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Abstract. In 2002, the second author [7] introduced a class of L-functions M, which con-
tains the Selberg class and forms a ring. In this article, we study this class and prove that
the invariant c∗F , which is the generalization of degree in the Selberg class cannot take non-
integer values between 0 and 1. We also study the ring structure of M showing that it is
non-Noetherian.

1. Introduction

In 1989, A. Selberg [9] introduced a class of L-functions S satisfying properties similar to
that of the Riemann zeta-function. The Selberg class can be regarded as a model for L-
functions coming from arithmetic and geometry. Many naturally occurring L-functions such
that the Riemann zeta-function, the Dirichlet L-functions and Dedekind zeta-functions are
members of the Selberg class. Since then, the Selberg class has been extensively studied
and many interesting properties on the structure of this class have been discovered. In [9],
Selberg made two key conjectures on this class which vaguely claim that distinct L-functions
in S do not interact with each other. These conjectures have far reaching consequences. As
shown by M. Ram Murty [8], the Selberg’s orthogonality conjecture implies the strong Artin’s
holomorphy conjecture. Despite its generality, the Selberg class has many limitations. It is
not closed under addition and many naturally occurring L-functions such as the Hurwitz
zeta-function, Lerch zeta-function or Epstein zeta-function are not members of the Selberg
class.

This motivated the second author [7] to introduce a class of L-functions M, which is defined
based on growth conditions. This class M contains the Selberg class and forms a ring. In
this article, we study this class by introducing an invariant which generalizes the notion of
degree in the Selberg class and prove that it does not take non-integer values between 0 and
1. We also introduce a method to construct non-trivial ideals of M and prove that M is
non-Noetherian.

2. The Selberg Class

The Selberg class S consists of meromorphic functions F (s) satisfying the following prop-
erties.

(1) Dirichlet series- F can be expressed as a Dirichlet series

F (s) =
∞
∑
n=1

aF (n)

ns
,

which is absolutely convergent in the region R(s) > 1. We also normalize the leading
coefficient as aF (1) = 1.
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(2) Analytic continuation - There exists a non-negative integer k, such that (s−1)kF (s)
is an entire function of finite order.

(3) Functional equation - There exist real numbers Q > 0 and αi > 0, complex numbers
βi and w ∈ C, with R(βi) ≥ 0 and ∣w∣ = 1, such that

Φ(s) ∶= Qs∏
i

Γ(αis + βi)F (s) (1)

satisfies the functional equation

Φ(s) = wΦ̄(1 − s̄).

(4) Euler product - There is an Euler product of the form

F (s) = ∏
p prime

Fp(s), (2)

where

logFp(s) =
∞
∑
k=1

bpk

pks

with bpk = O(pkθ) for some θ < 1/2.
(5) Ramanujan hypothesis - For any ε > 0,

∣aF (n)∣ = Oε(n
ε
). (3)

The constants in the functional equation (1) depend on F . Although the functional equation
may not be unique, because of the duplication formula of Γ-function, we have some well-defined
invariants, such as the degree dF of F , which is defined as

dF ∶= 2∑
i

αi.

The factor Q in the functional equation gives rise to another invariant referred to as the
conductor qF , which is defined as

qF ∶= (2π)dFQ2
∏
i

αi
2αi . (4)

It is an interesting conjecture that both the degree and the conductor associated to elements
of the Selberg class are non-negative integers.

3. The class M

In [7], the second author defined a class of L-functions based on growth conditions. We
start by defining two growth parameters µ and µ∗.

Definition 3.1. The class T. Define the class T to be the set of meromorphic functions F (s)
satisfying the following conditions.

(1) Dirichlet series - For R(s) > 1, F (s) is given by the absolutely convergent Dirichlet
series

F (s) =
∞
∑
n=1

aF (n)

ns
.

(2) Analytic continuation - There exists a non-negative integer k, such that (s−1)kF (s)
is an entire function of order ≤ 1.

(3) Ramanujan hypothesis - ∣aF (n)∣ = Oε(n
ε) for any ε > 0.
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Definition 3.2. Let F ∈ T be entire. Define µF (σ) as

µF (σ) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

inf {λ ∈ R ∶ ∣F (s)∣ ≤ (∣s∣ + 2)λ, for all s with R(s) = σ},

∞, if the infimum does not exist.

(5)

Also define:

µ∗F (σ) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

inf {λ ∈ R ∶ ∣F (σ + it)∣ ≪σ (∣t∣ + 2)λ},

∞, if the infimum does not exist.

(6)

In the definition of µ∗F (σ), the implied constant depends on both F and σ, whereas in
µF (σ), the constant only depends on F and is independent of σ.

We further extend the definition of µF and µ∗F to all the elements in the class T as follows.
Suppose F ∈ T has a pole of order k at s = 1. Consider the function

G(s) ∶= (1 −
2

2s
)
k

F (s). (7)

Clearly, G(s) is an entire function and belongs to T. We define

µF (σ) ∶= µG(σ),

µ∗F (σ) ∶= µ
∗
G(σ).

Intuitively, µ∗F (σ) does not see how F (s) behaves close to the real axis. On the other hand,
µF (σ) captures an absolute bound for F (s) on the entire vertical line R(s) = σ.

