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Abstract. Let ωy(n) be the number of distinct prime divisors of n not exceeding y. If yn is
an increasing function of n such that log yn = o(logn), we study the distribution of ωyn(n)
and establish an analog of the Erdős-Kac theorem for this function. En route, we also prove
a variant central limit theorem for random variables, which are not necessarily independent,
but are well approximated by independent random variables.

1. Introduction

Let ω(n) denote the number of distinct prime divisors of the natural number n. It is an
interesting question to study how ω(n) is distributed as we vary n ≤ x. The average value of
ω(n) for n ≤ x can be computed as

1

x

∑
n≤x

ω(n) =
1

x

∑
p≤x

∑
n≤x,
p|n

1 =
1

x

∑
p≤x

[
x

p

]
= log log x+O(1)

as x → ∞. In 1917, Hardy and Ramanujan [7] proved that the normal order of ω(n) is
log logn. More precisely, for any ε > 0, as x→∞, we have

#

{
n ≤ x

∣∣∣∣n satisfies |ω(n)− log log n| > ε log log n

}
= o(x). (1)

A simplified proof of the Hardy-Ramanujan result was given by Turán [13] in 1934, by con-
sidering the second moment of ω(n). He proved that∑

n≤x
(ω(n)− log log x)2 � x log log x. (2)

Note that in the summand above, log log x can be replaced with log logn, since they are very
close in value for all but very small integers, owing to the slow growth of the function log log x.
Thus, one can easily deduce (1). In fact, Hardy and Ramanujan [7] showed that if c(n)→∞
as n→∞, then

|ω(n)− log log n| ≤ c(n)
√

log log n (3)

for almost all n ≤ x, no matter how slowly c(n) grows.
From a probabilistic perspective, inequality (2) is reminiscent of Chebycheff’s inequality

and inequality (3) suggested that perhaps ω was a “random variable” on the space of natural
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numbers with “mean” log logn and “standard deviation”
√

log log n. So after Turán’s paper
appeared, M. Kac posed the question of finding the distribution of

ω(n)− log log n√
log logn

, (4)

as n varies. He suggested that this distribution is perhaps Gaussian. Kac recalls with evident
delight “If I remember it correctly I first stated (as a conjecture) the theorem on the normal
distribution of the number of prime divisors during a lecture in Princeton in March 1939.
Fortunately for me and possibly for Mathematics, Erdős was in the audience, and he imme-
diately perked up. Before the lecture was over he had completed the proof, which I could not
have done not having been versed in the number theoretic methods, especially those related
to the sieve.” This was the magical moment when probabilistic number theory was born (see
page 24 of [4]).

Shortly after this romantic episode, Erdős and Kac announced their result, which is fa-
mously known as the Erdős-Kac theorem [5]. They proved that for any real numbers a, b

lim
x→∞

1

x
#

{
n ≤ x

∣∣∣∣ a ≤ ω(n)− log logn√
log log n

≤ b
}

=
1√
2π

∫ b

a
e−t

2/2 dt.

Thus, the quantity in (4) has the standard normal distribution. As noted, the original proof
of Erdős and Kac used Brun’s sieve and the central limit theorem. Alternate proofs of the
Erdős-Kac theorem were given later using different methods by Selberg [11], Halberstam [6],
Billingsley [1](using the method of moments which we adopt below) and Shapiro [12].

In this paper, we are interested in the truncated function, ωy(n), which denotes the number
of distinct prime divisors of n not exceeding y. We study the behaviour of ωy(n) and derive
an analog of the Erdős-Kac theorem for it. We first make some observations before stating
the main result.

The average order of ωy(n) can be computed as before:

1
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n≤x

ωy(n) =
1

x
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n≤x

∑
p|n,
p≤y

1 =
1

x

∑
p≤y
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x

p

]
= log log y +O(1)

as x, y →∞. Also note that

1

x
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x

( ∑
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pq

]
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∑
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p
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=
∑
p,q≤y

1

pq
−
∑
p≤y

1

p2
+ log log y +O

(
π2(y)

x

)

= (log log y)2 +O (log log y) +O

(
π2(y)

x

)
,

where π(y) denotes the number of primes ≤ y. Hence, the second moment is given by

1

x

∑
n≤x

(ωy(n)− log log y)2 = O (log log y) +O

(
π2(y)

x

)
,
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as x, y → ∞. From the above observation, it is reasonable to predict that if y is sufficiently
smaller than x, then ωy(n) is typically log log y. More generally, for any multiplicative func-
tion f : N → Q, the second moment of ωy(f(n)) is computed in [8, Theorem 3.1]. We can
derive our theorem in a more general setting though we do not do so here for the sake of
simplicity of exposition. The general investigation can be found in [8] and [9].

Let Ω be the set of positive integers. Pn be the probability measure placing mass 1/n for
each {1, 2, · · · , n}. We prove the following version of the Erdős-Kac theorem for ωy(n).

