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Abstract. For a non-zero algebraic number α of degree d, let h(α) denote its logarithmic Weil
height. It is known that when h(α) is small, as d increases the conjugates of α have angular
equidistribution in the complex plane about the origin. In this paper, we establish a p-adic
equidistribution theorem for α ∈ Q with small height. As a consequence, we prove Lehmer’s
conjecture for all α such that ≫

√

d log d many of its conjugates lie in a finite extension of Qp,
for some prime p.

1. Introduction

For non-zero α ∈ Q, let h(α) denote its logarithmic Weil height defined as

h(α) ∶= ∑
v∈MK

log+ ∣α∣v,

where MK is the set of all places of K ⊇ Q(α), log+ x = max(0, logx) and ∣α∣v is the normalized
valuation on α given by

∣α∣v ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(Np)−
ordp(α)

[K ∶Q] if v is non-archimedean corresponding to the prime ideal p,

∣σ(α)∣
[Kν ∶R]
[K ∶Q] if v is archimedean corresponding to the embedding σ of K.

By a classical theorem of Kronecker [18], h(α) = 0 if and only if α is a root of unity. This height

function quantifies the “complexity” of an algebraic number. Note that h(21/d) = log 2
d and there-

fore, there are algebraic numbers, other than roots of unity, with arbitrarily small height.

Suppose α ≠ 0,±1 is totally real, i.e., all its Galois conjugates lie in R, then Schinzel [30] in
1973 showed that

h(α) ≥ 1

2
log(1 +

√
5

2
) .

Following the proof of Schinzel or a simpler proof due to Höhn-Skoruppa [17], one can obtain
an explicit lower bound on h(α) even if a positive proportion of Galois conjugates of α lie in R.
More generally, the famous equidistribution theorem of Bilu [5] asserts that as h(αn) → 0 over a

family of αn ∈ Q, the Galois conjugates of αn have angular equidistribution in C∗. A quantitative
version of this result due to Mignotte [22] can be stated as follows.

Theorem ([21], Theorem 15.2). For α ∈ Q, let d = [Q(α) ∶ Q]. For any θ with 0 ≤ θ ≤ 2π the
number n of conjugates of α in any fixed sector, based at the origin, of angle θ satisfies

∣n − θ

2π
d∣ ≤ 24 (d2/3 (log 2d)1/3 + dh(α)1/3) . (1)
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By definition, as h(α) gets closer to 0, most of its conjugates are clustered around the unit
circle. Furthermore, if h(α) is small and d grows, then the number of conjugates of α in any
sector is proportional to the angle θ of the sector. This can be thought of as refinement of
a theorem of Erdős-Turán [15] on the distribution of zeros of polynomials, an improvement of
which was obtained by Soundarajan [33]. This equidistribution theory has undergone extensive
generalization (see [2], [3], [4], [9], [10], [16], [25], [28], [34]).

The non-archimedean analogue of totally real numbers are totally p-adic numbers. We say
α ∈ Q is totally p-adic if all its Galois conjugates lie in Qp. If α is totally p-adic and not a
(p − 1)-th root of unity, then L. Pottmeyer [26] proved that

h(α) ≥ log(p/2)
p + 1

.

More generally, suppose all Galois conjugates of α lie in a finite extensionKν/Qp, with ramification
index eν and inertia degree fν . Then, a result of Bombieri-Zannier [6, Theorem 2] implies that
for any ϵ > 0,

h(α) ≥ log p

2eν(pfν + 1)
− ϵ

holds except for finitely many such α’s.

It is difficult to realize a p-adic analogue of the angular equidistribution property, since there
is no notion of sectors. As a first step, in [13], the authors established an absolute lower bound
on h(α), when a positive proportion of the Galois conjugates of α lie in a finite extension of
Qp. More precisely, let Kν/Qp be a finite extension with residue field Fq and suppose ψq is the
proportion of Galois conjugates of α in Kν . Then, for any ϵ > 0, except for finitely many such
α ∈ Q,

h(α) ≥ ψq
log q

q + 1
− ϵ.

