
ON THE SELBERG CLASS OF L-FUNCTIONS

ANUP B. DIXIT

Abstract. The Selberg class of L-functions, S, introduced by A. Selberg in 1989, has been
extensively studied in the past few decades. In this article, we give an overview of the
structure of this class followed by a survey on Selberg’s conjectures and the value distribution
theory of elements in S. We also discuss a larger class of L-functions containing S, namely
the Lindelöf class, introduced by V. K. Murty. The Lindelöf class forms a ring and its value
distribution theory surprisingly resembles that of the Selberg class.

1. Introduction

The most basic example of an L-function is the Riemann zeta-function, which was intro-
duced by B. Riemann in 1859 as a function of one complex variable. It is defined on R(s) > 1
as

ζ(s) ∶=
∞

∑
n=1

1

ns
.

It can be meromorphically continued to the whole complex plane C with a pole at s = 1
with residue 1. The unique factorization of natural numbers into primes leads to another
representation of ζ(s) on R(s) > 1, namely the Euler product

ζ(s) = ∏
p prime

(1 − 1

ps
)
−1

.

The study of zeta-function is vital to understanding the distribution of prime numbers. For
instance, the prime number theorem is a consequence of ζ(s) having a simple pole at s = 1
and being non-zero on the vertical line R(s) = 1.

In pursuing the analogous study of distribution of primes in an arithmetic progression, we
consider the Dirichlet L-function,

L(s,χ) ∶=
∞

∑
n=1

χ(n)
ns

,

for R(s) > 1, where χ is a Dirichlet character modulo q, defined as a group homomorphism
χ ∶ (Z/qZ)∗ → C∗ extended to χ ∶ Z→ C by periodicity and setting χ(n) = 0 if (n, q) > 1.

Attached to a number field K/Q, we have the Dedekind zeta-function defined for R(s) > 1
as

ζK(s) ∶= ∑
a⊆OK

1

(NK/Q(a))s
,

where OK denotes the ring of integers of K and a runs over all non-zero ideals of OK .
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All the above L-functions capture valuable information about the underlying structure of
the associated arithmetic objects. The general philosophy is to expect a relation between “mo-
tivic” L-functions and automorphic L-functions. Such relations are called reciprocity laws.
One of the most significant reciprocity laws of today is the modularity theorem (formerly
known as the Taniyama-Shimura conjecture), which associates to every elliptic curve over Q,
a modular form through an L-function. This must be viewed as a tip of the iceberg of the
more challenging Langland’s reciprocity conjecture. In an attempt to understand this theory,
Selberg defined a class of L-functions, S, which is expected to satisfy all familiar properties
of an automorphic L-function. His motivation was to study the value distribution of linear
combinations of L-functions in this class.

Since then, there has been significant progress in the study of the Selberg class. An overview
of the recent results and conjectures regarding the structure of S can be found in several
expositions, such as excellent surveys by A. Perelli [34], [33] and J. Kaczorowski [15]. In this
article, we outline some results and highlight certain open problems and unexplored avenues
for future study. The emphasis is on Selberg’s conjectures and the value distribution theory of
the Selberg class. The last section is devoted to the Lindelöf class of L-functions M, defined
by V. K. Murty [27]. This class M is closed under addition and enjoys a richer algebraic
structure than S. Moreover, the value distribution theory of M closely resembles that of S.

2. The Selberg class

Definition 2.1. The Selberg class S consists of meromorphic functions F (s) satisfying the
following properties.

(1) Dirichlet series - It can be expressed as a Dirichlet series

F (s) =
∞

∑
n=1

aF (n)
ns

,

which is absolutely convergent in the region R(s) > 1. We also normalize the leading
coefficient as aF (1) = 1.

(2) Analytic continuation - There exists a non-negative integer k, such that (s−1)kF (s)
is an entire function of finite order.

(3) Functional equation - There exist real numbers Q > 0, αi ≥ 0, complex numbers βi
for 0 ≤ i ≤ k and w ∈ C, with R(βi) ≥ 0 and ∣w∣ = 1, such that

Φ(s) ∶= Qs∏
i

Γ(αis + βi)F (s) (1)

satisfies the functional equation

Φ(s) = wΦ(1 − s).

(4) Euler product - There is an Euler product of the form

F (s) = ∏
p prime

Fp(s), (2)

where

logFp(s) =
∞

∑
k=1

bpk

pks

with bpk = O(pkθ) for some θ < 1/2.
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(5) Ramanujan hypothesis - For any ε > 0,

∣aF (n)∣ = Oε(nε). (3)

The Euler product implies that the coefficients aF (n) are multiplicative, i.e., aF (mn) =
aF (m)aF (n) when (m,n) = 1. Moreover, each Euler factor also has a Dirichlet series repre-
sentation

Fp(s) =
∞

∑
k=0

aF (pk)
pks

,

which is absolutely convergent on R(s) > 0 and non-vanishing on R(s) > θ, where θ is as in (2).

We mention a few examples of elements in S.

i) The Riemann zeta-function ζ(s) ∈ S.
ii) Dirichlet L-functions L(s,χ) and their vertical shifts L(s + iθ, χ) are in S, where χ is

a primitive Dirichlet character and θ ∈ R. Note that ζ(s+ iθ) ∉ S for θ ≠ 0, since it has
a pole at s = 1 − iθ.

iii) For a number field K/Q, the Dedekind zeta functions ζK(s) is an element in S.
iv) Let L/K be a Galois extension of number fields, with Galois group G. Let ρ ∶ G →

GLn(C) be a representation of G. The associated Artin L-function is defined as

L(s, ρ,L/K) ∶= ∏
p∈K

det(I − (Np)−sρ(σq)∣V Iq)
−1

where q is a prime ideal in L lying over prime ideal p in K, σq is the Frobenius

automorphism associated to q and V Iq is the complex vector space fixed by the inertia
subgroup Iq.

