THE LINDELÖF CLASS OF L-FUNCTIONS, II

ANUP B. DIXIT AND V. KUMAR MURTY

ABSTRACT. In 2002, the second author [7] introduced a class of *L*-functions \mathbb{M} , which contains the Selberg class and forms a ring. In this article, we study this class and prove that the invariant c_F^* , which is the generalization of degree in the Selberg class cannot take non-integer values between 0 and 1. We also study the ring structure of \mathbb{M} showing that it is non-Noetherian.

1. INTRODUCTION

In 1989, A. Selberg [9] introduced a class of L-functions S satisfying properties similar to that of the Riemann zeta-function. The Selberg class can be regarded as a model for Lfunctions coming from arithmetic and geometry. Many naturally occurring L-functions such that the Riemann zeta-function, the Dirichlet L-functions and Dedekind zeta-functions are members of the Selberg class. Since then, the Selberg class has been extensively studied and many interesting properties on the structure of this class have been discovered. In [9], Selberg made two key conjectures on this class which vaguely claim that distinct L-functions in S do not interact with each other. These conjectures have far reaching consequences. As shown by M. Ram Murty [8], the Selberg's orthogonality conjecture implies the strong Artin's holomorphy conjecture. Despite its generality, the Selberg class has many limitations. It is not closed under addition and many naturally occurring L-functions such as the Hurwitz zeta-function, Lerch zeta-function or Epstein zeta-function are not members of the Selberg class.

This motivated the second author [7] to introduce a class of L-functions \mathbb{M} , which is defined based on growth conditions. This class \mathbb{M} contains the Selberg class and forms a ring. In this article, we study this class by introducing an invariant which generalizes the notion of degree in the Selberg class and prove that it does not take non-integer values between 0 and 1. We also introduce a method to construct non-trivial ideals of \mathbb{M} and prove that \mathbb{M} is non-Noetherian.

2. The Selberg Class

The Selberg class S consists of meromorphic functions F(s) satisfying the following properties.

(1) **Dirichlet series-** F can be expressed as a Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s},$$

which is absolutely convergent in the region $\Re(s) > 1$. We also normalize the leading coefficient as $a_F(1) = 1$.

²⁰¹⁰ Mathematics Subject Classification. 11M41.

Key words and phrases. L-functions, Selberg class, Lindelof class.

- (2) Analytic continuation There exists a non-negative integer k, such that $(s-1)^k F(s)$ is an entire function of finite order.
- (3) Functional equation There exist real numbers Q > 0 and $\alpha_i > 0$, complex numbers β_i and $w \in \mathbb{C}$, with $\Re(\beta_i) \ge 0$ and |w| = 1, such that

$$\Phi(s) \coloneqq Q^s \prod_i \Gamma(\alpha_i s + \beta_i) F(s) \tag{1}$$

satisfies the functional equation

$$\Phi(s) = w\Phi(1-\bar{s}).$$

(4) **Euler product** - There is an Euler product of the form

$$F(s) = \prod_{p \text{ prime}} F_p(s), \tag{2}$$

where

$$\log F_p(s) = \sum_{k=1}^{\infty} \frac{b_{p^k}}{p^{ks}}$$

with $b_{p^k} = O(p^{k\theta})$ for some $\theta < 1/2$.

(5) Ramanujan hypothesis - For any $\epsilon > 0$,

$$|a_F(n)| = O_\epsilon(n^\epsilon). \tag{3}$$

The constants in the functional equation (1) depend on F. Although the functional equation may not be unique, because of the duplication formula of Γ -function, we have some well-defined invariants, such as the degree d_F of F, which is defined as

$$d_F \coloneqq 2\sum_i \alpha_i.$$

The factor Q in the functional equation gives rise to another invariant referred to as the conductor q_F , which is defined as

$$q_F \coloneqq (2\pi)^{d_F} Q^2 \prod_i \alpha_i^{2\alpha_i}.$$
 (4)

It is an interesting conjecture that both the degree and the conductor associated to elements of the Selberg class are non-negative integers.

3. The class \mathbb{M}

In [7], the second author defined a class of *L*-functions based on growth conditions. We start by defining two growth parameters μ and μ^* .

Definition 3.1. The class \mathbb{T} . Define the class \mathbb{T} to be the set of meromorphic functions F(s) satisfying the following conditions.

(1) **Dirichlet series** - For $\Re(s) > 1$, F(s) is given by the absolutely convergent Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s}.$$

- (2) Analytic continuation There exists a non-negative integer k, such that $(s-1)^k F(s)$ is an entire function of order ≤ 1 .
- (3) Ramanujan hypothesis $|a_F(n)| = O_{\epsilon}(n^{\epsilon})$ for any $\epsilon > 0$.

Definition 3.2. Let $F \in \mathbb{T}$ be entire. Define $\mu_F(\sigma)$ as

$$\mu_F(\sigma) \coloneqq \left\{ \begin{array}{l} \inf\left\{\lambda \in \mathbb{R} : |F(s)| \le (|s|+2)^{\lambda}, \text{ for all } s \text{ with } \Re(s) = \sigma \right\}, \\ \infty, \text{ if the infimum does not exist.} \end{array} \right.$$
(5)

Also define:

$$\mu_F^*(\sigma) \coloneqq \left\{ \begin{array}{l} \inf \left\{ \lambda \in \mathbb{R} : |F(\sigma + it)| \ll_{\sigma} (|t| + 2)^{\lambda} \right\}, \\ \infty, \quad if \ the \ infimum \ does \ not \ exist. \end{array} \right.$$
(6)

In the definition of $\mu_F^*(\sigma)$, the implied constant depends on both F and σ , whereas in $\mu_F(\sigma)$, the constant only depends on F and is independent of σ .

We further extend the definition of μ_F and μ_F^* to all the elements in the class \mathbb{T} as follows. Suppose $F \in \mathbb{T}$ has a pole of order k at s = 1. Consider the function

$$G(s) \coloneqq \left(1 - \frac{2}{2^s}\right)^k F(s). \tag{7}$$

Clearly, G(s) is an entire function and belongs to \mathbb{T} . We define

$$\mu_F(\sigma) \coloneqq \mu_G(\sigma), \mu_F^*(\sigma) \coloneqq \mu_G^*(\sigma).$$

Intuitively, $\mu_F^*(\sigma)$ does not see how F(s) behaves close to the real axis. On the other hand, $\mu_F(\sigma)$ captures an absolute bound for F(s) on the entire vertical line $\Re(s) = \sigma$.

It follows from the definition that

$$\mu_F^*(\sigma) \le \mu_F(\sigma)$$

for any σ . From the above definition, we immediately conclude the following.

Proposition 3.3. Let $F \in \mathbb{T}$. For $\sigma > 1 + \epsilon$,

$$\mu_F^*(\sigma) = 0$$
$$\mu_F(\sigma) \ll_{F,\epsilon} 1.$$

for any $\epsilon > 0$.