The objective of this paper is to refine this p-adic equidistribution property by relaxing the
positive proportion condition and still obtaining a meaningful lower bound on h(α). By analogy,
we say that the conjugates of α ∈ Q satisfy p-adic equidistribution property if a “small” number of
them lie in any fixed local field Kν/Qp. The reader must note that angular equidistribution in the

complex plane does not imply p-adic equidistribution. For instance, all conjugates of 21/(p−1) are

given by {21/(p−1)ζmp−1}, where ζp−1 = e
2πi
p−1 is the primitive (p−1)-th root of unity and 0 ≤m ≤ p−2.

Thus, this set of conjugates have angular equidistribution in the complex plane. However, since
ζp−1 ∈ Qp, the extension Kν ∶= Qp(21/(p−1)) contains all conjugates of 21/(p−1). In other words, the

smallest extension of Qp containing 21/(p−1) in fact contains all its conjugates.

Let f(x) = anxn+⋯+a1x+a0 ∈ Z[x] be the minimal polynomial of α. Then, its Mahler measure
is defined as

M(α) ∶= ∣an∣∏
i

max(1, ∣αi∣),

where αi’s denote the Galois conjugates of α. Mahler measure is connected to the height of α by
the relation

logM(α) = h(α) [Q(α) ∶ Q].
A long standing problem in the theory of heights is Lehmer’s conjecture. In 1933, Lehmer [19]
initiated the study of obtaining small values of h(α), when α is not a root of unity. He constructed
a polynomial, also known as the Lehmer polynomial, namely

L(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.
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For a root α of L(x), the Mahler measure M(α) = 1.76280 . . . and the height h(α) = 0.0162 . . ..
To this day, L(x) is the polynomial with smallest Mahler measure. This prompted Lehmer to
make the following conjecture. Denote by µ∞ the set of all roots of unity in Q.

Conjecture 1.1 (Lehmer). Let α ∈ Q ∖ µ∞ be a non-zero algebraic number. Then, there exists
an absolute constant c > 0 such that

h(α) > c

[Q(α) ∶ Q]
.

In other words, M(α) > 1 + δ for an absolute constant δ > 0 for α ∉ µ∞. It is also expected
that the constant c = 0.00162 as in the case of the Lehmer polynomial. If α ∈ Q is an algebraic
non-integer, then by definition M(α) ≥ 2. Hence, in the context of Lehmer’s conjecture, we can
restrict ourselves to only algebraic integers. Although this conjecture remains open, significant
progress has been made in recent times. Using a sharpened version of Siegel’s lemma and thereby
constructing an auxiliary polynomial with small coefficients, Dobrowolski [14] proved that for
non-zero α not a root of unity,

logM(α) ≥ c( log log d
log d

)
3

,

where d = [Q(α) ∶ Q] and c > 0 is an absolute constant. Subsequently, this constant c has been
improved in the works of U. Rausch [27] and P. Voutier [36]. In 1971, C. Smyth [31] showed that

Lehmer’s conjecture holds for all non-reciprocal algebraic numbers. We call α ∈ Q reciprocal if α
and 1/α are conjugates. This result, with a weaker constant, was also obtained by R. Breusch
[8] in 1951. On another front, suppose α ∈ Q is such that the Galois closure of Q(α)/Q, say Kα

has relatively smaller degree, i.e., [Kα ∶ Q] is polynomial in [Q(α) ∶ Q], then F. Amoroso and S.
David [1] proved that Lehmer’s conjecture holds for all such α. For all α satisfying a non-cyclic
irreducible polymonial with odd coefficients, Borwein, Dobrowolski and Mossinghoff [7] proved
that Lehmer’s conjecture holds. A weaker version of Lehmer’s conjecture was proposed by A.
Schinzel and H. Zassenhaus [29], which was recently resolved by V. Dimitrov [11]. The reader
may refer to the excellent survey articles [32] and [35] for a comprehensive account of Lehmer’s
problem.

From (1), we can conclude that an algebraic number which fails to admit angular equidistri-

bution must satisfy Lehmer’s conjecture. In particular, for all α ∈ Q satisfying

∣n − θ

2π
d∣ ≫ (d2 log d)1/3 ,

with the implied constant > 24, Lehmer’s conjecture holds. The aim of this paper is to realize a
p-adic analogue of the above phenomenon. We show that when h(α) is small, as the degree d of
α increases, there are very few conjugates of α in any given finite extension of Qp.