It follows from the definition that

µ∗F (σ) ≤ µF (σ)

for any σ. From the above definition, we immediately conclude the following.

Proposition 3.3. Let F ∈ T. For σ > 1 + ε,

µ∗F (σ) = 0

µF (σ) ≪F,ε 1.

for any ε > 0.

Proof. Since F ∈ T, it is given by a Dirichlet series F (s) = ∑n an/n
s, which is absolutely

convergent for σ > 1 and hence bounded in the region σ ≥ 1+ ε, with the bound depending on
F and ε, but independent of σ. Hence, we have the proposition. �

Note that µF (σ) and µ∗F (σ) are always non-negative for all σ. This is because µ∗F (σ) = 0
for σ > 1 by Proposition 3.3. Hence, if µF (σ1) < 0, then by Phragmén-Lindelöf theorem,
µF (σ) ≤ 0 in the strip σ1 ≤ R(s) ≤ σ. Thus, we get a vertical strip where F (s) is bounded
and tends to 0 as I(s) → ∞. This is a contradiction. By a similar argument, we also conclude
that µF (σ) is always non-negative.

If F ∈ S, by the functional equation (1), using Stirling’s formula, we have (see [7], Sec.2.1])

µ∗F (σ) ≤
1

2
dF (1 − 2σ) for σ < 0. (8)
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Using the Phragmén-Lindelöf theorem, we deduce that

µ∗F (σ) ≤
1

2
dF (1 − σ) for 0 < σ < 1.

The same results hold for µF up to a constant depending on F . To see this, we use the
functional equation for F ,

F (s) = ∆F (s)F (1 − s),

where

∆F (s) ∶= ωQ
1−2s

k

∏
j=1

Γ(αj(1 − s) + βj)

Γ(αjs + βj)
.

Using Stirling’s formula, we get

Lemma 3.4. For F ∈ S and t ≥ 1, uniformly in σ,

∆F (σ + it) = (αQ2tdF )

1/2−σ−it
exp(itdF +

iπ(β − dF )

4
)(ω +O(

1

T
)),

where

α ∶=
k

∏
j=1

α
2αj
j and β ∶= 2

k

∑
j=1

(1 − 2βj).

By Lemma 3.4, we conclude that

µF (σ) ≤
1

2
dF (1 − 2σ) +O(1) for σ < 0. (9)

and

µF (σ) ≤
1

2
dF (1 − σ) +O(1) for 0 < σ < 1.

Thus, for F ∈ S, these parameters µF (σ) and µ∗F (σ) are well-defined (i.e., µF (σ), µ
∗
F (σ) <

∞). We use this behaviour of µ and µ∗ to introduce a growth condition. This leads to the
definition of class M.

Definition 3.5. The class M. Define the class M (see [7, sec.2.4]) to be the set of mero-
morphic functions F (s) satisfying the following conditions.

(1) Dirichlet series - F (s) is given by a Dirichlet series

∞
∑
n=1

aF (n)

ns
,

which is absolutely convergent in the right half plane R(s) > 1.
(2) Analytic continuation - There exists a non-negative integer k such that (s−1)kF (s)

is an entire function of order ≤ 1.

(3) Growth condition - The quantity
µF (σ)
(1−2σ) is bounded for σ < 0.

(4) Ramanujan hypothesis - ∣aF (n)∣ = Oε(n
ε) for any ε > 0.

Notice that in the condition of analytic continuation, we have to force the complex order to
be ≤ 1. In case of the Selberg class, this condition is implicit due to the functional equation.

We now define some invariants for M, which generalize the notion of degree in S.
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Definition 3.6. For F ∈M, define

cF ∶= lim sup
σ<0

2µF (σ)

1 − 2σ
,

c∗F ∶= lim sup
σ<0

2µ∗F (σ)
1 − 2σ

.

By the growth condition, cF and c∗F are bounded for F ∈M. Moreover, since µ∗F (σ) ≤ µF (σ)
for all R(s) = σ, we have

c∗F ≤ cF .

Note that cF and c∗F are ≥ 0. Using the Phragmén-Lindelöf theorem, we have

µF (σ) ≤
1

2
cF (1 − σ),

µ∗F (σ) ≤
1

2
c∗F (1 − σ)

for 0 < σ < 1. We mention a few examples below.

Example 1. Any Dirichlet polynomial F belongs to M and cF = c∗F = 0.

Example 2. Any Dirichlet series F which is absolutely convergent on the whole complex
plane has c∗F = 0.

Example 3. The Riemann zeta-function ζ(s) is in M and cζ = c
∗
ζ = 1.

Example 4. If F is an element in the Selberg class, then F also belongs to M. Moreover,
cF = c∗F and is given by the degree of F .

The proof of Examples 3 and 4 will follow from Proposition 3.12.

Example 5. Linear combinations of elements in the Selberg class S are in M.

We shall see this later, when we prove that M forms a ring.

Another example of L-functions in M, which are not constructed from linear combination
of elements in S are the translates of Epstein zeta-functions.

Example 6. For a given real positive definite n × n-matrix T , the Epstein zeta-function is
defined as (see [3], [4])

ζ(T, s) ∶= ∑
0≠v∈Zn

(vtTv)−s.