Proof. Since $F \in \mathbb{T}$, it is given by a Dirichlet series $F(s) = \sum_n a_n/n^s$, which is absolutely convergent for $\sigma > 1$ and hence bounded in the region $\sigma \ge 1 + \epsilon$, with the bound depending on F and ϵ , but independent of σ . Hence, we have the proposition.

Note that $\mu_F(\sigma)$ and $\mu_F^*(\sigma)$ are always non-negative for all σ . This is because $\mu_F^*(\sigma) = 0$ for $\sigma > 1$ by Proposition 3.3. Hence, if $\mu_F(\sigma_1) < 0$, then by Phragmén-Lindelöf theorem, $\mu_F(\sigma) \leq 0$ in the strip $\sigma_1 \leq \Re(s) \leq \sigma$. Thus, we get a vertical strip where F(s) is bounded and tends to 0 as $\Im(s) \to \infty$. This is a contradiction. By a similar argument, we also conclude that $\mu_F(\sigma)$ is always non-negative.

If $F \in \mathbb{S}$, by the functional equation (1), using Stirling's formula, we have (see [7], Sec.2.1])

$$\mu_F^*(\sigma) \le \frac{1}{2} d_F(1 - 2\sigma) \text{ for } \sigma < 0.$$
(8)

Using the Phragmén-Lindelöf theorem, we deduce that

$$\mu_F^*(\sigma) \leq \frac{1}{2} d_F(1-\sigma) \text{ for } 0 < \sigma < 1.$$

The same results hold for μ_F up to a constant depending on F. To see this, we use the functional equation for F,

$$F(s) = \Delta_F(s)\overline{F(1-\overline{s})},$$

where

$$\Delta_F(s) \coloneqq \omega Q^{1-2s} \prod_{j=1}^k \frac{\Gamma(\alpha_j(1-s) + \overline{\beta}_j)}{\Gamma(\alpha_j s + \beta_j)}.$$

Using Stirling's formula, we get

Lemma 3.4. For $F \in \mathbb{S}$ and $t \ge 1$, uniformly in σ ,

$$\Delta_F(\sigma+it) = \left(\alpha Q^2 t^{d_F}\right)^{1/2-\sigma-it} \exp\left(itd_F + \frac{i\pi(\beta-d_F)}{4}\right) \left(\omega + O\left(\frac{1}{T}\right)\right),$$

where

$$\alpha \coloneqq \prod_{j=1}^k \alpha_j^{2\alpha_j} \text{ and } \beta \coloneqq 2\sum_{j=1}^k (1-2\beta_j).$$

By Lemma 3.4, we conclude that

$$\mu_F(\sigma) \le \frac{1}{2} d_F(1 - 2\sigma) + O(1) \text{ for } \sigma < 0.$$
(9)

and

$$\mu_F(\sigma) \leq \frac{1}{2} d_F(1-\sigma) + O(1) \text{ for } 0 < \sigma < 1.$$

Thus, for $F \in \mathbb{S}$, these parameters $\mu_F(\sigma)$ and $\mu_F^*(\sigma)$ are well-defined (i.e., $\mu_F(\sigma), \mu_F^*(\sigma) < \infty$ ∞). We use this behaviour of μ and μ^* to introduce a growth condition. This leads to the definition of class \mathbb{M} .

Definition 3.5. The class \mathbb{M} . Define the class \mathbb{M} (see [7, sec.2.4]) to be the set of meromorphic functions F(s) satisfying the following conditions.

(1) Dirichlet series - F(s) is given by a Dirichlet series

$$\sum_{n=1}^{\infty} \frac{a_F(n)}{n^s},$$

which is absolutely convergent in the right half plane $\Re(s) > 1$.

- (2) Analytic continuation There exists a non-negative integer k such that $(s-1)^k F(s)$ is an entire function of order $\leq 1.$
- (3) Growth condition The quantity $\frac{\mu_F(\sigma)}{(1-2\sigma)}$ is bounded for $\sigma < 0$. (4) Ramanujan hypothesis $|a_F(n)| = O_{\epsilon}(n^{\epsilon})$ for any $\epsilon > 0$.

Notice that in the condition of analytic continuation, we have to force the complex order to be ≤ 1 . In case of the Selberg class, this condition is implicit due to the functional equation.

We now define some invariants for \mathbb{M} , which generalize the notion of degree in \mathbb{S} .

Definition 3.6. For $F \in \mathbb{M}$, define

$$c_F \coloneqq \limsup_{\sigma < 0} \frac{2\mu_F(\sigma)}{1 - 2\sigma},$$
$$c_F^* \coloneqq \limsup_{\sigma < 0} \frac{2\mu_F^*(\sigma)}{1 - 2\sigma}.$$

By the growth condition, c_F and c_F^* are bounded for $F \in \mathbb{M}$. Moreover, since $\mu_F^*(\sigma) \leq \mu_F(\sigma)$ for all $\Re(s) = \sigma$, we have

$$c_F^* \leq c_F$$

Note that c_F and c_F^* are ≥ 0 . Using the Phragmén-Lindelöf theorem, we have

$$\mu_F(\sigma) \leq \frac{1}{2}c_F(1-\sigma),$$

$$\mu_F^*(\sigma) \leq \frac{1}{2}c_F^*(1-\sigma)$$

for $0 < \sigma < 1$. We mention a few examples below.

Example 1. Any Dirichlet polynomial F belongs to \mathbb{M} and $c_F = c_F^* = 0$.

Example 2. Any Dirichlet series F which is absolutely convergent on the whole complex plane has $c_F^* = 0$.

Example 3. The Riemann zeta-function $\zeta(s)$ is in \mathbb{M} and $c_{\zeta} = c_{\zeta}^* = 1$.

Example 4. If F is an element in the Selberg class, then F also belongs to \mathbb{M} . Moreover, $c_F = c_F^*$ and is given by the degree of F.

The proof of Examples 3 and 4 will follow from Proposition 3.12.

Example 5. Linear combinations of elements in the Selberg class \mathbb{S} are in \mathbb{M} .

We shall see this later, when we prove that \mathbb{M} forms a ring.

Another example of L-functions in \mathbb{M} , which are not constructed from linear combination of elements in \mathbb{S} are the translates of Epstein zeta-functions.