A conjecture of Artin states that for non-trivial irreducible representation ρ of
Gal(L/K), the associated Artin L-function L(s, ρ,L/K) is entire. If the Artin con-
jecture is true, then these functions lie in the Selberg class.

v) Let f be a holomorphic newform of weight k to some congruence subgroup Γ0(N).
Suppose its Fourier expansion is given by

f(z) =
∞

∑
n=1

c(n) exp(2πinz).

Then its normalized Dirichlet coefficients are given by

a(n) ∶= c(n)n(1−k)/2,
and the associated L-function given by L(s, f) ∶= ∑∞n=1 a(n)/ns for R(s) > 1 is an ele-
ment in the Selberg class. It is also believed that the normalized L-function associated
to a non-holomorphic newform is an element in the Selberg class, but the Ramanujan
hypothesis is yet to be proven in this case.

vi) The Rankin-Selberg L-function of any normalized eigenform is in the Selberg class.

3. Invariants in S

The constants in the functional equation (1) depend on F , and although the functional
equation may not be unique, we have some well-defined invariants, such as the degree dF of
F , which is defined as the finite sum

dF ∶= 2
k

∑
i=1

αi.
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The factor Q in the functional equation gives rise to another invariant referred to as the
conductor qF , which is defined as

qF ∶= (2π)dFQ2
k

∏
i=1

αi
2αi . (4)

A natural question in this context is to understand how unique the functional equation is
for F ∈ S. Given a gamma-factor for F in S, one can produce new gamma-factors using the
Gauss-Legendre multiplication formula for the Γ-function,

Γ(s) =ms−1/2(2π)(1−m)/2
m−1

∏
k=0

Γ(s + k
m

), (5)

for any integer m > 2. One could also use the functional equation

Γ(z + 1) = zΓ(z) (6)

to produce new gamma-factors for F . It turns out that the functional equation of F ∈ S is
unique up to the transformations (5) and (6) (see [17]).

It is an interesting conjecture that both the degree and the conductor for elements in the
Selberg class are non-negative integers (see [9], [17]).

Conjecture 1. If F ∈ S, then dF and qF are non-negative integers.

There is recent progress towards the degree conjecture. In 1993, it was shown by J. B.
Conrey and A. Ghosh [9] that

Theorem 3.1 (Conrey-Ghosh). If F (s) ∈ S, then F = 1 or dF ≥ 1.

This was proved using the fact that any non-trivial element in the Selberg class must sat-
isfy a certain growth on σ + it for σ < 0 and t sufficiently large. This growth consequently is
captured by the degree, which can be seen using the functional equation.

Conrey and Ghosh [9] also conjectured that the functions of degree one in the Selberg class
are precisely given by the Riemann zeta-function ζ(s), Dirichlet L-functions L(s,χ) and their
shifts L(s + iθ, χ), where χ is non-principal primitive and θ ∈ R. This conjecture was later
proved by Perelli and Kaczorowski [16]. No such classification is known for the higher degrees
in the Selberg class.

However, there are known examples of elements in the Selberg class with higher degrees.
Dedekind zeta-function attached to a number field K/Q has degree equal to the degree of
the field extension [K ∶ Q]. L-functions associated to holomorphic newforms (see Example
v) have degree 2. Moreover, L-functions associated to non-holomorphic newforms, if in the
Selberg class, would also have degree 2. The Rankin-Selberg L-function of normalized eigen-
forms are elements of the Selberg class of degree 4.

For elements F ∈ S with dF > 1, it is significantly more difficult to show that dF is an
integer. In this direction, Kaczorowski and Perelli [20] established the following.

Theorem 3.2 (Kaczorowski-Perelli). For F ∈ S, if 1 ≤ dF < 2 then dF = 1.
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The key ingredient in this result is the study of non-linear twists of L-functions. The
standard non-linear twist of a Dirichlet series F (s) = ∑n≥1 an/ns is defined as

Fd(s,α) =
∞

∑
n=1

an
ns
e(−n1/dα),

where e(x) = e2πix and α > 0 is a real number. Kaczorowski and Perelli studied the general-
ization of such non-linear twists, replacing α with a real vector-valued function f(α⃗). They
showed that these non-linear twists can be written as a linear combination of some familiar
holomorphic functions to establish their result.

In general, we are far from showing any partial result on the elements of S with degree > 2.
We also do not know the complete classification of elements of S with degree 2.

4. Growth and number of zeros

For F ∈ S, the Euler product ensures that F (s) has no zeros on the right half plane
R(s) > 1. Using the functional equation, one gets a sequence of zeroes in the left half plane
R(s) < 0 corresponding to the poles arising from the Γ-factors. The more interesting case is
to understand the zero-distribution in the strip 0 <R(s) < 1. This region is called the critical
strip of an L-function in S. From the discussion above, it is clear that for F ∈ S, the zeros
of F (s) are concentrated in the critical strip. Due to the symmetric nature of the functional
equation, Riemann conjectured that all the zeros of the ζ-function must lie on the 1/2-line.
This is known as the famous Riemann hypothesis and is considered to be one of the most
challenging open questions in number theory. The same statement is also expected to hold for
elements in S. This is often referred to as the generalized Riemann hypothesis or the grand
Riemann hypothesis.

Conjecture 2 (Generalized Riemann hypothesis). Let F ∈ S. If F (s) = 0 for 0 < R(s) < 1,
then R(s) = 1/2.