This series is absolutely convergent for R(s) > n/2. It can be analytically continued to C
except for a simple pole at s = n/2 with residue

πn/2

Γ(n/2)
√

detT
.

Moreover, it satisfies a functional equation. Let

ψ(T, s) ∶= π−s/2Γ(s)ζ(T, s).

Then,

ψ(T, s) = (detT )
−1/2ψ(T−1,

n

2
− s).

Thus, the function ζ(T, s + n/2 − 1) is an element in M. The growth condition is satisfied
because of the functional equation and further we have cζ(T,s+n/2−1) = c∗ζ(T,s+n/2−1) = 2.
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Example 7. If F (s) belongs to M, then all its translates given by F (s) + a also belong to M.
If F (s) is analytic at s = 1, then the scalar shifts F (rs) also belong to M for a ∈ C and real
r ≥ 1. Furthermore, if F is analytic at s = 1, then for R(a) ≥ 0, F (s + a) is also in M. In all
the above cases, they have the same values of cF and c∗F .

In order to ensure that M is closed under addition, we need to establish that these invariants
cF and c∗F in fact satisfy an ultrametric inequality.

Proposition 3.7 ([7], Prop. 1). For F,G ∈M,

cFG ≤ cF + cG and cF+G ≤ max(cF , cG).

Similarly,

c∗FG ≤ c∗F + c
∗
G and c∗F+G ≤ max(c∗F , c

∗
G).

In fact, if cF > cG (resp. c∗F > c∗G), then

cF+G = cF (resp. c∗F+G = c∗F ).

Proof. The proof of the above inequalities for c∗F follows immediately from the definition of
µ∗F . This is because, for any fixed σ and ∣t∣ > 1, we have

∣F (σ + it)∣ ≪σ ∣t∣µ
∗

F (σ)+ε,

for any ε > 0. Therefore, for any F,G ∈M, we have

∣FG(σ + it)∣ ≪σ ∣t∣µ
∗

F (σ)+µ∗G(σ)+ε.

Similarly,

∣(F +G)(σ + it)∣ ≪σ ∣t∣µ
∗

F (σ)+ε + ∣t∣µ
∗

G(σ)+ε

≪σ ∣t∣max (µ∗F (σ), µ∗G(σ))+ε.

Incorporating this into the definition of c∗F , we are done. By a similar argument, we also get
that cFG ≤ cF + cG.

We are left to prove cF+G ≤ max(cF , cG). For a fixed σ, without loss of generality, assume
µF (σ) ≥ µG(σ). For s = σ + it and any ε > 0, we have

∣(F +G)(s)∣ ≤ ∣F (s)∣ + ∣G(s)∣

≤ (∣s∣ + 2)µF (σ)+ε + (∣s∣ + 2)µG(σ)+ε

≤ 2(∣s∣ + 2)µF (σ)+ε.

Hence, from the definition of µF we get,

µF+G(σ) ≤ µF (σ) +
log 2

log(∣s∣ + 2)
.

Using the above inequality in the definition of cF , we get

cF+G ≤ max(cF , cG).

�

It follows from the above Proposition 3.7 that M forms a ring.

The degree conjecture for the Selberg class claims that the degree of any element in S
must be a non-negative integer. The question arises if we can make similar claims about
these invariants cF and c∗F . As it turns out, cF can take non-integer values. In fact, one can
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manufacture functions in M with any arbitrary positive real value of cF , as we shall see in
(14). But, we expect the analogue of the degree conjecture to be true for the invariant c∗F .

Conjecture 1. If F ∈M, then c∗F is a non-negative integer.

In this direction, following the argument of Conrey-Ghosh [2], in which they showed that
the degree dF in the Selberg class cannot take non-integer values between 0 and 1, we obtain
the following result.

Proposition 3.8 (Corrected version of [7], Prop. 3). Suppose F ∈ M. Then cF < 1 implies
c∗F = 0.

Proof. Let F ∈M. For σ > 1, let F (s) = ∑∞
n=1

aF (n)
ns . Then we know that,

f(x) ∶=
∞
∑
n=1

aF (n)e
−nx

=
1

2πi
∫(2)

F (s)Γ(s)x−sds,

where the integration is on the line R(s) = 2.
By the growth condition and convexity, F has a polynomial growth in ∣t∣ in vertical strips.

Thus, moving the line of integration to the left and taking into account the possible pole at
s = 1 of F (s) and poles of Γ(s) at s = 0,−1,−2,⋯, we get that

f(x) =
P (logx)

x
+

∞
∑
n=0

F (−n)

n!
(−x)n, (10)

where P is a polynomial. By the definition of cF , we have

∣F (−n)∣ ≪ n
1
2
cF (1+2n)+ε.

Using Stirling’s formula, i.e,

n! ∼ nn−1/2e−n(2π)−1/2,

we get

∣
F (−n)

n!
(−x)n∣ ≪ n

cF +1

2
+ε

(
e∣x∣ncF

n
)

n

.

