(IC) = tim Yol

n— 00 nKn

This limit exists and is well-defined, meaning it is independent of the chioce of tower {K,} and
satisfies 0 < ¢4(K) < 1. For instance, if a prime p splits completely in K, then ¢,(K) = 1. The
existence of this limit can be deduced from the following inequality (see [5, Lemma 4.1]).

Let L/K be an extension of number fields. Then for any x > 0 and any prime p,

5 Ny (K) log p* - Ny (L) logpk‘

ph<z nK ph<a nr,

Define the zeta-function associated to the infinite extension K/Q as
1 —q(K)
Ge() =TT (1- ) (1)
q=pF q

on R(s) > 1. Here, exponents are defined by choosing the principal branch of logarithm. Now, the
logarithmic derivative is given by

Ze() =~ (s) = ¥
K

q=p*

wq(lc) log q

o (12)

for R (s) > 1. Suppose K£/Q is a Galois extension with Galois group G, which is unramified outside
a finite set of places S. Then,

Z]C(S) = Z(IC’ Ga S) P(S)a
where P(s) is a Dirichlet polynomial and Z(KC,G,s) is as in Section 5. Hence, Zx(s) converges
if and only if Z(K, G, s) converges. Thus, this zeta-function is closely related to the zeta-function
associated to the conjugacy set given by the entire group G.

Furthermore, 1), precisely captures the splitting nature of the primes in the infinite extension.
For instance, in a Galois extension K/Q, suppose a prime factorizes as pOg, = pip5py in K, and
splits completely thereafter, then 1, (K) = %, where ¢ = Np;. Conversely, for a Galois extension K/Q
if wpk(lC) > 0, then it implies that there exists a number field K, such that all the primes above p
in K, split completely in K. Hence, the zeta-function Zx(s) precisely captures the splitting nature
of primes, even better than the Tsfasman-Vladut zeta-function. In the later case, it is possible for

a prime to split completely, and yet the invariants ¢, =0 for all k.

The natural question to consider is whether the above zeta-function has an analytic continuation
to a region beyond the half-plane PR(s) > 1. It is possible to construct infinite extensions where
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the series (12) diverges at s = 1. Such an extension was constructed by S. Checcoli and A. Fehm
[4]. They showed that for any family of finite solvable groups G, there exists a totally real infinite
Galois extension K/Q with Galois group [];2; G;, such that it has a finite local degree over all primes
p and the sum

Z ¢Q(K) log q

7 qg+1

diverges. This implies that the sum in (12) diverges. Thus, unlike the earlier zeta-functions in (2)
and (7), analytic continuation for (i (s) beyond the region 2R(s) > 1 will not follow from the the
convergence of the Dirichlet series.

The behaviour of (x(s) at s =1 provides valuable information about the infinite extension K. A
concrete instance of this is in obtaining lower bounds on the Weil height of elements in K. Recall
that for an algebraic number a € Q, the logarithmic Weil height is defined as follows. Let o€ K*.
Then

h(a) = Z log™ |y,
’UEMK
where M is the set of all places of K, log™ z = max(0,logz) and ||, is the normalized valuation
on « defined as:

_or'dp(a)
laly = (Np) =@ | if v is non-archimedean corresponding to the prime ideal p,
v [Kv:R]
lo()| K2 if v is archimedean corresponding to the embedding o of K.

A well-known theorem of Kronecker [10] states that an algebraic number « satisfies h(«) = 0 if and
only if a is a root of unity. When « is not a root of unity, obtaining lower bounds for h(«) has
been a long standing problem and the famous Lehmer’s conjecture [13] states that for such non-zero

aeQ
c
h(a) > ———=
[Q(a) : Q]
for an absolute constant ¢ > 0. This problem still remains open. But it is interesting to find subsets
S c Q, where a lower bound on h(«) for a € S can be established. This inspires the definition of
the Northcott property (N) and the Bogomolov property (B). A set S ¢ Q is said to satisfy the

Northcott property (N) if for any ¢ > 0, the set
{a € S|a non-zero and h(a) < c}

is finite. For instance, Northcott proved that algebraic numbers with bounded degree have property
(N). We say that a set S c Q satisfies the Bogomolov property (B) if there exists a constant ¢ > 0,
such that

{a € S'|a non-zero and not a root of unity and h(a) < c}

is an empty set. If a set S satisfies property (N), then it clearly satisfies property (B).

These properties have been extensively studied for infinite extensions. For instance, F. Amoroso
and R. Dvornicich [1] have proved that Q?, the maximal abelian extension of Q satisfies property
(B). This was generalized to K% by F. Amoroso and U. Zannier [2] for any number field K. Earlier,
in 1973, A. Schinzel [20] obtained property (B) for the infinite extension Q'", the field of totally real
algebraic numbers. Another family of infinite extensions of Q for which we know the Bogomolov
property are totally p-adic fields, i.e., infinite Galois extensions of Q with finite local degree over a
prime p. This is the famous theorem of E. Bombieri and U. Zannier [3]. Recently, Habegger [7] has
showed that for an elliptic curve E/K, the extension Q(F,,.) generated by all the torsion points of
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E satisfies property (B).