Example 6. For a given real positive definite $n \times n$ -matrix T, the Epstein zeta-function is defined as (see [3], [4])

$$\zeta(T,s) \coloneqq \sum_{\boldsymbol{0} \neq \boldsymbol{v} \in \mathbb{Z}^n} (\boldsymbol{v}^t T \boldsymbol{v})^{-s}.$$

This series is absolutely convergent for $\Re(s) > n/2$. It can be analytically continued to \mathbb{C} except for a simple pole at s = n/2 with residue

$$\frac{\pi^{n/2}}{\Gamma(n/2)\sqrt{\det T}}.$$

Moreover, it satisfies a functional equation. Let

$$\psi(T,s) \coloneqq \pi^{-s/2} \Gamma(s) \zeta(T,s)$$

Then,

$$\psi(T,s) = (\det T)^{-1/2} \psi \left(T^{-1}, \frac{n}{2} - s\right)$$

Thus, the function $\zeta(T, s + n/2 - 1)$ is an element in \mathbb{M} . The growth condition is satisfied because of the functional equation and further we have $c_{\zeta(T,s+n/2-1)} = c^*_{\zeta(T,s+n/2-1)} = 2$.

Example 7. If F(s) belongs to \mathbb{M} , then all its translates given by F(s) + a also belong to \mathbb{M} . If F(s) is analytic at s = 1, then the scalar shifts F(rs) also belong to \mathbb{M} for $a \in \mathbb{C}$ and real $r \ge 1$. Furthermore, if F is analytic at s = 1, then for $\Re(a) \ge 0$, F(s + a) is also in \mathbb{M} . In all the above cases, they have the same values of c_F and c_F^* .

In order to ensure that \mathbb{M} is closed under addition, we need to establish that these invariants c_F and c_F^* in fact satisfy an ultrametric inequality.

Proposition 3.7 ([7], Prop. 1). For $F, G \in \mathbb{M}$,

$$c_{FG} \leq c_F + c_G$$
 and $c_{F+G} \leq \max(c_F, c_G)$.

Similarly,

$$c_{FG}^* \leq c_F^* + c_G^*$$
 and $c_{F+G}^* \leq \max(c_F^*, c_G^*)$.

In fact, if $c_F > c_G$ (resp. $c_F^* > c_G^*$), then

$$c_{F+G} = c_F (resp. \ c_{F+G}^* = c_F^*).$$

Proof. The proof of the above inequalities for c_F^* follows immediately from the definition of μ_F^* . This is because, for any fixed σ and |t| > 1, we have

$$|F(\sigma + it)| \ll_{\sigma} |t|^{\mu_F^*(\sigma) + \epsilon}$$

for any $\epsilon > 0$. Therefore, for any $F, G \in \mathbb{M}$, we have

$$|FG(\sigma+it)| \ll_{\sigma} |t|^{\mu_F^*(\sigma)+\mu_G^*(\sigma)+\epsilon}$$

Similarly,

$$|(F+G)(\sigma+it)| \ll_{\sigma} |t|^{\mu_F^*(\sigma)+\epsilon} + |t|^{\mu_G^*(\sigma)+\epsilon}$$
$$\ll_{\sigma} |t|^{\max(\mu_F^*(\sigma),\mu_G^*(\sigma))+\epsilon}.$$

Incorporating this into the definition of c_F^* , we are done. By a similar argument, we also get that $c_{FG} \leq c_F + c_G$.

We are left to prove $c_{F+G} \leq \max(c_F, c_G)$. For a fixed σ , without loss of generality, assume $\mu_F(\sigma) \geq \mu_G(\sigma)$. For $s = \sigma + it$ and any $\epsilon > 0$, we have

$$|(F+G)(s)| \le |F(s)| + |G(s)|$$

$$\le (|s|+2)^{\mu_F(\sigma)+\epsilon} + (|s|+2)^{\mu_G(\sigma)+\epsilon}$$

$$\le 2(|s|+2)^{\mu_F(\sigma)+\epsilon}.$$

Hence, from the definition of μ_F we get,

$$\mu_{F+G}(\sigma) \le \mu_F(\sigma) + \frac{\log 2}{\log(|s|+2)}$$

Using the above inequality in the definition of c_F , we get

$$c_{F+G} \leq \max(c_F, c_G)$$

It follows from the above Proposition 3.7 that M forms a ring.

The degree conjecture for the Selberg class claims that the degree of any element in S must be a non-negative integer. The question arises if we can make similar claims about these invariants c_F and c_F^* . As it turns out, c_F can take non-integer values. In fact, one can

manufacture functions in \mathbb{M} with any arbitrary positive real value of c_F , as we shall see in (14). But, we expect the analogue of the degree conjecture to be true for the invariant c_F^* .

Conjecture 1. If $F \in \mathbb{M}$, then c_F^* is a non-negative integer.

In this direction, following the argument of Conrey-Ghosh [2], in which they showed that the degree d_F in the Selberg class cannot take non-integer values between 0 and 1, we obtain the following result.

Proposition 3.8 (Corrected version of [7], Prop. 3). Suppose $F \in \mathbb{M}$. Then $c_F < 1$ implies $c_F^* = 0$.

Proof. Let $F \in \mathbb{M}$. For $\sigma > 1$, let $F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s}$. Then we know that,

$$f(x) \coloneqq \sum_{n=1}^{\infty} a_F(n) e^{-nx} = \frac{1}{2\pi i} \int_{(2)} F(s) \Gamma(s) x^{-s} ds,$$

where the integration is on the line $\Re(s) = 2$.

By the growth condition and convexity, F has a polynomial growth in |t| in vertical strips. Thus, moving the line of integration to the left and taking into account the possible pole at s = 1 of F(s) and poles of $\Gamma(s)$ at $s = 0, -1, -2, \cdots$, we get that

$$f(x) = \frac{P(\log x)}{x} + \sum_{n=0}^{\infty} \frac{F(-n)}{n!} (-x)^n,$$
(10)

where P is a polynomial. By the definition of c_F , we have

$$|F(-n)| \ll n^{\frac{1}{2}c_F(1+2n)+\epsilon}.$$

Using Stirling's formula, i.e,

$$n! \sim n^{n-1/2} e^{-n} (2\pi)^{-1/2},$$

we get

$$\left|\frac{F(-n)}{n!}(-x)^n\right| \ll n^{\frac{c_F+1}{2}+\epsilon} \left(\frac{e|x|n^{c_F}}{n}\right)^n.$$

If $c_F < 1$, then the series in equation (10) converges absolutely for all values of x. Hence, the function f(x) is analytic in $\mathbb{C} \setminus \{x \leq 0 : x \in \mathbb{R}\}$. But, this function is also periodic with period $2\pi i$ and so it converges for all x. Thus, the function

$$f(z) = \sum_{n=1}^{\infty} a_F(n) e^{-nz}$$

is entire. Taking z = -1, we get that

$$\sum_{n=1}^{\infty} a_F(n) e^n$$

is convergent and thus, $a_F(n) = o(e^{-n})$. So, the coefficients have exponential decay and therefore, $a_F(n)n^k \ll 1$ for all $k \ge 1$. Hence, we have that

$$\sum_{n=1}^{\infty} \frac{a_F(n)}{n^s}$$

is absolutely convergent for all values of s. Therefore, $\mu_F^*(\sigma) = 0$ for all σ and hence $c_F^* = 0$. \Box

We can completely characterize all $F \in \mathbb{M}$ such that $c_F^* = 0$. These are precisely all the functions, which when multiplied by a suitable Dirichlet polynomial give a Dirichlet series which is convergent on the whole complex plane. We invoke the following theorem of Landau to prove this result.