If cF < 1, then the series in equation (10) converges absolutely for all values of x. Hence,
the function f(x) is analytic in C/{x ≤ 0 ∶ x ∈ R}. But, this function is also periodic with
period 2πi and so it converges for all x. Thus, the function

f(z) =
∞
∑
n=1

aF (n)e
−nz

is entire. Taking z = −1, we get that

∞
∑
n=1

aF (n)e
n

is convergent and thus, aF (n) = o(e−n). So, the coefficients have exponential decay and
therefore, aF (n)n

k ≪ 1 for all k ≥ 1. Hence, we have that

∞
∑
n=1

aF (n)

ns

is absolutely convergent for all values of s. Therefore, µ∗F (σ) = 0 for all σ and hence c∗F = 0. �
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We can completely characterize all F ∈ M such that c∗F = 0. These are precisely all the
functions, which when multiplied by a suitable Dirichlet polynomial give a Dirichlet series
which is convergent on the whole complex plane. We invoke the following theorem of Landau
to prove this result.

Theorem 3.9 (Landau, [5] Chapter VII, sec. 10, Thm. 51). Let F (s) be an entire function.
Suppose F (s) has a Dirichlet series representation

F (s) =
∞
∑
n=1

an
ns
,

which is absolutely convergent for R(s) > 1. Also, suppose that

an = O(nε)

for all positive ε. If
F (s) = O(∣t∣β) (β > 0)

uniformly in the half plane R(s) > η, then the Dirichlet series is convergent in the half plane
R(s) > η1, where

η1 = {

η+β
1+β , if η + β > 0

η + β, if η + β < 0.

Using the above Theorem 3.9, we get the following result classifying all elements in M with
c∗F = 0.

Proposition 3.10. Suppose F ∈M and let

H(s) = 1 −
2

2s
.

If c∗F = 0, then the Dirichlet series given by

H(s)kF (s) =
∞
∑
n=1

bn
ns
,

is absolutely convergent on the whole complex plane, where k is the order of the possible pole
of F (s) at s = 1.

Proof. Let F ∈ M. Suppose σ0(F ) is the abscissa of absolute convergence for the Dirichlet
series associated with F . If the Dirichlet series is not convergent on the whole complex plane,
then we have σ0(F ) > −∞. Note that

G(s) ∶= F (s + σ0(F ) − 1)

is in M whose abscissa of absolute convergence is σ0(G) = 1. Therefore, without loss of
generality we assume that the Dirichlet series F (s) = ∑

∞
n=1 an/n

s has abscissa of absolute
convergence σ0(F ) = 1.

Since c∗F = 0, we can choose a σ1 < 0 such that

F (σ1 + it) = O((∣t∣ + 2)ε(1/2−σ1)),
for any ε > 0. Using the Phragmén-Lindelöf theorem, we get

F (σ + it) = O((∣t∣ + 2)
ε( 1

2
−σ1)( 1−σ

1−σ1
)

(11)

for σ1 < σ < 1. Let σ be fixed. For any ε1 > 0, choose ε =
2ε1(1−σ1)
(1−2σ1)(1−σ) in (11) to get

∣F (σ + it)∣ = O((∣t∣ + 2)ε1).
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Suppose F (s) has a pole of order k at s = 1. Define

G(s) ∶= (1 −
2

2s
)
k

F (s).

G(s) is analytic on the whole complex plane and G ∈M with the Dirichlet series representation

G(s) =
∞
∑
n=1

bn
ns

with abscissa of absolute convergence at σ0(G) = 1. Also c∗G = c∗F = 0 by the definition of µ∗F .
Moreover, for σ1 ≪ 0 and any ε > 0, we have

∣G(σ + it)∣ = O(∣t∣ε)

uniformly for σ > σ1. By Theorem 3.9, we conclude that the Dirichlet series representation of

G(s) =
∞
∑
n=1

bn
ns

converges in the half plane R(s) > σ1 + ε. Therefore, the abscissa of absolute convergence is
σ0(G) < σ1 + 1 + ε < 1, which contradicts the assumption that σ0 = 1.

Hence σ0(G) = −∞ and the Dirichlet series representation of

G(s) =
∞
∑
n=1

bn
ns

is convergent on the whole complex plane and the proposition follows. �

Next, we show that the analogue of the degree conjecture given by Conjecture 1 holds
between 0 and 1, i.e., c∗F does not take non-integer values between 0 and 1.

Theorem 3.11. If F (s) ∈M, then c∗F < 1 implies c∗F = 0.

Proof. Let c∗F < 1. If the Dirichlet series representation of F (s) = ∑n an/n
s is convergent on

the whole complex plane, then c∗F = 0. Now, suppose ∑n an/n
s absolutely converges in the

half plane R(s) > a. Since F ∈ M, a ≤ 1. If a < 1, we can consider the shift F (s + a − 1) such
that its half-plane of absolute convergence is R(s) > 1. Hence, without loss of generality, we
assume

F (s) =
∞
∑
n=1

an
ns

has abscissa of absolute convergence σ0(F ) = 1. If F has a pole of order k at s = 1, we consider

G(s) ∶= (1 −
2

2s
)
k

F (s).