Although we are far from proving the Riemann hypothesis, a lot is known about the number
of zeros of functions in S in the critical strip. In this direction, it is important to discuss the
growth of an L-function in vertical strips. For any analytic function, counting the number
of zeros in a region is often tackled by its values on the boundary using Jensen’s theorem.
Therefore, in order to capture the number of zeros of F (s) ∈ S in the strip 0 < R(s) < 1 and
∣I(s)∣ < T , we need to understand the growth of F (σ+ it) for σ fixed and t growing large. For
F (s) ∈ S, define

µF (σ) ∶= lim sup
∣t∣→∞

logF (σ + it)
log ∣t∣

.

We clearly have µF (σ) = 0 for σ > 1. Moreover, on the left half plane σ < 0, µF (σ) is obtained
using the functional equation

F (s) = γ(1 − s)
γ(s)

F (1 − s),

where the gamma-factor is given by

γ(s) = Qs
k

∏
j=1

Γ(αjs + βj).



6 ANUP B. DIXIT

Applying Stirling’s formula, we get for t ≥ 1, uniformly in σ,

γ(1 − s)
γ(s)

= (αQ2tdF )
1/2−σ−it

exp(itdF +
iπ(β − dF )

4
)(ω +O( 1

T
)), (7)

where

α ∶=
k

∏
j=1

α
2αj

j and β ∶= 2
k

∑
j=1

(1 − 2βj).

Recall the Phragmén-Lindelöf theorem given by

Theorem 4.1 (Phragmén-Lindelöf). Let f(s) be analytic in the strip σ1 ≤ R(s) ≤ σ2 with
f(s) ≪ exp (ε∣t∣). If

∣f(σ1 + it)∣ ≪ ∣t∣c1 and

∣f(σ2 + it)∣ ≪ ∣t∣c2 ,
then

∣f(σ + it)∣ ≪ ∣t∣c(σ),
uniformly in σ1 ≤ σ ≤ σ2, where c(σ) is linear in σ with c(σ1) = c1 and c(σ2) = c2.

Using the Phragmén-Lindelöf theorem and (7), we get the following upper bounds on the
growth of an element in S.

Proposition 4.2. Let F ∈ S. Uniformly in σ, as ∣t∣ → ∞,

F (σ + it) ∼ ∣t∣(1/2−σ)dF ∣F (1 − σ + it)∣,
where dF denotes the degree of F . We also have

µF (σ) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if σ > 1,

1
2dF (1 − σ) if 0 ≤ σ ≤ 1,

dF (12 − σ) if σ < 0.

Using the functional equation, it is possible to show that for F ∈ S,

dF = lim sup
σ<0

µF (σ)
1/2 − σ

. (8)

This gives a characterization of degree in terms of the growth of F (s) in the left half plane
R(s) < 0.

Lindelöf conjectured that the order of growth of the Riemann zeta-function is much smaller
than what the Phragmén-Lindelöf theorem gives. In fact, he predicted that ζ(s) is bounded
on σ > 1/2 (see [24]). This statement is known to be false. But, a weaker version would state
that µζ(1/2) = 0. In other words,

∣ζ(1

2
+ it)∣ ≪ ∣t∣ε,

for any ε > 0. This is known as the Lindelöf hypothesis. Note that, the Phragmén-Lindelöf
theorem only implies that ∣ζ(1/2 + it)∣ ≪ε ∣t∣1/4+ε for any ε > 0. Any improvement on the
constant 1/4 is called the phenomena of “breaking convexity”. The best known improvement
on this constant is replacing 1/4 with 9/56. This is due to E. Bombieri and H. Iwaniec [8]
using Weyl’s method of estimating exponential sums, which was earlier incorporated by G.
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H. Hardy and J. E. Littlewood to attack the same problem.

A more general statement of the Lindelöf hypothesis on the Selberg class is given by

Conjecture 3 (Generalized Lindelöf hypothesis). For F ∈ S and any ε > 0,

∣F(1

2
+ it)∣ ≪ ∣t∣ε.

It is known due to Littlewood that the Riemann hypothesis implies the Lindelöf hypothesis.
By the same argument, one can show that the generalized Riemann hypothesis implies the
generalized Lindelöf hypothesis. Moreover, the Lindelöf hypothesis itself has many interesting
consequences. The most prominent one is in the context of value distribution of L-functions.

For F ∈ S, let NF (σ,T ) denote the number of zeros of F (s) in the region

{s ∈ C ∶R(s) > σ, ∣I(s)∣ < T}.

The Lindelöf hypothesis for Riemann zeta-function implies the density hypothesis, which
states that for σ > 1/2,

Nζ(σ,T ) ≪ T 2(1−σ).

In case of the Selberg class, the generalized Lindelöf hypothesis implies a statement regarding
the zero-distribution of L-functions, which we call the zero hypothesis. The classical result
on zero density estimate due to Bohr and Landau [6] states that most of the zeroes of ζ(s)
are clustered near the 1/2-line, i.e., they showed that

Nζ(σ,T ) ≪ T 4σ(1−σ)+ε, (9)

for σ > 1/2. More recently, we have the following density theorem due to Kaczorowski and
Perelli [19] for the Selberg class.

Theorem 4.3 (Density theorem). For F ∈ S,

NF (σ,T ) ≪ε T
c(1−σ)+ε,

for σ > 1/2 and c = 4dF + 12.

The above zero-density estimate suggests that the number of zeros close to the vertical line
R(s) = 1 is very small. In general, we formulate the zero hypothesis, which claims that for
F ∈ S all the zeros are clustered near the 1/2-line.

Conjecture 4 (Zero hypothesis). For F ∈ S, there is a positive constant c such that for
σ > 1/2,

NF (σ,T ) ≪ T 1−c(σ−1/2)+ε.