Theorem 3.9 (Landau, [5] Chapter VII, sec. 10, Thm. 51). Let F(s) be an entire function. Suppose F(s) has a Dirichlet series representation

$$F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s},$$

which is absolutely convergent for $\Re(s) > 1$. Also, suppose that

$$a_n = O(n^{\epsilon})$$

for all positive ϵ . If

$$F(s) = O(|t|^{\beta}) \quad (\beta > 0)$$

uniformly in the half plane $\Re(s) > \eta$, then the Dirichlet series is convergent in the half plane $\Re(s) > \eta_1$, where

$$\eta_1 = \begin{cases} \frac{\eta + \beta}{1 + \beta}, & \text{if } \eta + \beta > 0\\ \eta + \beta, & \text{if } \eta + \beta < 0 \end{cases}$$

Using the above Theorem 3.9, we get the following result classifying all elements in \mathbb{M} with $c_F^* = 0$.

Proposition 3.10. Suppose $F \in \mathbb{M}$ and let

$$H(s) = 1 - \frac{2}{2^s}.$$

If $c_F^* = 0$, then the Dirichlet series given by

$$H(s)^k F(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s},$$

is absolutely convergent on the whole complex plane, where k is the order of the possible pole of F(s) at s = 1.

Proof. Let $F \in \mathbb{M}$. Suppose $\sigma_0(F)$ is the abscissa of absolute convergence for the Dirichlet series associated with F. If the Dirichlet series is not convergent on the whole complex plane, then we have $\sigma_0(F) > -\infty$. Note that

$$G(s) \coloneqq F(s + \sigma_0(F) - 1)$$

is in \mathbb{M} whose abscissa of absolute convergence is $\sigma_0(G) = 1$. Therefore, without loss of generality we assume that the Dirichlet series $F(s) = \sum_{n=1}^{\infty} a_n/n^s$ has abscissa of absolute convergence $\sigma_0(F) = 1$.

Since $c_F^* = 0$, we can choose a $\sigma_1 < 0$ such that

$$F(\sigma_1 + it) = O((|t| + 2)^{\epsilon(1/2 - \sigma_1)}),$$

for any $\epsilon > 0$. Using the Phragmén-Lindelöf theorem, we get

$$F(\sigma + it) = O((|t|+2)^{\epsilon\left(\frac{1}{2} - \sigma_1\right)\left(\frac{1 - \sigma}{1 - \sigma_1}\right)}$$
(11)

for $\sigma_1 < \sigma < 1$. Let σ be fixed. For any $\epsilon_1 > 0$, choose $\epsilon = \frac{2\epsilon_1(1-\sigma_1)}{(1-2\sigma_1)(1-\sigma)}$ in (11) to get $|F(\sigma + it)| = O((|t|+2)^{\epsilon_1}).$ Suppose F(s) has a pole of order k at s = 1. Define

$$G(s) \coloneqq \left(1 - \frac{2}{2^s}\right)^k F(s).$$

G(s) is analytic on the whole complex plane and $G \in \mathbb{M}$ with the Dirichlet series representation

$$G(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s}$$

with abscissa of absolute convergence at $\sigma_0(G) = 1$. Also $c_G^* = c_F^* = 0$ by the definition of μ_F^* . Moreover, for $\sigma_1 \ll 0$ and any $\epsilon > 0$, we have

$$|G(\sigma + it)| = O(|t|^{\epsilon})$$

uniformly for $\sigma > \sigma_1$. By Theorem 3.9, we conclude that the Dirichlet series representation of

$$G(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s}$$

converges in the half plane $\Re(s) > \sigma_1 + \epsilon$. Therefore, the abscissa of absolute convergence is $\sigma_0(G) < \sigma_1 + 1 + \epsilon < 1$, which contradicts the assumption that $\sigma_0 = 1$.

Hence $\sigma_0(G) = -\infty$ and the Dirichlet series representation of

$$G(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s}$$

is convergent on the whole complex plane and the proposition follows.

Next, we show that the analogue of the degree conjecture given by Conjecture 1 holds between 0 and 1, i.e., c_F^* does not take non-integer values between 0 and 1.

Theorem 3.11. If $F(s) \in \mathbb{M}$, then $c_F^* < 1$ implies $c_F^* = 0$.

Proof. Let $c_F^* < 1$. If the Dirichlet series representation of $F(s) = \sum_n a_n/n^s$ is convergent on the whole complex plane, then $c_F^* = 0$. Now, suppose $\sum_n a_n/n^s$ absolutely converges in the half plane $\Re(s) > a$. Since $F \in \mathbb{M}$, $a \leq 1$. If a < 1, we can consider the shift F(s + a - 1) such that its half-plane of absolute convergence is $\Re(s) > 1$. Hence, without loss of generality, we assume

$$F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

has abscissa of absolute convergence $\sigma_0(F) = 1$. If F has a pole of order k at s = 1, we consider

$$G(s) \coloneqq \left(1 - \frac{2}{2^s}\right)^k F(s).$$

As discussed in the proof of Proposition 3.10,

$$G(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s}$$

also has abscissa of absolute convergence at $\sigma_0(G) = 1$. Moreover, $c_G^* = c_F^*$.

Hence, for any $\epsilon > 0$, we have a $\sigma_1 < 0$, such that

$$|G(\sigma_1 + it)| = O\left((|t| + 2)^{c_F^*(1/2 - \sigma_1) + \epsilon}\right).$$
(12)

Using Phragmén-Lindelöf theorem on the strip $\sigma_1 < \Re(s) < 1$, we get

$$|G(\sigma+it)| = O\left((|t|+2)^{c_F^*\left(\frac{1}{2}-\sigma_1\right)\left(\frac{1-\sigma}{1-\sigma_1}\right)+\epsilon}\right)$$
(13)

for $\sigma > \sigma_1$. By Theorem 3.9, we conclude that the Dirichlet series of G(s) converges in the half plane

$$\Re(s) > \sigma + c_F^* \left(\frac{1}{2} - \sigma_1\right) \left(\frac{1 - \sigma}{1 - \sigma_1}\right) + \epsilon_1$$

for $\sigma_1 < \sigma < 0$ and $\epsilon_1 > 0$. Since $c_F^* < 1$, by (12), picking σ_1 highly negative and choosing $\sigma \ll 0$ such that $\sigma - c_F^* \sigma < -2$, we have

$$\sigma + c_F^* \left(\frac{1}{2} - \sigma_1\right) \left(\frac{1 - \sigma}{1 - \sigma_1}\right) = (\sigma - c_F^* \sigma) + c_F^* - \frac{c_F^* (1 - \sigma)}{2(1 - \sigma_1)}$$

< -1.