As discussed in the proof of Proposition 3.10,

G(s) =
∞
∑
n=1

bn
ns

also has abscissa of absolute convergence at σ0(G) = 1. Moreover, c∗G = c∗F .
Hence, for any ε > 0, we have a σ1 < 0, such that

∣G(σ1 + it)∣ = O ((∣t∣ + 2)c
∗

F (1/2−σ1)+ε) . (12)

Using Phragmén-Lindelöf theorem on the strip σ1 <R(s) < 1, we get

∣G(σ + it)∣ = O ((∣t∣ + 2)
c∗F ( 12−σ1)( 1−σ

1−σ1
)+ε

) (13)
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for σ > σ1. By Theorem 3.9, we conclude that the Dirichlet series of G(s) converges in the
half plane

R(s) > σ + c∗F (
1

2
− σ1)(

1 − σ

1 − σ1
) + ε1

for σ1 < σ < 0 and ε1 > 0. Since c∗F < 1, by (12), picking σ1 highly negative and choosing σ ≪ 0
such that σ − c∗Fσ < −2, we have

σ + c∗F (
1

2
− σ1)(

1 − σ

1 − σ1
) = (σ − c∗Fσ) + c

∗
F −

c∗F (1 − σ)
2(1 − σ1)

< −1.

Therefore, the Dirichlet series of G(s) converges on R(s) > −1. Since the abscissa of abso-
lute convergence for the Dirichlet series of G(s) is σ0(G) = 1, we know that the abscissa of
convergence σc(G) ≥ 0, which leads to a contradiction. �

We finally show that if F ∈ S, then cF and c∗F in fact coincide with the degree of F in the
Selberg class.

Proposition 3.12. Let F ∈M, and suppose that F has a functional equation of the Riemann
type as in the Selberg class. Then cF = dF , where dF is the degree of F in the sense of the
Selberg class.

Proof. For simplicity, assume F has only one Γ-factor. We have

QsΓ(as + b)F (s) = wQ1−s̄Γ(a(1 − s̄) + b)F (1 − s̄),

where a,Q are non-negative real numbers, b ∈ C with R(b) ≥ 0 and ∣w∣ = 1. We know from (8)
that cF ≤ dF . So we only need to show that cF is at least dF . We shall first show it for the
Riemann zeta-function and use this template to prove it in general. Substituting s = 1 − 2k
for any integer k > 0 in the functional equation for ζ(s) gives

π−(1−2k)/2ζ(1 − 2k)Γ(
1 − 2k

2
) = π−kζ(2k)Γ(k).

Thus, we get

ζ(1 − 2k) =
π1/2−2kζ(2k)Γ(k)

Γ(1/2 − k)
.

Evaluating the right hand side, we have

ζ(1 − 2k) =
π1/2−2k(k − 1)!(2k)!

(−4)kk!
ζ(2k).

Since ζ(2k) is bounded, using Stirling’s formula we conclude that

∣ζ(1 − 2k)∣ ∼ (2k)2k− 1
2 A,

where A≪ kk. Thus, we conclude that cζ = 1 simply by considering the values taken by ζ on
the real line.

Imitating this proof in general, substitute s = 1 − ck for any integer k > 0 and any positive
constant c, such that a(1 − ck) + b is not an integer. The functional equation gives

Q1−ck Γ(a + b − ack)F (1 − ck) = wQck Γ(ack + b)F (ck).

Thus, we get

F (1 − ck) =
wQ2ck−1 Γ(ack + b)F (ck)

Γ(a + b − ack)
.
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Repeatedly using the identity Γ(s + 1) = sΓ(s) and then using Stirling’s formula, we get

∣F (1 − ck)∣ ∼ ∣ack + b∣2ack+c
′

.A,

where A≪ kk and c′ is a constant independent of k. Thus, we conclude that cF = 2a, which
is the degree of F . �

Moreover, if F ∈M satisfies a functional equation of the Riemann type, then c∗F is also the
same as the degree dF of F . This is an immediate consequence of Lemma 3.4.

In the absence of a functional equation, cF and c∗F can be very different. For F ∈M, it can
happen that c∗F is 0 and cF is arbitrarily large. We exhibit examples below of Dirichlet series
which are absolutely convergent on the whole complex plane and hence have c∗F = 0, yet take
large values of cF .

Let

F (s) =
∞
∑
n=1

e−n

ns
.

This Dirichlet series is absolutely convergent on the whole complex plane. But at the negative
integers we have,

F (−k) =
∞
∑
n=1

e−nnk ∼ ∫
∞

1
e−ttkdt = Γ(k + 1) +O(1).

Using Stirling’s formula, we conclude that cF = 1. Moreover, F r(s) is in M for any integer
r > 0 and c∗F r = 0 and cF r = r. In fact, if we start with the Dirichlet series

F (s) =
∞
∑
n=1

e−n
r

n−s, (14)

by a similar argument we see that, for any real r > 0, cF = r but c∗F = 0.

4. The Lindelöf class

Let M0 and M∗
0 be the subsets of M with cF = 0 and c∗F = 0, respectively. Note that both

M0 and M∗
0 form subrings of M, which follows immediately from Proposition 3.7. Therefore,

all the non-zero elements of M0 (resp. M∗
0) form a multiplicatively closed set. Call it M00

(resp. M∗
00).