Using Riemann-von Mongoldt-type formula, it is possible to count the number of zeros of
F ∈ S more precisely. (see [35])

Proposition 4.4. For F ∈ S, we have

NF (0, T ) = dF
π
T logT + cFT +O(logT ), (10)

where dF is the degree of F and cF is a constant depending on F .
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Thus, we get another characterization of degree for F ∈ S using the number of zeros of F
in the critical strip. We have for F (s) ∈ S

dF = lim sup
T→∞

NF (0, T )
T logT

π. (11)

In the above proposition, we could replace couting zeros with counting any a-value and get
the exact same result. Define

N(F,a, T ) ∶= #{F (s) = a ∶ 0 <R(s) < 1, ∣I(s)∣ < T},
counted with multiplicity. Then, we have

N(F,a, T ) = dF
π
T logT + cFT +O(logT ).

5. Selberg’s Conjectures

The elements in the Selberg class are not closed under linear combination. But, the Selberg
class is closed under multiplication and forms a semi-group with respect to multiplication i.e.,
if F,G,H ∈ S, then FG ∈ S and F (GH) = (FG)H. The fundamental elements with respect
to multiplication in S are called the primitive elements.

Definition 5.1. F ∈ S is said to be a primitive element if any factorization F = F1F2 with
F1, F2 ∈ S implies that either F1 = 1 or F2 = 1.

In other words, an element in S is primitive if it cannot be further factorized into non-
trivial elements in S. Using the characterization of degree in (11), we have that if F ∈ S has
a factorization F = F1F2, with F1, F2 ∈ S, then

N(T,F ) = N(T,F1) +N(T,F2).
Taking T →∞, we conclude that

dF = dF1 + dF2 .

We also know from Theorem 3.1 that non-trivial elements in S cannot have degree < 1.
Therefore, we cannot factorize an element F ∈ S indefinitely. So,

Proposition 5.2. Every element F ∈ S can be factorized into primitive elements in S.

It is still unknown whether the above factorization is unique.

Conjecture 5 (Unique factorization in S). Every element F ∈ S can be uniquely factorized
into primitive elements.

From the above discussion, it is clear that every element F ∈ S with degree dF = 1 is a
primitive element. Thus, the Riemann zeta-function and Dirichlet L-functions are all primi-
tive elements in the Selberg class. We know very little about the primitive elements of higher
degrees. In [29], M. R. Murty showed that if π is an irreducible cuspidal representation of
GL2(AQ), then L(s, π) is primitive if the Ramanujan conjecture is true.

Selberg’s conjectures claim that distinct elements in S do not interact with each other.
Vaguely speaking, distinct primitive elements are orthogonal to each other.

Conjecture 6 (Selberg’s conjectures). In [35], Selberg made the following conjectures.

(1) Conjecture A - Let F ∈ S. There exists a constant nF such that

∑
p≤x

∣aF (p)∣2

p
= nF log logx +O(1). (12)
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(2) Conjecture B - Let F,G ∈ S be primitive elements. Then

∑
p≤x

aF (p)aG(p)
p

=
⎧⎪⎪⎨⎪⎪⎩

log logx +O(1), if F = G,
O(1) otherwise.

Conjecture B is known as the Selberg’s orthogonality conjecture.

It is easy to verify Conjecture A in particular cases. For instance, Conjecture A clearly
holds for the Riemann zeta-function and Dirichlet L-functions. Conjecture B can also be
verified in the case of Dirichlet L-functions using the orthogonality relations for characters.

In view of Proposition 5.2, it is easy to see that Conjecture B implies Conjecture A. Indeed,
if F ∈ S has a factorization into primitive elements given by

F (s) = F1(s)F2(s)⋯Fm(s),
where Fk(s) is primitive for all 1 ≤ k ≤m, then,

∑
p≤x

∣aF (p)∣2

p
= ∑

1≤j≤k≤m

∑
p≤x

aFj(p)aFk
(p)

p
.

By Conjecture B, the above sum is of the form

m log logx +O(1),
where m is the number of factors in the factorization of F (s) into primitive elements.

Selberg [35] noted that there are connections between these conjectures and several other
conjectures like the Sato-Tate conjecture, Langlands conjectures etc. It is not difficult to see
that Conjecture B implies unique factorization in S. This was perhaps known to Selberg, but
was shown in the work of J. B. Conrey and A. Ghosh [9].

Proposition 5.3. Conjecture B implies that every element F ∈ S has unique factorization
into primitive elements.

Proof. Suppose F ∈ S has two different factorizations into primitives, say,

F (s) =
m

∏
j=1

Fj(s) =
r

∏
k=1

Gk(s).

We can further assume that no Fj is same as Gk. Since
m

∑
j=1

aFj(p) =
r

∑
k=1

aGk
(p),

multiplying both sides by aF1(p)/p and summing over p ≤ x, we get

m

∑
j=1
∑
p≤x

aFj(p)aF1(p)
p

=
r

∑
k=1

∑
p≤x

aGk
(p)aF1(p)
p

. (13)

Now, Conjecture B implies that the LHS of (13) is unbounded where as the RHS is bounded
as x tends to infinity, which leads to a contradiction. �

By a similar argument as above, we also conclude the following.

Proposition 5.4. An element F ∈ S is a primitive element if and only if nF = 1, where nF
is given by (12).



10 ANUP B. DIXIT

In [28], M.R. Murty proved that Conjecture B implies Artin’s conjecture. In particular, he
showed the following.

Theorem 5.5 (M. R. Murty). For any irreducible representation ρ of Gal(L/K) of degree
n, the Artin L-function L(s, ρ,L/K) is entire if Conjecture B holds.

In fact, he showed something stronger. Langland’s reciprocity conjecture states that for
any irreducible representation ρ of Gal(L/K) of degree n, there exists an irreducible cuspidal
automorphic representation π of GLn(AQ), such that L(s, ρ,L/K) = L(s, π). Since L(s, π)
are known to be entire, Artin’s conjecture is a consequence of this statement. In [28], M.
R. Murty showed that if K/Q is solvable, then Conjecture B implies Langlands reciprocity
conjecture.