Therefore, the Dirichlet series of G(s) converges on $\Re(s) > -1$. Since the abscissa of absolute convergence for the Dirichlet series of G(s) is $\sigma_0(G) = 1$, we know that the abscissa of convergence $\sigma_c(G) \ge 0$, which leads to a contradiction.

We finally show that if $F \in S$, then c_F and c_F^* in fact coincide with the degree of F in the Selberg class.

Proposition 3.12. Let $F \in \mathbb{M}$, and suppose that F has a functional equation of the Riemann type as in the Selberg class. Then $c_F = d_F$, where d_F is the degree of F in the sense of the Selberg class.

Proof. For simplicity, assume F has only one Γ -factor. We have

$$Q^{s}\Gamma(as+b)F(s) = wQ^{1-\overline{s}}\Gamma(a(1-\overline{s})+b)F(1-\overline{s}),$$

where a, Q are non-negative real numbers, $b \in \mathbb{C}$ with $\Re(b) \ge 0$ and |w| = 1. We know from (8) that $c_F \le d_F$. So we only need to show that c_F is at least d_F . We shall first show it for the Riemann zeta-function and use this template to prove it in general. Substituting s = 1 - 2k for any integer k > 0 in the functional equation for $\zeta(s)$ gives

$$\pi^{-(1-2k)/2}\zeta(1-2k)\Gamma\left(\frac{1-2k}{2}\right) = \pi^{-k}\zeta(2k)\Gamma(k).$$

Thus, we get

$$\zeta(1-2k) = \frac{\pi^{1/2-2k}\zeta(2k)\Gamma(k)}{\Gamma(1/2-k)}$$

Evaluating the right hand side, we have

$$\zeta(1-2k) = \frac{\pi^{1/2-2k}(k-1)!(2k)!}{(-4)^k k!} \zeta(2k).$$

Since $\zeta(2k)$ is bounded, using Stirling's formula we conclude that

$$|\zeta(1-2k)| \sim (2k)^{2k-\frac{1}{2}} A$$

where $A \ll k^k$. Thus, we conclude that $c_{\zeta} = 1$ simply by considering the values taken by ζ on the real line.

Imitating this proof in general, substitute s = 1 - ck for any integer k > 0 and any positive constant c, such that a(1 - ck) + b is not an integer. The functional equation gives

$$Q^{1-ck} \Gamma(a+b-ack) F(1-ck) = w Q^{ck} \Gamma(ack+b) F(ck).$$

Thus, we get

$$F(1-ck) = \frac{w Q^{2ck-1} \Gamma(ack+b) F(ck)}{\Gamma(a+b-ack)}.$$

Repeatedly using the identity $\Gamma(s+1) = s\Gamma(s)$ and then using Stirling's formula, we get

$$|F(1-ck)| \sim |ack+b|^{2ack+c'}.A,$$

where $A \ll k^k$ and c' is a constant independent of k. Thus, we conclude that $c_F = 2a$, which is the degree of F.

Moreover, if $F \in \mathbb{M}$ satisfies a functional equation of the Riemann type, then c_F^* is also the same as the degree d_F of F. This is an immediate consequence of Lemma 3.4.

In the absence of a functional equation, c_F and c_F^* can be very different. For $F \in \mathbb{M}$, it can happen that c_F^* is 0 and c_F is arbitrarily large. We exhibit examples below of Dirichlet series which are absolutely convergent on the whole complex plane and hence have $c_F^* = 0$, yet take large values of c_F .

Let

$$F(s) = \sum_{n=1}^{\infty} \frac{e^{-n}}{n^s}.$$

This Dirichlet series is absolutely convergent on the whole complex plane. But at the negative integers we have,

$$F(-k) = \sum_{n=1}^{\infty} e^{-n} n^k \sim \int_1^{\infty} e^{-t} t^k dt = \Gamma(k+1) + O(1).$$

Using Stirling's formula, we conclude that $c_F = 1$. Moreover, $F^r(s)$ is in \mathbb{M} for any integer r > 0 and $c_{F^r}^* = 0$ and $c_{F^r} = r$. In fact, if we start with the Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} e^{-n^r} n^{-s},$$
(14)

by a similar argument we see that, for any real r > 0, $c_F = r$ but $c_F^* = 0$.

4. The Lindelöf class

Let \mathbb{M}_0 and \mathbb{M}_0^* be the subsets of \mathbb{M} with $c_F = 0$ and $c_F^* = 0$, respectively. Note that both \mathbb{M}_0 and \mathbb{M}_0^* form subrings of \mathbb{M} , which follows immediately from Proposition 3.7. Therefore, all the non-zero elements of \mathbb{M}_0 (resp. \mathbb{M}_0^*) form a multiplicatively closed set. Call it \mathbb{M}_{00} (resp. \mathbb{M}_{00}^*).

We define the Lindelöf class [7] by localizing at these sets,

$$\mathfrak{L} = \mathbb{M}_{00}^{-1} \mathbb{M}.$$
$$\mathfrak{L}^* = \mathbb{M}_{00}^{*}^{-1} \mathbb{M}.$$

Elements of the rings \mathfrak{L} and \mathfrak{L}^* satisfy growth conditions coming from \mathbb{M} . Moreover, after multiplication by an entire Dirichlet series, they are analytic on \mathbb{C} and have Dirichlet series representation which is absolutely convergent on $\mathfrak{R}(s) > 1$. This is a consequence of Proposition 3.10. Since a Dirichlet polynomial is entire and has many zeroes, elements of these classes \mathfrak{L} and \mathfrak{L}^* may have many poles. But for any $F \in \mathfrak{L}$ (resp. \mathfrak{L}^*), one can always find a right half plane, where F does not have a pole. Note that $\mathbb{S} \subset \mathbb{M} \subset \mathfrak{L}^* \subset \mathfrak{L}$ and $\mathbb{S} \cap \mathbb{M}_{00} = \{1\}$. Further since \mathbb{M} is a ring, the group ring $\mathbb{C}[\mathbb{S}]$ is contained in \mathbb{M} .