Let Kν/Qp be a finite extension of degree dν and residue field Fq. Let g ∶ N → R be a non-
negative arithmetic function. Denote by d ∶= [Q(α) ∶ Q] the degree of α over Q. Define

Sg,ν = {α ∈ Q ∣ at least g(d) many conjugates of α lie in Kν} .

Theorem 1.2. Let g and Kν be as above. For any ϵ > 0, for all but finitely many α ∈ Sg,ν ,

h(α) ≥ 1

2dν
(g(d)

d
)
2
log q

q + 1
− ϵ.

The method of proof of the above theorem can be used to derive the following consequences.



4 ANUP B. DIXIT AND SUSHANT KALA

Proposition 1.3. Let Kν be as above. For c > 0, let Sc denote the set of non-zero α ∈ Q ∖ µ∞
such that ¿

ÁÁÀ(2(q + 1)dν d
log q

) (c + log qd

2
)

many conjugates of α lie in Kν . Then, except for finitely many α ∈ Sc
h(α) ≥ c

d
.

In other words, Lehmer’s conjecture holds for Sc.

This proves that a condition much weaker than “positive proportion” of conjugates in Kν is
sufficient to establish Lehmer’s conjecture. In particular, it is enough to show that ≫

√
d log d

many conjugates of α lie in a fixed local field, with a suitable implied constant. As a corollary of
the above proposition, we have the following.

Corollary 1.4. Let Kν be as above. Suppose

S ∶= {α ∈ Q ∖ {µ∞} ∣ at least (q3dν d log d)1/2 many conjugates of α lie in Kν} .

Then, Lehmer’s conjecture holds for S. In fact, M(α) → ∞ as d→∞.

Rather than fixing one local field, one can consider several local fields over multiple primes to
obtain a potentially better lower bound on h(α). However, this makes the explicit version a bit
cumbersome. Towards this, we first set up some notation.

Let α ∈ Q ∖ µ∞ be a fixed non-zero algebraic number. Let Fp denote the set of all finite
extensions of Qp. We have a partial ordering on Fp respecting the inertia degree. With respect to

α, we give a total ordering on Fp as follows. Denote by F(i)p the set of all finite extensions of Qp

whose residue field is Fq, where q = pi. Define a total order < on F(i)p such that for Kν ,Kω ∈ F(i)p ,
we say Kν <Kω if

(i) [Kν ∶ Qp] < [Kω ∶ Qp] or

(ii) [Kν ∶ Qp] = [Kω ∶ Qp] and ∣{α1, α2, . . . , αd} ∩Kν ∣ < ∣{α1, α2, . . . , αd} ∩Kω ∣.
If [Kν ∶ Qp] = [Kω ∶ Qp] and ∣{α1, α2, . . . , αd}∩Kν ∣ = ∣{α1, α2, . . . , αd}∩Kω ∣, then for all such ν,ω,

we force a fixed well-ordering with respect to <. Further, for any Kν ∈ F(i)p and Kω ∈ F(j)p such
that i < j, define Kν <Kω. Hence, (Fp,<) is a totally ordered set. It is in fact a well ordered set
with the given order.

We use the notation ν for the ν-adic valuation on the local field Kν . Denote by dν the degree
of the extension Kν/Qp and Fqν the residue field of Kν/Qp. For each Kν ∈ Fp and x ∈ Fqν , define

Nν,x ∶=#{αi ∈Kν ∶ αi ∉Kω for Kω <Kν , and αi ≡ xmod qν} ,
where αi’s run over all the Galois conjugates of α. For x ∈ Fqν , also define

δx,ν ∶= {
1 if Nν,x > 0
0 otherwise.

Denote by Fp,α the smallest subset of Fp such that Nx,ν = 0 for all Kν ∈ Fp ∖ Fp,α and for all
x ∈ Fqν . By definition, Fp,α is a finite set.