Theorem 1.1. Let yn be an increasing sequence of real numbers satisfying yn →∞ as n→∞
and suppose

lim
n→∞

log yn
log n

= 0.

Then, for any real numbers a, b,

lim
n→∞

Pn

(
m : a ≤ ωyn(n)− log log yn√

log log yn
≤ b
)

=
1√
2π

∫ b

a
e−t

2/2 dt.

Truncated additive functions, such as ωy(n), have been previously considered in the litera-
ture. The distribution of ωy(n) as in Theorem 1.1 appears as a step towards establishing the
Erdős-Kac theorem, for instance, see [5, Lemma 5], [12, pg.428, formula (10)] and with more
restrictive conditions on yn in [1, formula (21)] and [6, Theorem 2]. The aim of this paper is
to highlight the study of localized additive functions on account of their independent interest.

2. Preliminaries

The proof of the main theorem relies on the method of moments theorem and the Lyapunov
central limit theorem, which are stated below (see pp. 312 and pp. 342 Theorem 30.1 in [2]).

Theorem 2.1 (Method of moments). Let µ be a probability measure on the line having finite
moments

αk =

∫ ∞
−∞

xk µ(dx),

for all positive integers k. If the power series
∞∑
k=1

αkr
k

k!

has a positive radius of convergence, then µ is the only probability measure with moments
α1, α2, · · · .
Theorem 2.2 (Lyapunov central limit theorem). For i ∈ N, let Xi be independent random
variables, with mean µi and variance σ2i respectively. Denote by s2n =

∑n
i=1 σ

2
i . If for some

δ > 0, the Lyapunov condition

lim
n→∞

1

s2+δn

n∑
i=1

E

[
|Xi − µi|2+δ

]
= 0 (5)

is satisfied, then

1

sn

n∑
i=1

(Xi − µi)→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, with mean 0 and variance 1.
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3. A generalized central limit theorem

Towards the proof of Theorem 1.1, we first establish a central limit theorem for random
variables, which are not necessarily independent.

Let f be a positive non-decreasing function on positive integers, such that as n tends to
infinity, f(n) tends to infinity and

log f(n) = o(log n).

We prove the following.

Theorem 3.1. For i ∈ N, let Xi be independent random variables, taking bounded values
and satisfying the Lyapunov condition (5) with mean µi and variance σ2i . Let Yi be random
variables, not necessarily independent such that

E[Xi1Xi2 · · ·Xik ] = E[Yi1Yi2 · · ·Yik ] +O

(
1

n

)
, (6)

for ij ≤ f(n) for all 1 ≤ j ≤ k. Let

s2n =

f(n)∑
i=1

σ2i .

Then,

1

sn

f(n)∑
i=1

(Yi − µi),

converges to the standard normal distribution N(0, 1) as n tends to infinity.

Proof. Let Sn =
∑

j≤f(n)Xj and Tn =
∑

j≤f(n) Yj . Denote the mean and variance of Sn as

cn and s2n respectively. As the Lyapunov condition is satisfied for Sn, by Theorem 2.2, we
conclude that as n tends to infinity, (Sn−cn)/sn converges to the standard normal distribution.
Since Xn’s are bounded, the method of moments applies here and from Theorem 2.1 we have
that the r-th moment of (Sn−cn)/sn converges to the r-th moment of the normal distribution.
That is,

mr = lim
n→∞

E

[(
Sn − cn
sn

)r ]
for all r, where mr denotes the r-th moment of the standard normal distribution.

Let dn and r2n denote the mean and variance of Tn respectively. By condition (6), we have

cn = dn +O(1) and s2n = r2n +O(1)

as n tends to infinity. Hence, to prove Theorem 3.1, it suffices to show that as n→∞

E

[(
Sn − cn
sn

)r ]
− E

[(
Tn − cn
sn

)r ]
→ 0 (*)

for each r. We have

E[Srn] =

r∑
u=1

∑ ′ r!

r1! · · · ru!

1

u!

∑ ′′
E[Xi1 · · ·Xiu ], (7)
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where
∑ ′

runs over tuples (r1, · · · , ru) satisfying r1 + · · · + ru = r and
∑ ′′

is over tuples
(i1, · · · , iu), where ij ’s are distinct and not exceeding f(n).

Similarly, we get

E[T rn ] =
r∑

u=1

∑ ′ r!

r1! · · · ru!

1

u!

∑ ′′
E[Yi1 · · ·Yiu ], (8)

where
∑′ and

∑′′ are as in (7). By (6), the summands in (7) and (8) differ by O(1/n). Hence,∣∣∣∣E[Srn]− E[T rn ]

∣∣∣∣� 1

n

 ∑
j≤f(n)

1

r

= O

(
f(n)r

n

)
.