We extend the definition of the function c_F (resp. c_F^*) on \mathfrak{L} (resp. \mathfrak{L}^*). If $G \in \mathfrak{L}$ (resp. \mathfrak{L}^*), then $G = F/\mu$, where $\mu \in \mathbb{M}_{00}$ (resp. \mathbb{M}_{00}^*) and $F \in \mathbb{M}$. We define $c_G = c_F$ (resp. $c_G^* = c_F^*$). Note that this definition is compatible with the definition of c_F based on the growth condition. We first check that the function c_F (resp. c_F^*) is well-defined on \mathfrak{L} (resp. \mathfrak{L}^*). If we write $G = H/\nu$ for some other $H \in \mathbb{M}$ and $\nu \in \mathbb{M}_{00}$, and suppose $c_H > c_F$, then $c_{F\nu-H\mu} = c_H$. But, by definition $c_{F\nu-H\mu} = 0$, which leads to a contradiction. Thus, c_F is well-defined on \mathfrak{L} . Moreover, we also have that a non-zero F is a unit of \mathfrak{L} if and only if $c_F = 0$. We use the same argument to show that c_F^* is well-defined on \mathfrak{L}^* .

5. Ring theoretic properties of \mathbb{M} , \mathfrak{L} and \mathfrak{L}^*

The classes of *L*-functions \mathbb{M}, \mathfrak{L} and \mathfrak{L}^* form rings. Moreover, since they consist of meromorphic functions, they form integral domains. We further show that the ring \mathbb{M} is non-Noetherian and non-Artinian.

Proposition 5.1. \mathbb{M}, \mathfrak{L} and \mathfrak{L}^* are non-Artinian.

Proof. Consider $F \in \mathbb{M}$ with $c_F^* > 0$. Let $\langle F \rangle$ be the ideal generated by F in \mathbb{M} , which is clearly a non-trivial proper ideal of \mathbb{M} . We have the following strictly decreasing sequence of ideals in \mathbb{M} given by

$$\langle F \rangle \not\supseteq \langle F^2 \rangle \supseteq \langle F^3 \rangle \cdots$$
 (15)

Thus, \mathbb{M} is not Artinian. Moreover, $\langle F \rangle \subset \mathbb{M}$ generates a non-trivial ideal $I \subset \mathfrak{L}$ and $I^* \in \mathfrak{L}^*$ and we have strictly decreasing sequence of ideals.

$$I \not\supseteq I^2 \supseteq I^3 \cdots,$$
$$I^* \supseteq (I^*)^2 \supseteq (I^*)^3 \cdots.$$

Hence, we conclude that \mathfrak{L} and \mathfrak{L}^* are non-Artinian.

Now we show that \mathbb{M} is non-Noetherian.

Lemma 5.2. If $F(s) \in \mathbb{M}$ and F(s) is entire, then $F_1(s) \coloneqq F(s+s_0) \in \mathbb{M}$ for $\Re(s_0) > 0$.

Proof. Again, properties (1),(2) and (4) in the definition of \mathbb{M} hold clearly. We only need to check the growth condition.

$$c_{F_2} = \limsup_{\sigma < 0} \frac{2\mu_{F_2}(\sigma)}{1 - 2\sigma} = \limsup_{\sigma < 0} \frac{2\mu_F(\sigma)}{1 - 2\sigma} = c_F.$$

Lemma 5.2 shows that shifts of entire functions in \mathbb{M} also lie in \mathbb{M} . Recall that in \mathbb{S} , vertical shifts of entire functions in \mathbb{S} lie in \mathbb{S} . In case of \mathbb{M} , we no longer have to restrict ourselves to only vertical shifts.

Proposition 5.3. M is non-Noetherian.

Proof. As earlier, we prove this by explicitly constructing a strictly increasing infinite chain of ideals. For $s \neq 1$, let

$$I_s \coloneqq \{F \in \mathbb{M} : F(s) = 0\}.$$

Then, I_s forms an ideal of M. Define

$$K_1 \coloneqq \bigcap_{k=1}^{\infty} I_{-2k}.$$

We know that $L(s,\chi) \in K_1$, where χ is any even primitive Dirichlet character, because it vanishes at all negative even integers. By Lemma 5.2, $L(s+2n,\chi) \in \mathbb{M}$ and it vanishes on all even negative integers except $\{-2k : k \leq n, k \in \mathbb{N}\}$. We define

$$K_i \coloneqq \bigcap_{k=i}^{\infty} I_{-2k}.$$

Clearly, $K_1 \subseteq K_2 \subseteq K_3 \subseteq \dots$ Since we have exhibited that the function $L(s + 2n, \chi)$ belongs to K_{n+1} but not K_n . Thus, we get

$$K_1 \not\subseteq K_2 \not\subseteq K_3 \not\subseteq \dots$$

Therefore, \mathbb{M} is non-Noetherian.

We are not yet able to show that \mathfrak{L} and \mathfrak{L}^* are non-Noetherian, although we expect it to be true. Note that the ring $\mathbb{C}[\mathbb{S}]$ is a subring of \mathbb{M} . We expect that $\mathbb{C}[\mathbb{S}]$ is also non-Noetherian. Indeed we show below that this is a consequence of Selberg's orthonormality conjecture. This was already known due to Molteni [6].

Definition 5.4. An element $F \neq 1 \in \mathbb{S}$ is said to be a primitive element if it cannot be further factorized in \mathbb{S} i.e., if $F = F_1F_2$ with $F_i \in \mathbb{S}$, then either $F_1 = 1$ or $F_2 = 1$.

Selberg's orthonormality conjecture states that:

Conjecture (Selberg's Orthonormality Conjecture). Let $F, G \in S$ be any two primitive elements, whose Dirichlet series expansion on $\Re(s) > 1$ is given by $F(s) = a_F(n)n^{-s}$ and $G(s) = a_G(n)n^{-s}$. Then,

$$\sum_{p \le x} \frac{a_p(F)a_p(G)}{p} = \begin{cases} \log \log x + O(1), & \text{if } F = G\\ O(1), & \text{if } F \neq G. \end{cases}$$

Proposition 5.5. Selberg's orthonormality conjecture implies that $\mathbb{C}[\mathbb{S}]$ is non-Noetherian.

Proof. It was observed by Selberg in [9] and Bombieri-Hejhal in [1] that distinct elements in the Selberg class are linearly independent over \mathbb{C} . We show that Selberg's conjecture implies that distinct primitive elements in the Selberg class are algebraically independent. Since there are infinitely many primitive elements in \mathbb{S} , we conclude that $\mathbb{C}[\mathbb{S}]$ is non-Noetherian. Selberg's orthonormality conjecture implies that the factorization into primitive elements in the Selberg class is unique, see [2]. Suppose, $F_1, F_2, ..., F_n$ are distinct primitive elements in \mathbb{S} satisfying a polynomial $P(x_1, x_2, ..., x_n) \in \mathbb{C}[x_1, x_2, ..., x_n]$. By linear independence of distinct elements in \mathbb{S} , we conclude that not all terms in the polynomial expansion of $P(F_1, ..., F_n)$ are distinct. Thus, we have relations of the form

$$F_1^{a_1} F_2^{a_2} \dots F_n^{a_n} = F_1^{b_1} F_2^{b_2} \dots F_n^{b_n}, (16)$$

where not all the a_i 's are the same as the b_i 's. But, both left hand side and right hand side in (16) are elements in the Selberg class. This contradicts the unique factorization.