Theorem 1.5. Let α ∈ Q∖ {µ∞} be a non-zero algebraic integer. Let Fp,α and Nν,x be as above.
Denote

rν ∶=
log qν
dν

.
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Then,

h(α) ≥ 1

2
∑
p

⎛
⎝

1

∑ν∈Fp,α

qν
rν

⎞
⎠
⎛
⎝
1 − (

∑ν∈Fp,α∑x∈Fqν
δx,ν rν

∑ν∈Fp,α∑x∈Fqν
N2

ν,x rν
)
1/2⎞
⎠
− log d

2d
.

Note that the term inside the outer parenthesis above is always non-negative. For a totally p−adic
algebraic integer, not a root of unity, Theorem 1.5 implies that

h(α) ≥ 1

2
(1 − 1

d
) log p

p
− log d

2d
.

Hence, by Northcott’s theorem (Theorem 2.1), for any ϵ > 0, except for finitely many α ∈ Zp,

h(α) ≥ log p

2p
− ϵ.

It is important to note that our method can be used to extend Theorem 1.5 to algebraic numbers at
the cost of a slightly weaker lower bound. Since Lehmer’s conjecture is the theme of this article,
we restrict ourselves to algebraic integers, as Lehmer’s conjecture trivially holds for algebraic
non-integers.

Corollary 1.6. Let Nν be the total number of conjugates of α in Kν . Let α ∈ Q ∖ {µ∞} be a
non-zero algebraic integer and Fp,α be as above. Then

h(α) ≥ 1

2
∑
p

⎛
⎝ ∑ν∈Fp,α

(N
2
ν

qν
−Nν)

log qν
dν

⎞
⎠
− log d

2d
.

In other words, if conjugates of α lie in several local fields Kν with small inertia degree, then
we obtain a meaningful lower bound for h(α). This can be compared with a theorem of Mignotte
[23], which states that if there exists a prime p ≤ d log d, which splits completely in Q(α), then
M(α) ≥ 1.2. An improvement due to Silverman (alluded to in the literature but unpublished)
states that if there are d distinct prime ideals in Q(α) with norm ≤

√
d log d, thenM(α) ≥ 1+c for

some c > 0. Indeed, if there are several primes with small norms in K = Q(α), by Weil’s explicit
formula, one can obtain a sharper bound on the absolute discriminant ∣∆(K/Q)∣. For α an
algebraic integer, we have ∆(K/Q) divides D(mα), the discriminant of the minimal polynomial
of α. Thus, Mahler’s inequality (Theorem 2.2) can be applied and one obtains a lower bound on
h(α). This phenomenon is explicitly demonstrated in [12] by the authors .

2. Preliminaries

In this section, we recall some definition and results which will be used towards the proof of
our theorems.

The Weil height gives a partial ordering on algebraic numbers with bounded degree. This
follows from a classical result of Northcott [24].

Theorem 2.1 (Northcott). There are finitely many algebraic numbers α ∈ Q with bounded degree
d and height h(α).

To connect the Weil height with the discriminant of the minimal polynomial, we shall use
Mahler’s inequality [20].
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Theorem 2.2 (Mahler). Let mα(x) = adxd + ⋯ + a1x + a0 ∈ C[x] be a polynomial with roots
α1, α2,⋯, αd. Let

D(mα) ∶= a2d−2d ∏
i>j
(αi − αj)2

be its discriminant. Then,

∣D(mα)∣ ≤ ddM(α)2d−2.

3. Proof of the main theorems

Let Kν be a finite extension of Qp and g be a non-negative arithmetic function. Recall that

Sg, ν = {α ∈ Q ∣ at least g(d) many conjugates of α lies in Kν}.
We set ν to be the unique valuation extending the usual p -adic valuation on Kν . Our proof is
inspired by the proof of [6, Theorem 2] due to Bombieri-Zannier.

Proof of Theorem 1.2. For α ∈ Sg,ν , let

mα(x) = adxd + ad−1xd−1 + . . . + a0
be the minimal polynomial of α over Q. Let Lω be the splitting field of mα(x) over Kν with the
unique valuation ω extending ν on Kν . Write

mα(x) = ad(x − α1)(x − α2)⋯(x − αd),
where αi ∈ Lω satisfy

ω(α1) ≥ ⋯ ≥ ω(αr) ≥ 0 > ω(αr+1) ≥ ⋯ ≥ ω(αd).
The discriminant of mα(x) is given by

D(mα) = a2d−2d ∏
i<j
(αi − αj)2.