Suppose KC/Q is an infinite extension. In [5], the author and S. Kala discovered a peculiar relation
between the behaviour of (i (s) at s =1 and the above problem. They showed that if limg_1+ (ic(s)
is non-zero, then KC satisfies property (B) and if this limit tends to infinity, then K satisfies property
(N). This is the first instance of infinite extensions, which are not necessarily Galois, having prop-
erty (B) or (N). On specializing to Galois extensions, they retrieve the result of Bombieri-Zannier [3].

On another front, the zeros of (k, (s) near s = 1/2 hold information on the lower bounds of h(«)
for a € K,,. This was established by the author and S. Kala in [6]. Under GRH, they proved the
Lehmer’s conjecture over infinite extensions K/Q provided there are several zeros of small height
for (k, (s) near s =1/2.

8. Relation to Euler-Kronecker constants

The Euler-Mascheroni constant denoted by -y is defined as

1
~v:= lim (Z——logm).

It can also be described as the constant term in the Laurent expansion of the Riemann zeta-function,
1
C(s)=——+v+0(s-1).
s—1
The analogous notion for a number field was introduced by Y. Ihara [9] as follows. Let K be a
number field and suppose the Laurent expansion of (x(s) near s =1 is given by

Cx(s) = ;%11 +eo+O(s-1).

Then the Euler-Kronecker constant associated to K is defined as
Co

"yK =
c-1

One could also view v as the constant term in the Laurent expansion of the logarithmic derivative
of (k(s) at s=1, i.e.,
Cke 1
—>2(s)=—— -k +O(s—-1).
(K s—1
Recall the famous Stark’s lemma [23], which states that for a number field K/Q and any s € C

Cr(s) 1 1 1 (1 nK ) r I’ (s) r’
_ _ = logdy + [~ -5 ne(z = (s)-log? 13
(e (5) S—1+Zp:3—p plosdir |G- leem) v 5w lg) rre|\ pl) ~lee2). (19)

where the summation is over the non-trivial zeros of (x(s).

Taking s - 17 in (13) and dividing by ng, we obtain

ok _logldg| 1 Zl+0(1) (14)
ng 2np nKg 5 p ’

where the error term is independent of K. On the other hand, for R(s) > 1

' 1
—Z—K<s> -SSR S 8l
K q m=1

qu
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where ¢ runs over all prime powers. Dividing by ng, for s =1+ 0 > 1, we have

1 Ny(K) & logg N, (K) loggq
__~ 5Ky - - )
nK CK( +o) Zq: 2 qme zq: ng ¢t -1

NK  m=1
Now, by (13), for 0 >0

4
_LC_K(HJ): 1 -y 1 =log|dK!+ 1 _logT
nKCK ONgK pp+0' 277,[( (1+0’)nK 2
1 I"(1+J) ro (T
e — — | =(1 —log2]. 1
+2nKI‘ 5 +nK F( +0)-log (15)

Let K = U, K, be an infinite tower over Q. Putting o, = 1/\/nk, in (15) and taking limits, we
obtain

logqg .. log |dk,,| 1 1
W =lim| "~ - — Y —— |+ 0(1), 16
po et (B3 o 1o

where the implied constant is absolute.

Comparing (14) and (16), it is clear that the convergence of (x(s) at s = 1 is intricately connected
to the bounds on —yx /ng. For instance, in the example of the infinite extension K/Q constructed
by S. Checcoli and A. Fehm [4, Theorem 1.2}, the zeta-function (x(s) tends to infinity as s - 17.
In other words, the sum

log ¢
;wqq+ 1

diverges. Using (14) and (16), one can also conclude that
K
nK,

— 00,

This should be compared with the known lower bounds on yg. In [9], Thara proved that

VK 2 —log|dk]|
for any number field K. He also demonstrated that

.. TK
1 f <C,
U gl

where C' = —0.16352---. Thus, infinite extensions K = U,, K, where we can show that |y, | does not
tend to infinity faster than the degree ng, there is hope in establishing the analytic continuation of
Cic(s) to R(s) > 1.

9. Concluding remarks

The splitting of primes over infinite extensions is a fundamental theme, several aspects of which
remain mysterious. The study of zeta-functions over infinite extensions holds the key to unraveling
this mystery and warrants careful investigation. In this paper, we discuss three such zeta-functions,
one associated to the conjugacy set, second and third arising from the splitting behaviour of primes
in infinite extensions. Unlike the Dedekind zeta-function, the zeta-function attached to a conjugacy
set and the Tsfasman-VIaduy zeta-function exhibit the unusual property that they do not have a pole
at s = 1. Instead, they admit analytic continuation to 8(s) > o, where o, < 1 is the abscissa of their
absolute convergence. However, we do not have a single example where this analytic continuation
extends beyond the half plane %R(s) > o,. Constructing such examples would provide vital new
insights on existence of number fields with interesting prime splitting conditions.
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