We define the Lindelöf class [7] by localizing at these sets,

L =M−1
00M.

L∗ =M∗
00
−1M.

Elements of the rings L and L∗ satisfy growth conditions coming from M. Moreover,
after multiplication by an entire Dirichlet series, they are analytic on C and have Dirichlet
series representation which is absolutely convergent on R(s) > 1. This is a consequence of
Proposition 3.10. Since a Dirichlet polynomial is entire and has many zeroes, elements of these
classes L and L∗ may have many poles. But for any F ∈ L (resp. L∗), one can always find a
right half plane, where F does not have a pole. Note that S ⊂M ⊂ L∗ ⊂ L and S ∩M00 = {1}.
Further since M is a ring, the group ring C[S] is contained in M.

We extend the definition of the function cF (resp. c∗F ) on L (resp. L∗). If G ∈ L (resp. L∗),
then G = F /µ, where µ ∈M00 (resp. M∗

00) and F ∈M. We define cG = cF (resp. c∗G = c∗F ). Note
that this definition is compatible with the definition of cF based on the growth condition. We
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first check that the function cF (resp. c∗F ) is well-defined on L (resp. L∗). If we write G =H/ν
for some other H ∈M and ν ∈M00, and suppose cH > cF , then cFν−Hµ = cH . But, by definition
cFν−Hµ = 0, which leads to a contradiction. Thus, cF is well-defined on L. Moreover, we also
have that a non-zero F is a unit of L if and only if cF = 0. We use the same argument to show
that c∗F is well-defined on L∗.

5. Ring theoretic properties of M, L and L∗

The classes of L-functions M,L and L∗ form rings. Moreover, since they consist of meromor-
phic functions, they form integral domains. We further show that the ring M is non-Noetherian
and non-Artinian.

Proposition 5.1. M,L and L∗ are non-Artinian.

Proof. Consider F ∈ M with c∗F > 0. Let ⟨F ⟩ be the ideal generated by F in M, which is
clearly a non-trivial proper ideal of M. We have the following strictly decreasing sequence of
ideals in M given by

⟨F ⟩ ⊋ ⟨F 2
⟩ ⊋ ⟨F 3

⟩⋯. (15)

Thus, M is not Artinian. Moreover, ⟨F ⟩ ⊂ M generates a non-trivial ideal I ⊂ L and I∗ ∈ L∗
and we have strictly decreasing sequence of ideals.

I ⊋ I2
⊇ I3

⋯,

I∗ ⊋ (I∗)2
⊋ (I∗)3

⋯.

Hence, we conclude that L and L∗ are non-Artinian. �

Now we show that M is non-Noetherian.

Lemma 5.2. If F (s) ∈M and F (s) is entire, then F1(s) ∶= F (s + s0) ∈M for R(s0) > 0.

Proof. Again, properties (1),(2) and (4) in the definition of M hold clearly. We only need to
check the growth condition.

cF2 = lim sup
σ<0

2µF2(σ)

1 − 2σ
= lim sup

σ<0

2µF (σ)

1 − 2σ
= cF .

�

Lemma 5.2 shows that shifts of entire functions in M also lie in M. Recall that in S, vertical
shifts of entire functions in S lie in S. In case of M, we no longer have to restrict ourselves to
only vertical shifts.

Proposition 5.3. M is non-Noetherian.

Proof. As earlier, we prove this by explicitly constructing a strictly increasing infinite chain
of ideals. For s ≠ 1, let

Is ∶= {F ∈M ∶ F (s) = 0}.

Then, Is forms an ideal of M. Define

K1 ∶=
∞
⋂
k=1

I−2k.
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We know that L(s,χ) ∈ K1, where χ is any even primitive Dirichlet character, because it
vanishes at all negative even integers. By Lemma 5.2, L(s + 2n,χ) ∈M and it vanishes on all
even negative integers except {−2k ∶ k ≤ n, k ∈ N}. We define

Ki ∶=
∞
⋂
k=i
I−2k.

Clearly, K1 ⊆ K2 ⊆ K3 ⊆ ..... Since we have exhibited that the function L(s + 2n,χ) belongs
to Kn+1 but not Kn. Thus, we get

K1 ⊊K2 ⊊K3 ⊊ ...

Therefore, M is non-Noetherian. �

We are not yet able to show that L and L∗ are non-Noetherian, although we expect it to be
true. Note that the ring C[S] is a subring of M. We expect that C[S] is also non-Noetherian.
Indeed we show below that this is a consequence of Selberg’s orthonormality conjecture. This
was already known due to Molteni [6].

Definition 5.4. An element F ≠ 1 ∈ S is said to be a primitive element if it cannot be further
factorized in S i.e., if F = F1F2 with Fi ∈ S, then either F1 = 1 or F2 = 1.

Selberg’s orthonormality conjecture states that:

Conjecture (Selberg’s Orthonormality Conjecture). Let F,G ∈ S be any two primitive el-
ements, whose Dirichlet series expansion on R(s) > 1 is given by F (s) = aF (n)n

−s and
G(s) = aG(n)n

−s. Then,

∑
p≤x

ap(F )ap(G)

p
= {

log logx +O(1), if F = G
O(1), if F ≠ G.