The contribution in the product where at least one ω(αj) < 0 can be bounded by

ω
⎛
⎝

d

∏
j=r+1

j−1
∏
i=1
(αj − αi)

⎞
⎠
≥

d

∑
j=r+1

(j − 1)ω(αj).

Hence, we obtain

ω(D(mα)) ≥ (2d − 2)ω(ad) + 2 ∑
0<i<j≤r

ω(αj − αi) + 2

d

∑
j=r+1

(j − 1)ω(αj)

≥ 2∑
i<j≤r

ω(αj − αi) − 2

d

∑
j=r+1

(d − j)ω(αj). (2)

Since ω(αj) < 0 for r + 1 ≤ j ≤ d, omitting a few non-negative terms, if necessary, gives the
following inequality

ordp(D(mα)) = ω(D(mα)) ≥ 2∑
i<j≤r

ω(αj − αi) − 2

d

∑
j=r+1

(d − j)ω(αj)

≥ 2 ∑
i<j≤r

αi, αj∈Kν

ν(αj − αi) − 2 ∑
r<j≤d
αj∈Kν

(d − j)ν(αj). (3)
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Let Nx denote the number of roots αj of the polynomial mα in Kν , which lie in the residue class

xmod ν. If αi, αj ∈Kν lie in the same residue class modulo ν, then ν(αi − αj) ≥ 1
eν
. Hence,

∑
i<j≤r

αi,αj∈Kν

ν(αj − αi) ≥
1

eν
∑
x∈Fq

Nx(Nx − 1)
2

,

where q = pfν . Let d′ (resp. r′) be the total number of conjugates (resp. ν -integral conjugates)
of α lying in Kν . The second summation in (3) runs over all d′ − r′ non-integral conjugates of α
in Kν . Furthermore, since d − j are all distinct positive integers, we have

∑
r<j≤d
αj∈Kν

(d − j) ≥ (d
′ − r′)(d′ − r′ − 1)

2
.

Note that ν(αi) ≤ − 1
eν

and therefore (3) implies that

ordp(D(mα)) ≥
1

eν

⎛
⎜
⎝
∑
x∈Fq

Nx(Nx − 1) + (d′ − r′)(d′ − r′ − 1)
⎞
⎟
⎠
.

Also the number of roots of mα(x) in Kν is at least g(d), and hence,

d′ − r′ + ∑
x∈Fq

Nx ≥ g(d).

Now, applying Cauchy-Schwarz inequality, we obtain

ordp(D(mα)) ≥
1

eν

⎛
⎝ ∑x∈Fq

Nx(Nx − 1) + (d′ − r′)(d′ − r′ − 1)
⎞
⎠

= 1

eν

⎛
⎝ ∑x∈Fq

N2
x + (d′ − r′)2 +O(d)

⎞
⎠

≥ 1

eν
(g(d)

2

q + 1
+O(d)) ,

where the implied constant has absolute value ≤ 1. Therefore,

log ∣D(mα)∣ ≥
1

eν
g(d)2 ( log p

q + 1
) +O (d log p

eν
)

≥ 1

dν
g(d)2 ( log q

q + 1
) +O (d log q

dν
) .

Applying Mahler’s inequality (Theorem 2.2), we deduce that

dh(α) = logM(α) ≥ log ∣D(mα)∣
2d

− log d

2

≥ 1

2dν
(g(d)

2

d
) log q

(q + 1)
+O ( log q

dν
) − log d

2
, (4)

with the implied constant in the O-term has absolute value ≤ 1/2. Finally, for any ϵ > 0, using
Northcott’s Theorem 2.1 we conclude the proof of Theorem 1.2.

□
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Proof of Proposition 1.3. From (4), we deduce that if

g(d) ≥

¿
ÁÁÀ(2(q + 1)dν d

log q
) (c + log qd

2
)

then

dh(α) ≥ c + log q

2
+O ( log q

dν
) .

Since the absolute value of the implied constant of the O-term is bounded above by 1/2, we
conclude that

h(α) ≥ c
d
.