In this direction, M. R. Murty [29] initiated the study of Selberg’s conjectures over number
fields. For any number field K, the idea is to consider functions, given by

F (s) = ∑
n⊂OK

an
N(n)s

(14)

on R(s) > 1, where n runs over all non-zero integral ideals of K. The expected functional
equation and the Euler product were modified analogously. This new class of functions de-
noted SK could be considered as the Selberg class over a number field K. It is not difficult
to see that SK is a subset of S. He introduced the notion of K-primitives in SK analogous to
the primitive elements in S and made conjectures analogous to the Selberg’s conjectures for
SK discussing its applications to Langland’s conjectures (see [29]). This front of study seems
to have a lot of potential for future exploration.

There are many more interesting consequences of Conjecture B. Using a similar argument
as in Proposition 5.3, one can prove that the Conjecture B implies that if F ∈ S has a pole at
s = 1, it must come from the Riemann-zeta function. More precisely,

Lemma 5.6. If F (s) ∈ S has a pole of order m at s = 1, then Conjecture B implies that
F (s) = ζ(s)mL(s), where L ∈ S.

Proof. Since Conjecture B implies unique factorization into primitive elements in S, it suffices
to show that if F ∈ S is a primitive element with a pole at s = 1, then it is ζ(s). From
Proposition 5.4 we know that nζ = 1 and nF = 1. If F ≠ ζ, then Conjecture B implies that

∑
p≤x

aF (p)
p

≪ 1,

which is a contradiction. �

This expectation that every pole comes from ζ(s) can be thought of as the amelioration of
Dedekind’s conjecture, which states that every Dedekind zeta-function ζK(s) must factorize
through ζ(s).

The Selberg class is designed to model the class of L-functions satisfying the Riemann
hypothesis. So, one might ask whether the analogue of prime number theorem is true for the
elements in S. Recall that the prime number theorem for natural numbers follows from the
fact that ζ(s) does not vanish on the vertical line R(s) = 1. It was shown by Kaczorowski
and Perelli [19] that prime number theorem for any F ∈ S is equivalent to the non-vanishing
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of F (s) on R(s) = 1. Thus, one can formulate the prime number theorem in the Selberg class
as follows.

Conjecture 7 (Generalized prime number theorem). If F ∈ S, then F (s) ≠ 0 for s = 1+ it for
any t ∈ R.

This is still open. But, the above conjecture can be shown assuming Conjecture B. In
fact, Kaczorowski and Perelli [19] proved the Conjecture 7 with an assumption weaker than
Conjecture A. This weaker assumption is often called the normality conjecture, which is similar
to Conjecture A, but with a weaker error term. Here, we present an argument showing that
Conjecture B implies Conjecture 7. We use the following lemma.

Lemma 5.7. If F ∈ S has a pole or a zero at s = 1 + iθ for θ ∈ R, then

∑
p≤x

aF (p)
p1+iθ

is unbounded as x tends to ∞.

Proof. If F (s) has a pole or zero of order m ≠ 0 at 1 + iθ, then we have

F (s) ∼ c(s − (1 + iθ))m,

near 1 + iθ. Writing s = σ + it and taking log, we get

logF (s) ∼m log(σ − 1)

near s = 1 + iθ. Moreover, from the Euler product, we have for σ > 1,

logF (s) = ∑
p

aF (p)
ps

+O(1).

Thus, we get

∑
p

aF (p)
ps

∼m log(σ − 1),

as σ → 1+. Assume the function

S(x) = ∑
p≤x

aF (p)
p1+iθ

is bounded. Then, we have

∑
p

aF (p)
ps

= ∫
∞

1
x1−σdS(x)

= (σ − 1)∫
∞

1
S(x)x−σ dx≪ 1,

which is a contradiction. �

We are now ready to prove the following proposition.

Proposition 5.8. Conjecture B implies Conjecture 7.

Proof. Since Conjecture B implies unique factorization, it is enough to show the non-vanishing
of F (s) on R(s) = 1 for primitive elements F ∈ S. Since ζ(s) does not vanish on R(s) = 1,
using Lemma 5.6, we can further assume that F (s) is entire. This implies that F (s + iα) ∈ S
for any α ∈ R.
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Now, if F has a zero at s = 1 + iθ, Lemma 5.7 implies that

∑
p≤x

aF (p)
p1+iθ

is unbounded as x→∞. But the Conjecture B applied to ζ(s) and F (s + iθ) yields

∑
p≤x

aF (p)
p1+iθ

≪ 1,

which leads to a contradiction. �

It was observed by Selberg in [35] and Bombieri-Hejhal in [7] that distinct elements in the
Selberg class are linearly independent. For an explicit argument, the reader may refer to [10,
Lemma 3.5.5]. A natural question that arises is whether distinct primitive elements in S are
algebraically independent. G. Molteni [26] showed that this is a consequence of Conjecture
B.

Proposition 5.9. Conjecture B implies that distinct primitive elements in S are algebraically
independent.

Proof. Selberg’s orthonormality conjecture implies that the factorization into primitive ele-
ments in the Selberg class is unique. Suppose, F1, F2, ..., Fn are distinct primitive elements in S
satisfying a polynomial P (x1, x2, ..., xn) ∈ C[x1, x2, ..., xn]. By linear independence of distinct
elements in S, we conclude that not all terms in the polynomial expansion of P (F1, ..., Fn)
are distinct. Thus, we have relations of the form

F a11 F a22 ...F ann = F b11 F
b2
2 ...F

bn
n , (15)

where not all the ai’s are the same as the bi’s. But, both the left hand side and the right hand
side in (15) are elements in the Selberg class. This contradicts the unique factorization. �

6. Uniqueness results for elements in S

Selberg’s orthogonality conjecture implies that for F,G ∈ S, if aF (p) = aG(p) for all but
finitely many primes p, then F = G. Such uniqueness results are called strong multiplicity
one theorems for the Selberg class. Unconditionally, it was shown by M. R. Murty and V. K.
Murty [30] that

Theorem 6.1 (Murty-Murty). For F,G ∈ S, if aF (p) = aG(p) and aF (p2) = aG(p2) for all
but finitely many primes p, then F = G.