Proposition 5.5. Selberg’s orthonormality conjecture implies that C[S] is non-Noetherian.

Proof. It was observed by Selberg in [9] and Bombieri-Hejhal in [1] that distinct elements in
the Selberg class are linearly independent over C. We show that Selberg’s conjecture implies
that distinct primitive elements in the Selberg class are algebraically independent. Since
there are infinitely many primitive elements in S, we conclude that C[S] is non-Noetherian.
Selberg’s orthonormality conjecture implies that the factorization into primitive elements in
the Selberg class is unique, see [2]. Suppose, F1, F2, ..., Fn are distinct primitive elements in S
satisfying a polynomial P (x1, x2, ..., xn) ∈ C[x1, x2, ..., xn]. By linear independence of distinct
elements in S, we conclude that not all terms in the polynomial expansion of P (F1, ..., Fn)
are distinct. Thus, we have relations of the form

F a11 F a22 ...F ann = F b11 F b22 ...F bnn , (16)

where not all the ai’s are the same as the bi’s. But, both left hand side and right hand side
in (16) are elements in the Selberg class. This contradicts the unique factorization. �

Since C[S] ⊆ M and we know that M is non-Noetherian, the above proposition can be
thought of as some indicative evidence towards the validity of unique factorization into prim-
itives in the Selberg class.
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5.1. Primitive elements in M and L∗. The notion of primitive elements in S can be
extended to the class M and L∗.

Definition 5.6. We say that an element F ∈ L∗ (resp. M) is primitive if c∗F > 0 and F = F1F2

implies that either c∗F1
= 0 or c∗F2

= 0.

Note that every element F ∈ L∗ (resp. M) with c∗F = 1 is primitive, which directly follows
from Theorem 3.11. But this is not quite true for L. This is because we could have an entire
Dirichlet series F (s) with cF > 0, which can be written as a product of infinitely many entire
Dirichlet series ∏i Fi(s), each of which have cFi > 0 for each i. Hence, we avoid defining the
notion of primitive elements for the class L.

We now show that every element in M and L∗ can be written as a product of primitive
elements. We follow the same argument as in the case of the Selberg class S.

Proposition 5.7. Let F ∈ L∗ (resp. M), then F (s) can be be written as a finite product of
primitive elements in L∗ (resp. M).

Proof. Let F ∈ L∗ (resp. M) and suppose

F = F1F2,

where F1, F2 ∈ L∗ (resp. M). By properties of c∗F , we know that c∗F ≤ c∗F1
+ c∗F2

. If c∗Fi < 1,

then by Theorem 3.11, c∗Fi = 0. Hence, we cannot factorize F indefinitely into non-units (i.e.

elements with c∗ > 0). Therefore, F (s) has a factorization into primitive elements. �

With the above notion of primitivity, we may ask whether this factorization is unique.

Conjecture 2. Every element F ∈ L∗ (resp. M) can be uniquely factorized into primitive
elements.

Assuming unique factorization, we conclude the algebraic independence of distinct primitive
elements in M and L∗.

Proposition 5.8. Conjecture 2 implies that linearly independent primitive elements in L∗
(resp. M) are algebraically independent.

Proof. The proof follows similar approach of Proposition 5.5. Let F,G ∈ L∗ be linearly inde-
pendent primitive elements satisfying a polynomial equation P (F,G) = 0. From Proposition
3.7, we conclude that if the terms in the polynomial with largest c∗ value, say d, must cancel
each other. In other words, if P (x, y) = ∑m,n am,nx

myn, then

∑
mc∗F+nc∗G=d

am,nF
mGn = 0.

Since F and G are linearly independent, we also have that d > 0. Cancelling the common
factors, we get an expression of the form

F k = ∑
m<k,n

bm,nF
mGn,

where each term in the RHS has a factor ofG and hence F k/G ∈ L∗ (resp. M). This contradicts
the unique factorization for F k. Hence, F and G are algebraically independent. �

We now show that M,L and L∗ are closed under differentiation.

Proposition 5.9. If F ∈ M, then F ′ ∈ M. This is also true if we replace M by L or L∗.
Moreover, cF ≥ cF ′ and c∗F ≥ c∗F ′.
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Proof. If F ∈ M, then the properties (1),(2) and (4) clearly hold for F ′. We only have to
check the growth condition. Suppose f(z) is a meromorphic function on C. If f is bounded
on the half plane {z ∶ R(z) < −N1} by M , for some N1 > 0, then f ′(z) is also bounded on
the half-plane {z ∶R(z) < −N2}, for some N2 > 0. We can see this by using Cauchy’s formula
namely,

f ′(a) =
1

2πi
∫
C(ε,a)

f(z)

(z − a)2
dz,

where C(ε, a) is the circle of radius ε centered at a and f is analytic in the interior of C(ε, a).
Since f(z) is bounded by M on C(ε, a), we get

∣f ′(a)∣ ≤
M

ε
.

If we choose N2 > N1 + 2, for every point in {z ∶ R(z) < −N2}, we can set ε > 1, and thus get
f ′(z) is bounded by M in the region {z ∶R(z) < −N2}.