Now we have

E[(Sn − cn)r] =

r∑
k=0

(
r

k

)
E[Skn] (−cn)r−k.

Similarly,

E[(Tn − cn)r] =
r∑

k=0

(
r

k

)
E[T kn ] (−cn)r−k.

Comparing these expressions, we get∣∣∣∣E[(Sn − cn)r]− E[(Tn − cn)r]

∣∣∣∣� r∑
k=0

(
r

k

)
f(n)k

n
cr−kn =

(f(n) + cn)r

n
.

Since Xi’s take bounded values, we have cn = O(f(n)). Using the condition log f(n) =
o(log n), we conclude that

lim
n→∞

(f(n) + cn)r

n
= 0.

Dividing by srn, we see that (*) follows. �

4. Proof of Theorem 1.1

Our method of proof follows Billingsley [1]. For a prime p, let

δp(m) :=

{
1 if p | m
0 otherwise.

Then,

ωy(m) =
∑
p≤y

δp(m).

If p1, p2, · · · , pu are a set of distinct primes ≤ y, then

Pn

[
m

∣∣∣∣ δp1(m) = · · · = δpu(m) = 1

]
=

1

n

[
n

p1p2 · · · pu

]
,

where [x] denotes the greater integer ≤ x. This shows that under Pn, δpi ’s behave like
independent random variables asymptotically, but are not independent random variables.
For a function f of positive integers, define

En[f ] =
1

n

n∑
m=1

f(m).
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For all primes p, let Xp be independent random variables taking values {0, 1}, satisfying

P [Xp = 1] =
1

p
and P [Xp = 0] = 1− 1

p
.

If p1, · · · , pu are distinct, then we have

P

[
Xp1 = · · · = Xpu = 1

]
=

1

p1p2 · · · pu
.

Let Sn =
∑
p≤yn

Xp. The mean and variance of Sn are given by

cn =
∑
p≤yn

1

p
= log log yn +O(1)

and

s2n =
∑
p≤yn

1

p

(
1− 1

p

)
= log log yn +O(1).

Since Xp’s are independent, we have

E[Xp1 · · ·Xpu ] =
1

p1 · · · pu
. (9)

Also,

En[δp1 · · · δpu ] =
1

n

[
n

p1 · · · pu

]
. (10)

Hence,

E[Xp1 · · ·Xpu ]− En[δp1 · · · δpu ] =
1

n

(
n

p1 · · · pu
−
[

n

p1 · · · pu

])
= O

(
1

n

)
for all pi ≤ yn. The proof now follows from Theorem 3.1.

As an application of this result, we deduce the following corollary.

Corollary 1. Suppose log log yn = (log log n)(1 + o(1)). With probability 1, almost all the

prime factors of n are less than yn. In particular, we can apply this to yn = n1/ log logn.

5. Concluding remarks

The fact that for additive functions f for which an Erdős-Kac type theorem holds, that a
localized Erdős-Kac also holds, as in Theorem 1.1, is known and is due to Kubilius, Barban
and A.I. Vinogradov (see page 123 of [3]). Our contribution here is a new proof of this
fact adapting the method of Billingsley [1]. This method is quite versatile and it has wider
applications in a very general setting discussed in [10]. The relation between distribution of
fyn under the measure Pn and that of

∑
p<yn

Xp, for independent random variables Xp, taking

values f(p) and 0 with probability 1/p and 1 − 1/p respectively, is captured in the Kubilius
Fundamental lemma alluded to above. This lemma states that

Pn (m : fy(m) ≤ z) = P

∑
p≤y

Xp ≤ z

+O

(
exp

(
−c log n

log y

))
+ n−δ.

From this, one can also derive explicit error terms.
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The idea of deriving a central limit theorem in the context of not necessarily independent
random variables is also not new. For instance, the notion of α-mixing discussed in [2, p.
363] relaxes the notion of independence. A central limit theorem can be derived in such a
context. However, our treatment offers an alternate approach to a variation of the central
limit theorem suitable for other applications.

6. Acknowledgements

We thank Siddhi Pathak and the referee for detailed comments on an earlier version of the
paper.

References

[1] P. Billingsley, On the central limit theorem for the prime divisor functions, Amer. Math. Monthly, Vol. 76,
(1969), 132-139.

[2] P. Billingsley, Probability and measure,Wiley Series in Probability and Mathematical Statistics, John Wiley
& Sons, New York-Chichester-Brisbane, (1979).

[3] P. D. T. A. Elliot, Probabilistic number theory. I, Grundlehren der Mathematischen Wissenschaften [Fun-
damental principles of mathematical science], Vol. 239, Springer-Verlag, New York-Berlin, (1979).

[4] P. D. T. A. Elliot, Probabilistic number theory. II, Grundlehren der Mathematischen Wissenschaften [Fun-
damental principles of mathematical science], Vol. 239, Springer-Verlag, New York-Berlin, (1979).
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