Since $\mathbb{C}[S] \subseteq \mathbb{M}$ and we know that \mathbb{M} is non-Noetherian, the above proposition can be thought of as some indicative evidence towards the validity of unique factorization into primitives in the Selberg class.

5.1. Primitive elements in \mathbb{M} and \mathfrak{L}^* . The notion of primitive elements in \mathbb{S} can be extended to the class \mathbb{M} and \mathfrak{L}^* .

Definition 5.6. We say that an element $F \in \mathfrak{L}^*$ (resp. \mathbb{M}) is primitive if $c_F^* > 0$ and $F = F_1F_2$ implies that either $c_{F_1}^* = 0$ or $c_{F_2}^* = 0$.

Note that every element $F \in \mathfrak{L}^*$ (resp. \mathbb{M}) with $c_F^* = 1$ is primitive, which directly follows from Theorem 3.11. But this is not quite true for \mathfrak{L} . This is because we could have an entire Dirichlet series F(s) with $c_F > 0$, which can be written as a product of infinitely many entire Dirichlet series $\prod_i F_i(s)$, each of which have $c_{F_i} > 0$ for each *i*. Hence, we avoid defining the notion of primitive elements for the class \mathfrak{L} .

We now show that every element in \mathbb{M} and \mathfrak{L}^* can be written as a product of primitive elements. We follow the same argument as in the case of the Selberg class \mathbb{S} .

Proposition 5.7. Let $F \in \mathfrak{L}^*$ (resp. \mathbb{M}), then F(s) can be be written as a finite product of primitive elements in \mathfrak{L}^* (resp. \mathbb{M}).

Proof. Let $F \in \mathfrak{L}^*$ (resp. \mathbb{M}) and suppose

 $F = F_1 F_2,$

where $F_1, F_2 \in \mathfrak{L}^*$ (resp. M). By properties of c_F^* , we know that $c_F^* \leq c_{F_1}^* + c_{F_2}^*$. If $c_{F_i}^* < 1$, then by Theorem 3.11, $c_{F_i}^* = 0$. Hence, we cannot factorize F indefinitely into non-units (i.e. elements with $c^* > 0$). Therefore, F(s) has a factorization into primitive elements.

With the above notion of primitivity, we may ask whether this factorization is unique.

Conjecture 2. Every element $F \in \mathfrak{L}^*$ (resp. \mathbb{M}) can be uniquely factorized into primitive elements.

Assuming unique factorization, we conclude the algebraic independence of distinct primitive elements in \mathbb{M} and \mathfrak{L}^* .

Proposition 5.8. Conjecture 2 implies that linearly independent primitive elements in \mathfrak{L}^* (resp. \mathbb{M}) are algebraically independent.

Proof. The proof follows similar approach of Proposition 5.5. Let $F, G \in \mathfrak{L}^*$ be linearly independent primitive elements satisfying a polynomial equation P(F,G) = 0. From Proposition 3.7, we conclude that if the terms in the polynomial with largest c^* value, say d, must cancel each other. In other words, if $P(x, y) = \sum_{m,n} a_{m,n} x^m y^n$, then

$$\sum_{\substack{c_F^* + nc_G^* = d}} a_{m,n} F^m G^n = 0$$

Since F and G are linearly independent, we also have that d > 0. Cancelling the common factors, we get an expression of the form

$$F^k = \sum_{m < k, n} b_{m,n} F^m G^n,$$

where each term in the RHS has a factor of G and hence $F^k/G \in \mathfrak{L}^*$ (resp. \mathbb{M}). This contradicts the unique factorization for F^k . Hence, F and G are algebraically independent.

We now show that \mathbb{M}, \mathfrak{L} and \mathfrak{L}^* are closed under differentiation.

m

Proposition 5.9. If $F \in \mathbb{M}$, then $F' \in \mathbb{M}$. This is also true if we replace \mathbb{M} by \mathfrak{L} or \mathfrak{L}^* . Moreover, $c_F \ge c_{F'}$ and $c_F^* \ge c_{F'}^*$. Proof. If $F \in \mathbb{M}$, then the properties (1),(2) and (4) clearly hold for F'. We only have to check the growth condition. Suppose f(z) is a meromorphic function on \mathbb{C} . If f is bounded on the half plane $\{z : \Re(z) < -N_1\}$ by M, for some $N_1 > 0$, then f'(z) is also bounded on the half-plane $\{z : \Re(z) < -N_2\}$, for some $N_2 > 0$. We can see this by using Cauchy's formula namely,

$$f'(a) = \frac{1}{2\pi i} \int_{C(\epsilon,a)} \frac{f(z)}{(z-a)^2} dz,$$

where $C(\epsilon, a)$ is the circle of radius ϵ centered at a and f is analytic in the interior of $C(\epsilon, a)$. Since f(z) is bounded by M on $C(\epsilon, a)$, we get

$$|f'(a)| \le \frac{M}{\epsilon}.$$

If we choose $N_2 > N_1 + 2$, for every point in $\{z : \Re(z) < -N_2\}$, we can set $\epsilon > 1$, and thus get f'(z) is bounded by M in the region $\{z : \Re(z) < -N_2\}$.

Now, if $F(z) \in \mathbb{M}$, then by the growth condition we know that for any $\epsilon > 0$,

$$g(z) \coloneqq \frac{F(z)}{z^{c_F(1-2\sigma)+\epsilon}}$$

is bounded in the half-plane $\{z : \Re(z) < -N_1\}$, for some $N_1 > 0$. Therefore, we have for some $N_2 > 0$, in the half-plane $\{z : \Re(z) < -N_2\}$,

$$\left| \left(\frac{F(z)}{z^{c_F(1-2\sigma)+\epsilon}} \right)' \right| = \left| \frac{F'(z)z^{c_F(1-2\sigma)+\epsilon} - \left(z^{c_F(1-2\sigma)+\epsilon} \right) \right)' F(z)}{z^{2c_F(1-2\sigma)+2\epsilon}} \right| < M$$
$$\implies |F'(z)||z|^{c_F(1-2\sigma)+\epsilon} < M|z|^{2c_F(1-2\sigma)+2\epsilon} + \left| \left(z^{c_F(1-2\sigma)+\epsilon} \right)' \right| |F(z)| = 0$$

If we fix σ , then

$$|F'(z)||z|^{c_F(1-2\sigma)+\epsilon} < M'|z|^{2c_F(1-2\sigma)+2\epsilon}$$

Hence,

$$F'(z)| < M''|z|^{c_F(1-2\sigma)+\epsilon}$$

Thus, we get the growth condition on F'(z). Moreover, we also conclude that if $F \in \mathbb{M}$, then $c_{F'} \leq c_F$ and $c_{F'}^* \leq c_F^*$. The proof of the statement for \mathfrak{L} (resp. \mathfrak{L}^*) follows by proving the fact that the derivative of a unit in \mathfrak{L} (resp. \mathfrak{L}^*) is also a unit in \mathfrak{L} (resp. \mathfrak{L}^*). Then, for any $F \in \mathfrak{L}$ (resp. \mathfrak{L}^*), we can find a unit $\nu \in \mathfrak{L}$ (resp. \mathfrak{L}^*), such that $\nu F \in \mathbb{M}$, after which we can use the above argument to say $(\nu F)' \in \mathfrak{L}$ (resp. \mathfrak{L}^*). But $(\nu F)' = \nu' F + \nu F'$ and thus $F' \in \mathfrak{L}$ (resp. \mathfrak{L}^*).