As an immediate consequence, we have that if F,G ∈ S satisfy the property that the Euler
factors Fp(s) = Gp(s) for all but finitely many primes p, then F = G. It is expected that the
condition aF (p) = aG(p) for all but finitely many primes p uniquely characterizes the function
in S. But a proof of this fact is still unknown. However, if we further impose the condition
that F (s) and G(s) have polynomial Euler product, i.e. an Euler product of the form

F (s) =∏
p

k

∏
j=1

(1 −
αp(j)
ps

)
−1

,

with ∣αp(j)∣ < 1, then it was shown by J. Kaczorowski and A. Perelli [18] that for F,G ∈ S if
aF (p) = aG(p) for all but finitely many p, then F = G. It is worth noting that the elements in
the Selberg class are expected to have polynomial Euler product. As a token of evidence, note
that the Riemann zeta-function, Dedekind zeta-functions, Hecke L-functions, L-functions at-
tached to holomorphic cusp forms and in fact all automorphic L-functions have polynomial
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Euler product.

Another aspect to the uniqueness of elements in the Selberg class arises from the a-value
distribution. If F,G ∈ S take the same value at sufficiently many points in the critical strip,
then F = G.

For any two meromorphic functions f and g, we say that they share a value ‘a’ ignoring
multiplicity if f−1(a) is same as g−1(a) as sets. We further say that f and g share a value
‘a’ counting multiplicity if the zeroes of f(x) − a and g(x) − a are the same with multiplicity.
Nevanlinna theory [32] establishes that any two meromorphic functions of finite order sharing
five values ignoring multiplicity must be the same. Moreover, if they share four values count-
ing multiplicity, then one must be a Möbius transform of the other. The numbers four and
five are the best possible for meromorphic functions.

One can get much stronger results for L-functions. For F,G ∈ S, define

DF,G(T ) = ∑
ρ

∣mF (ρ) −mG(ρ)∣,

where ρ runs over all the non-trivial zeroes of F and G with ∣I(ρ)∣ < T and mF (ρ) denotes
the order of the zero of F at ρ. Then, M. R. Murty and V. K. Murty [30] showed that if
DF,G(T ) = o(T ), then F = G. In other words, if F,G share sufficiently many zeros counting
multiplicity, then they must be the same. It is possible to show the above result for any
a-values.

Proposition 6.2. For F,G ∈ S, if F,G share a complex value ‘a’ counting multiplicity for all
but finitely many points, then F = G.

Proof. Since F and G have only one possible pole at s = 1, we define H as

H ∶= F − a
G − a

Q,

where Q(s) = (s − 1)kp(s) is a rational function and p(s) a polynomial such that H has no
poles or zeros. Since, F and G have complex order 1, we conclude that H has order at most
1 and hence is of the form

H(s) = ems+n.
This immediately leads to m = 0, since F and G are absolutely convergent on R(s) > 1 and
taking s → ∞, F (s) and G(s) approach their leading coefficient 1. Similarly, we also get
Q(s) = 1. This forces

F (s) = cG(s) + d.
for some constants c, d ∈ C. Since, F and G have leading coefficient 1, we conclude that
F = G. �

It is possible to prove stronger results than above using similar techniques used by M. R.
Murty and V. K. Murty in [30] to show that if F,G ∈ S satisfyDF−a,G−a(T ) = o(T ), then F = G.

In this context, a natural question of interest would be to investigate how many values
can two distinct elements in S share ignoring multiplicity. Clearly, F (s) and F 2(s) share
zeros ignoring multiplicity. So the best one could expect is that F,G ∈ S sharing two distinct
values ignoring multiplicity must be the same. J. Steuding [36] proved this with some extra
conditions. In 2010, B. Q. Li [23] gave a proof dropping the additional conditions.
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Theorem 6.3 (B. Q. Li). Let a, b be two distinct complex numbers. If F,G ∈ S share values
a and b ignoring multiplicity, then F = G.

The main idea in such uniqueness results was to introduce Nevanlinna theory to the study
of value distribution theory. In a previous paper, B. Q. Li [22] also showed the following.

Theorem 6.4 (B. Q. Li). Let F ∈ S and f be a meromorphic function with finitely many
poles. Suppose F and f share a value a counting multiplicity and another value b ignoring
multiplicity, then F = f .

For stronger versions of the above results, the reader may refer to [11]. One can show
all the above results by dropping the Euler product and the Ramanujan hypothesis. The
question still remains of how large can the error DF,G(T ) be. When sharing values ignoring
multiplicity, there is no known satisfactory answer to this question.

7. Limit theorems and universality

In the early twentieth century, Harald Bohr introduced geometric and probabilistic meth-
ods to the study of the value distribution of the Riemann zeta-function. In this section, the
probabilistic methods will be of significance.

For the Riemann zeta-function ζ(s), we know that if σ0 > 1, then

∣ζ(s)∣ ≤ ζ(σ0)

in the right half plane R(s) ≥ σ0. In other words, ζ(s) is bounded on any right half plane
R(s) > 1 + ε. The natural question to consider is what happens as σ0 approaches 1 from the
right. In this regard, Bohr [2] proved that in any strip 1 <R(s) < 1+ε, ζ(s) takes any non-zero
complex value infinitely often. The main tool used by Bohr was the Euler product of ζ(s).
Similar study in the critical strip is much more difficult. To tackle this problem, Bohr studied
truncated Euler products

ζM(s) ∶= ∏
p≤M

(1 − 1

ps
)
−1

.