Now, if F (z) ∈M, then by the growth condition we know that for any ε > 0,

g(z) ∶=
F (z)

zcF (1−2σ)+ε

is bounded in the half-plane {z ∶ R(z) < −N1}, for some N1 > 0. Therefore, we have for some
N2 > 0, in the half-plane {z ∶R(z) < −N2},

∣(
F (z)

zcF (1−2σ)+ε)
′
∣ =

RRRRRRRRRRRR

F ′(z)zcF (1−2σ)+ε − (zcF (1−2σ)+ε))
′
F (z)

z2cF (1−2σ)+2ε

RRRRRRRRRRRR

<M

Ô⇒ ∣F ′
(z)∣∣z∣cF (1−2σ)+ε

<M ∣z∣2cF (1−2σ)+2ε
+ ∣(zcF (1−2σ)+ε

)
′
∣ ∣F (z)∣ .

If we fix σ, then

∣F ′
(z)∣∣z∣cF (1−2σ)+ε

<M ′
∣z∣2cF (1−2σ)+2ε.

Hence,

∣F ′
(z)∣ <M ′′

∣z∣cF (1−2σ)+ε.
Thus, we get the growth condition on F ′(z). Moreover, we also conclude that if F ∈ M,

then cF ′ ≤ cF and c∗F ′ ≤ c
∗
F . The proof of the statement for L (resp. L∗) follows by proving

the fact that the derivative of a unit in L (resp. L∗) is also a unit in L (resp. L∗). Then,
for any F ∈ L (resp. L∗), we can find a unit ν ∈ L (resp. L∗), such that νF ∈ M, after which
we can use the above argument to say (νF )′ ∈ L (resp. L∗). But (νF )′ = ν′F + νF ′ and thus
F ′ ∈ L (resp. L∗).

�

6. Ideals in L and L∗

As a first step to understanding the ideal theory of L (resp. L∗), we construct some non-
trivial ideals of L (resp. L∗.) We use the following proposition for the construction.

Proposition 6.1. If F (s) is a non-constant entire Dirichlet series, then F (s) cannot have
zeroes on any arithmetic progression,

S = {a, a − d, a − 2d, ...}, (17)

where d ∈ R+ and a ∈ C.
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Proof. First, we show that if

F (s) =
∞
∑
n=1

an
ns

is convergent on the whole complex plane, it cannot have zeroes on non-positive integers. In
other words, it cannot vanish on {0,−1,−2,−3...}. Since, ∑∞

n=1 ann
−s is entire, we have

∣an∣ ≪
1

nk
. (18)

for all k ∈ N. Define

f(x) ∶=
∞
∑
n=1

anx
n.

By the root test and using (18), we conclude that the power series f(x) defines an analytic
function on the whole complex plane. Consider the Taylor series expansion around x = 1,
given by,

f(x) =
∞
∑
n=0

bn(x − 1)n, (19)

where,

bn =
f (n)(1)
n!

.

Now, suppose F (s) takes zeroes on all non-positive integers, we have

F (−k) =
∞
∑
n=1

ann
k
= 0,

for all k ∈ N ∪ {0}. In particular, we get b0 = F (0) = 0 and b1 = F (−1) = 0. In general,

bk =
∞
∑
n=k

(
n

k
)an.

We write it as,
∞
∑
n=k

(
n

k
)an =

∞
∑
n=1

n(n − 1)...(n − k + 1)

k!
an, (20)

where the first (k − 1)-terms of the right hand side of (20) are 0. Moreover, each term in the
right hand side is a polynomial in n of degree k. Since, ∑∞

n=1 ann
k is absolutely convergent

for all k, we can rearrange the terms in the summation. Thus, we get,

bk =
∞
∑
n=1

(
n

k
)an = c0

∞
∑
n=1

an + c1

∞
∑
n=1

nan + ... + ck
∞
∑
n=1

nkan,

where ci’s are some real constants. Therefore,

bk = c0F (0) + c1F (−1) + ... + ckF (−k) = 0,

for all k. Hence, f(x) is identically zero, which leads to F (s) being identically 0.

We deduce the general case of an arithmetic progression S as in the statement of the
proposition, by considering

F1(s) ∶= F (sd + a) =
∞
∑
n=1

an
na

1

nsd
.
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This function is no longer a standard Dirichlet series but it converges for all s ∈ C and vanishes
at all non-positive integers. Now, consider the series

f(x) ∶=
∞
∑
n=1

an
na
xn

d

.

Choosing the principal branch of log, the function f(x) is well-defined and absolutely conver-
gent on C/R≤0. The rest of the proof is similar as above. �

Consider the ideal in M given by,
IS = ⋂

s∈S
Is,

where Is is as in Proposition 5.3 and S is an arithmetic progression as in (17). IS is non-empty
since it contains elements in S. By Proposition 6.1, IS does not contain any non-zero entire
Dirichlet series. By definition,

L ( resp. L∗) =M−1
00M ( resp. M∗

00
−1M),

where M00 and M∗
00 consist of Dirichlet series which are convergent on C, up to a Dirichlet

polynomial (by Proposition 3.10). Hence, IS generates a non-trivial ideal in L (resp. L∗).
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