6. Ideals in \mathfrak{L} and \mathfrak{L}^*

As a first step to understanding the ideal theory of \mathfrak{L} (resp. \mathfrak{L}^*), we construct some nontrivial ideals of \mathfrak{L} (resp. \mathfrak{L}^* .) We use the following proposition for the construction.

Proposition 6.1. If F(s) is a non-constant entire Dirichlet series, then F(s) cannot have zeroes on any arithmetic progression,

$$S = \{a, a - d, a - 2d, \dots\},$$
(17)

where $d \in \mathbb{R}^+$ and $a \in \mathbb{C}$.

Proof. First, we show that if

$$F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

is convergent on the whole complex plane, it cannot have zeroes on non-positive integers. In other words, it cannot vanish on $\{0, -1, -2, -3...\}$. Since, $\sum_{n=1}^{\infty} a_n n^{-s}$ is entire, we have

$$|a_n| \ll \frac{1}{n^k}.\tag{18}$$

for all $k \in \mathbb{N}$. Define

$$f(x) \coloneqq \sum_{n=1}^{\infty} a_n x^n.$$

By the root test and using (18), we conclude that the power series f(x) defines an analytic function on the whole complex plane. Consider the Taylor series expansion around x = 1, given by,

$$f(x) = \sum_{n=0}^{\infty} b_n (x-1)^n,$$
(19)

where,

$$b_n = \frac{f^{(n)}(1)}{n!}$$

Now, suppose F(s) takes zeroes on all non-positive integers, we have

$$F(-k) = \sum_{n=1}^{\infty} a_n n^k = 0,$$

for all $k \in \mathbb{N} \cup \{0\}$. In particular, we get $b_0 = F(0) = 0$ and $b_1 = F(-1) = 0$. In general,

$$b_k = \sum_{n=k}^{\infty} \binom{n}{k} a_n.$$

We write it as,

$$\sum_{n=k}^{\infty} \binom{n}{k} a_n = \sum_{n=1}^{\infty} \frac{n(n-1)\dots(n-k+1)}{k!} a_n,$$
(20)

where the first (k-1)-terms of the right hand side of (20) are 0. Moreover, each term in the right hand side is a polynomial in n of degree k. Since, $\sum_{n=1}^{\infty} a_n n^k$ is absolutely convergent for all k, we can rearrange the terms in the summation. Thus, we get,

$$b_k = \sum_{n=1}^{\infty} \binom{n}{k} a_n = c_0 \sum_{n=1}^{\infty} a_n + c_1 \sum_{n=1}^{\infty} na_n + \dots + c_k \sum_{n=1}^{\infty} n^k a_n,$$

where c_i 's are some real constants. Therefore,

$$b_k = c_0 F(0) + c_1 F(-1) + \dots + c_k F(-k) = 0$$

for all k. Hence, f(x) is identically zero, which leads to F(s) being identically 0.

We deduce the general case of an arithmetic progression S as in the statement of the proposition, by considering

$$F_1(s) \coloneqq F(sd+a) = \sum_{n=1}^{\infty} \frac{a_n}{n^a} \frac{1}{n^{sd}}.$$

This function is no longer a standard Dirichlet series but it converges for all $s \in \mathbb{C}$ and vanishes at all non-positive integers. Now, consider the series

$$f(x) \coloneqq \sum_{n=1}^{\infty} \frac{a_n}{n^a} x^{n^d}$$

Choosing the principal branch of log, the function f(x) is well-defined and absolutely convergent on $\mathbb{C}\backslash\mathbb{R}_{\leq 0}$. The rest of the proof is similar as above.

Consider the ideal in \mathbb{M} given by,

$$I_S = \bigcap_{s \in S} I_s,$$

where I_s is as in Proposition 5.3 and S is an arithmetic progression as in (17). I_S is non-empty since it contains elements in S. By Proposition 6.1, I_S does not contain any non-zero entire Dirichlet series. By definition,

$$\mathfrak{L} (\text{ resp. } \mathfrak{L}^*) = \mathbb{M}_{00}^{-1} \mathbb{M} (\text{ resp. } \mathbb{M}_{00}^{*^{-1}} \mathbb{M}),$$

where \mathbb{M}_{00} and \mathbb{M}_{00}^* consist of Dirichlet series which are convergent on \mathbb{C} , up to a Dirichlet polynomial (by Proposition 3.10). Hence, I_S generates a non-trivial ideal in \mathfrak{L} (resp. \mathfrak{L}^*).

7. Acknowledgement

We are grateful to the referee for detailed comments which helped in improving the quality of the paper.

References

- E. Bombieri and D. A. Hejhal, On the distribution of zeros of linear combinations of Euler products, *Duke Math. J.*, 80, pp. 821–862, (1995).
- [2] J. B. Conrey and A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J., 72, pp. 673-693, (1993).
- [3] P. Epstein, Zur Theorie allgemeiner Zetafunktionen, Math. Annalen, 56, pp. 615–644, (1903).
- [4] P. Epstein, Zur Theorie allgemeiner Zetafunktionen II, Math. Annalen, 63, pp. 205–216, (1906).
- [5] G. H. Hardy, M. Riesz, The General Theory of Dirichlet Series, Cambridge University Press, (1915).
- [6] Giuseppe Molteni, On the algebraic independence in the Selberg class, Arch. Math. (Basel), 79, pp. 432-438, (2002).
- [7] V. K. Murty, The Lindelöf Class of L-functions, The Conference on L-functions, pp. 165-174, eds. L. Weng and M. Kaneko, World Sci. Publ., Hackensack, NJ, (2007).
- [8] M. R. Murty, Selberg's conjectures and Artin L-functions, Bull. Amer. Math. Soc., 31, pp. 1-14, (1994).
- [9] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), pp. 367-385. Univ. Salerno, (1992).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, 40 ST. GEORGE ST, CANADA, ON, M5S2E4 E-mail address: adixit@math.toronto.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, 40 ST. GEORGE ST, CANADA, ON, M5S2E4 E-mail address: murty@math.toronto.edu