The functions ζM(s) do not converge in the critical strip as M tends to ∞. However, Bohr
showed that in the critical strip, for large M , ζM(s) approximates ζ(s) well in the following
sense.

∫
2T

T
∬

D
∣ ζ(s + iτ)
ζM(s + iτ)

− 1∣
2

dσ dt dτ ≪ εT, for all ε > 0,

where D ∶= {s = σ + it ∶ 1/2 + δ < σ ≤ 2, ∣t∣ ≤ 1}. This remarkable idea plays a key role in many
interesting discoveries of Bohr.

In [3], Bohr showed that for any σ0 ∈ (1/2,1), the image of the vertical line {R(s) = σ0}
given by

{ζ(s) ∶ s = σ0 + it, t ∈ R}

is dense in C. Later, Bohr and Jessen [4], [5] improved these results using probabilistic
methods to prove the following limit theorem.
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Theorem 7.1 (Bohr, Jessen). Let R be any rectangle in C with sides parallel to the real and
imaginary axis. Let G be the half plane {R(s) > 1/2} except for points z = x + iy such that
there is a zero of ζ(s) given by ρ = α + iy with x ≤ α. For any σ > 1/2, the limit

lim
T→∞

1

T
meas{τ ∈ [0, T ] ∶ σ + iτ ∈ G, log ζ(σ + iτ) ∈ R}

exists.

Here the measure is the usual Lebesgue measure. Later, Hattori and Matsumoto [13] iden-
tified the probability distribution given by the above limit theorem. It is reasonable to hope
that Bohr-Jessen type results can be shown for general automorphic L-functions.

In 1972, Voronin [38] proved the following generalization of Bohr’s limit theorem.

Theorem 7.2 (Voronin). For any fixed distinct numbers s1, s2,⋯, sn with 1/2 <R(sj) < 1 for
1 ≤ j ≤ n, the set

{(ζ(s1 + it),⋯, ζ(sn + it)) ∶ t ∈ R}

is dense in Cn. Moreover, for any fixed number s with 1/2 <R(s) < 1,

{(ζ(s + it), ζ ′(s),⋯, ζ(n−1)(s + it)) ∶ t ∈ R}

is dense in Cn.

Analogous limit and density theorems for other L-functions were obtained by Matsumoto
[25], Laurinčikas [21], Šleževičienė [40] et al.

It is interesting to note that despite the density theorems, we do not understand the value
distribution of ζ(s) on R(s) = 1/2. A folklore, yet unsolved conjecture is that the set of
values of ζ(s) on R(s) = 1/2 is dense in C. In this direction, Selberg showed that “up to
some normalization” of ζ(s), the values on the 1/2-line satisfy the Gaussian distribution (see
Joyner [14]).

In 1975, Voronin [39] proved a fascinating theorem for the Riemann zeta-function, which
roughly says that any non-vanishing analytic function is approximated uniformly by shifts of
the zeta-function in the critical strip. This is called the Voronin’s universality theorem. More
precisely,

Theorem 7.3 (Voronin). Let 0 < r < 1
4 and suppose that g(s) is a non-vanishing continuous

function on the disc {s ∶ ∣s∣ ≤ r}, which is analytic in its interior. Then, for any ε > 0,

lim inf
T→∞

1

T
meas{∣τ ∣ < T ∶ max

∣s∣<r
∣ζ(s + 3

4
+ iτ) − g(s)∣ < ε} > 0.

After the result of Voronin, Bagchi [1] gave a proof of universality for the Riemann zeta-
function ζ(s) and some other L-functions using probabilistic methods. Using Bagchi’s tech-
nique, the universality property for many L-functions has been established, mainly due to the
work of Laurančikas, Matsumoto, Steuding et al. In particular, we know that the universality
property holds for elements in the Selberg class S satisfying a condition analogous to the
prime number theorem (see [31]).
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Theorem 7.4 (Steuding, Nagoshi). Let L(s) ∈ S with degree dL satisfying the condition

lim
x→∞

1

π(x) ∑p≤x
∣aL(p)∣2 = κL,

where κL is a constant depending on L. Let K be a compact subset of the strip

1 − 1

2dL
<R(s) < 1,

with connected complement. Suppose g(s) is any non-vanishing continuous function on K,
which is analytic in the interior of K. Then, for any ε > 0,

lim inf
T→∞

1

T
meas{∣τ ∣ < T ∶ max

s∈K
∣L(s + iτ) − g(s)∣ < ε} > 0

It is important to note that the L-functions for which the universality property has been
established is much larger than the Selberg class. In fact, L-functions such as the Hurwitz
zeta-function, Lerch zeta-function or Matsumoto zeta-functions are all known to be universal
in a certain strip. In view of this, Linnik and Ibragimov conjectured the following.

Conjecture 8 (Linnik, Ibragimov). Let F (s) have a Dirichlet series representation, abso-
lutely convergent on R(s) > 1 and suppose F (s) can be analytically continued to C except
for a possible pole at s = 1 satisfying some “growth conditions”, then F (s) is universal in a
certain strip.

Although the universality property for elements in S is conditionally known, the study is
far from complete. In particular, for F ∈ S, the strip for which the universality property has
been established is given by 1 − 1/2dF < R(s) < 1. But the expected strip of universality is
1/2 <R(s) < 1 (see [37], [10]). This is, in fact a consequence of the Lindelöf hypothesis.