□

Proof of Corollary 1.4. Taking g(d) ≥ (q3 dν d log d)1/2 in (4), we obtain

dh(α) ≥ (q
3 log q − q − 1
2(q + 1)

) log d +O ( log q
dν
) . (5)

Note that for any real number x ≥ 2,
x3 logx − x − 1

2(x + 1)
≥ 2

5
.

This is because the function in the LHS is increasing for x ≥ 2 and the inequality holds for x = 2.
Applying this to (5), we obtain

dh(α) ≥ 2

5
log d +O ( log q

dν
) .

Therefore, as d→∞, the Mahler measure M(α) = dh(α) also tends to infinity as required. □

Proof of Theorem 1.5. Let α ∈ Q and mα(x) ∈ Z[x] be its minimal polynomial and D(mα) be its
discriminant. We can write

∣D(mα)∣ = ∏
i

pi
ordpi(D(mα)).

Now, it follows from the definition of Fp that

ordp(D(mα)) = ∑
p
∑

ν∈Fp,α

ν(D(mα)).

Thus, we have

log ∣D(mα)∣ ≥ ∑
p
∑

ν∈Fp,α

∑
x∈Fqν

Nν,x (Nν,x − 1)
log p

eν

≥ ∑
p
∑

ν∈Fp,α

∑
x∈Fqν

Nν,x (Nν,x − 1) rν , (6)

where dν = [Kν ∶ Qp] and rν = (log qν)/dν . Since ∑ν∈Fp,α∑x∈Fqν
Nν,x = d, using Cauchy-Schwarz

inequality, we obtain

∑
ν∈Fp,α

∑
x∈Fqν

N2
ν,x rν ≥

(∑ν∈Fp,α∑x∈Fqν
Nν,x)

2

(∑ν∈Fp,α∑x∈Fqν

δx,ν
rν
)
≥ d2 1

(∑ν∈Fp,α∑x∈Fqν

δx,ν
rν
)
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and

∑
ν∈Fp,α

∑
x∈Fqν

Nν,x rν ≤
⎛
⎝ ∑ν∈Fp,α

∑
x∈Fqν

N2
ν,x rν

⎞
⎠

1/2
⎛
⎝ ∑ν∈Fp,α

∑
x∈Fqν

δx,ν rν
⎞
⎠

1/2

Combining these in (6), we have

log ∣D(mα)∣ ≥ d2∑
p

⎛
⎝

1

∑ν∈Fp,α

qν
rν

⎞
⎠
⎛
⎝
1 − (

∑ν∈Fp,α∑x∈Fqν
δx,ν rν

∑ν∈Fp,α∑x∈Fqν
N2

ν,x rν
)
1/2⎞
⎠
.

Finally, applying Mahler’s inequality (Theorem 2.2), we obtain the theorem. □

Proof of Corollary 1.6. Recall the inequality (6)

log ∣D(mα)∣ ≥ ∑
p
∑

ν∈Fp,α

∑
x∈Fqν

Nν,x (Nν,x − 1)
log qν
dν

.

For Kν ∈ Fp,α, let Nν = ∑x∈Fqν
Nx,ν be the total number of conjugates of α ∈ Kν . Again using

Cauchy-Schwarz inequality, we obtain

∑
ν∈Fp,α

∑
x∈Fqν

Nν,x (Nν,x − 1)
log qν
dν

= ∑
ν∈Fp,α

log qν
dν

∑
x∈Fqν

Nν,x (Nν,x − 1)

≥ ∑
ν∈Fp,α

(N
2
ν

qν
−Nν)

log qν
dν

.

The proof now follows by applying Mahler’s inequality (Theorem 2.2). □
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[17] G. Höhn and N. P. Skoruppa, Un résultat de Schinzel, J. Thor. Nombres Bordeaux, 5, no. 1, pp. 185, (1993).
[18] L. Kronecker, Zwei Sätze über Gleichungen mit Ganzzahligen Coefficienten, J. Reine Angew. Math., 53, pp.

173–175, (1857).
[19] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. Math. 2., 34, (3), pp. 461–479, (1933).
[20] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J., 11, pp. 257-262, (1964).
[21] D. Masser, Auxiliary Polynomials in Number Theory, Cambridge Tracts in Mathematics, 207, Cambridge

University Press, pp. 193-199, (2016).
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