Another front to investigate is the following: for a given non-vanishing analytic function
g(s) on a compact subset K inside the strip of universality and a given ε > 0, for what value
of T0 is the universality property realized? In other words, how large must T0 be such that for
any T > T0, F (s) approximates g(s) up to ε, δT number of times, where δ > 0. Unfortunately,
there are no known results in this direction. It would be interesting to explicitly describe T
when g is a polynomial or a Dirichlet polynomial.

8. Lindelöf class: A generalization

Despite its generality, the Selberg class has several limitations. For instance, it is not
closed under addition. This is because of the rigidity of functional equation and the Euler
product. Thus, the zero distribution of linear combination of L-functions in the Selberg class,
which appears in the work of Bombieri and Hejhal [7] is not addressed by studying the value
distribution theory of elements in S. Moreover, some naturally occurring L-functions such
as the Hurwitz zeta-function or Lerch zeta-function are not members of the Selberg class.
Furthermore, functions such as the Epstein zeta-function, which satisfy a functional equation
of the Riemann-type may not always have an Euler product and hence are not members of
the Selberg class. This motivated V. K. Murty [27] to introduce a larger class of L-functions
M which contains S, is closed under linear combination and also captures many familiar L-
functions, which are not in S. This new class M forms a ring and the value distribution of
elements in M is very similar to that of the Selberg class. In order to define M, we start by
introducing some growth parameters.
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Let F (s) be an entire function of order ≤ 1, which is given by the Dirichlet series F (s) =
∑n an/ns on R(s) > 1. Define µF (σ) as

µF (σ) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf {λ ∈ R ∶ ∣F (s)∣ ≤ (∣s∣ + 2)λ, for all s with R(s) = σ},

∞, if the infimum does not exist.

(16)

Also define:

µ∗F (σ) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf {λ ∈ R ∶ ∣F (σ + it)∣ ≪σ (∣t∣ + 2)λ},

∞, if the infimum does not exist.

(17)

If F (s) has a pole of order k at s = 1, consider the function

G(s) ∶= (1 − 2

2s
)
k

F (s). (18)

Now define, µF (σ) ∶= µG(σ) and µ∗F (σ) ∶= µ∗G(σ). Intuitively, µ∗F (σ) does not see how F (s)
behaves close to the real axis. It is only dependent on the growth of F (s) on R(s) = σ and
I(s) ≫ T for arbitrary large T . On the other hand, µF (σ) captures an absolute bound for
F (s) on the entire vertical line R(s) = σ. It follows from the definition that

µ∗F (σ) ≤ µF (σ)

for any σ.

Definition 8.1. The class M. Define the class M (see [27, sec.2.4]) to be the set of functions
F (s) satisfying the following conditions.

(1) Dirichlet series - F (s) is given by a Dirichlet series

∞

∑
n=1

aF (n)
ns

,

which is absolutely convergent in the right half plane R(s) > 1.
(2) Analytic continuation - There exists a non-negative integer k such that (s−1)kF (s)

is an entire function of order ≤ 1.

(3) Growth condition - The quantity
µF (σ)
(1−2σ) is bounded for σ < 0.

(4) Ramanujan hypothesis - ∣aF (n)∣ = Oε(nε) for any ε > 0.

Examples of elements in M include Dirichlet polynomials, all Dirichlet series which are
convergent on the whole complex plane, all elements in the Selberg class and their linear
combinations, translates of Epstein zeta-functions etc. From the observation (8), we define
the following invariants for M, which would play the role of degree in S.

Definition 8.2. For F ∈M, define

cF ∶= lim sup
σ<0

2µF (σ)
1 − 2σ

,

c∗F ∶= lim sup
σ<0

2µ∗F (σ)
1 − 2σ

.
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By the growth condition, cF and c∗F are well-defined in M. Furthermore, these invariants
satisfy an ultrametric inequality. For F,G ∈M,

cFG ≤ cF + cG and cF+G ≤ max(cF , cG).
Similarly,

c∗FG ≤ c∗F + c∗G and c∗F+G ≤ max(c∗F , c∗G).
In fact, if cF > cG (resp. c∗F > c∗G), then

cF+G = cF (resp. c∗F+G = c∗F ).
This ensures that M is closed under addition.

If F ∈ S, then cF = c∗F = dF . Since the degree in the Selberg class is conjectured to be a
non-negative integer, one may wonder if the same is expected to be true for the invariants cF
and c∗F in M. It turns out that cF can take non-integer values. In fact, one can manufacture
functions in M with any arbitrary non-negative value cF . However, we expect c∗F to take
non-negative integer values. In this direction, we have the following partial result (see [27],
[12]).

Proposition 8.3. Suppose F (s) ∈M. Then c∗F < 1 implies c∗F = 0.

It is also possible to classify all elements with c∗F = 0. These are essentially given by all
Dirichlet series, which are convergent on the whole of C. There are many more interesting al-
gebraic properties of M. For instance, M is non-Noetherian. This is interesting because C[S]
is a subring of M and Selberg’s conjectures imply that C[S] is non-Noetherian. Furthermore,
the uniqueness result 6.3 and 6.4, and a weaker version of the universality theorem 7.4 can
be established for the class M. We refer the reader to [10] for details.

One may wonder if there is some underlying topology on M. Perhaps, understanding the
geometry and learning to interpolate between L-functions may hold the key to new discoveries
in this fascinating field of mathematics.
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[40] R. Šleževičienė. The joint universality for twists of Dirichlet series with multiplicative coefficients by
characters. In Analytic and probabilistic methods in number theory (Palanga, 2001), pages 303–319. TEV,
Vilnius, 2002.

Department of Mathematics and Statistics, Queen’s University, Jeffery Hall, 48 University
Ave,, Kingston,, Canada, ON, K7L 3N6

E-mail address: anup.dixit@queensu.ca


