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1. Introduction. The Euler–Mascheroni constant denoted by γ is de-
fined as

γ := lim
x→∞

(∑
n≤x

1

n
− log x

)
.

This constant γ appears in many areas of mathematics. For instance, it
is given by the constant term in the Laurent expansion of the Riemann
zeta-function,

(1) ζ(s) =
1

s− 1
+ γ +O(s− 1).

Motivated by (1), Y. Ihara [15] introduced a generalization of γ to any
number field K, using the Dedekind zeta-function ζK(s). The Dedekind zeta-
function ζK(s) associated to a number field K is defined on the half-plane
ℜ(s) > 1 as

ζK(s) :=
∑

a⊂OK

1

Nas
,

where a runs over all non-zero integral ideals of the ring of integers OK .
The function ζK(s) has an analytic continuation to the whole complex plane
except for a simple pole at s = 1. Analogous to the Riemann hypothesis
for ζ(s), the generalized Riemann hypothesis (GRH) asserts that all zeros of
ζK(s) in the strip 0 < ℜ(s) < 1 must satisfy ℜ(s) = 1/2.
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If the Laurent expansion of ζK(s) near s = 1 is written in the form

ζK(s) =
c−1

s− 1
+ c0 +O(s− 1),

then the Euler–Kronecker constant associated to K is defined as

γK :=
c0
c−1

.

One could also view γK as the constant term in the Laurent expansion of
the logarithmic derivative of ζK(s) at s = 1, i.e.,

(2) −
ζ ′K
ζK

(s) =
1

s− 1
− γK +O(s− 1).

We will show:

Theorem 1.1. Let K be an algebraic number field and write

−
ζ ′K(s)

ζK(s)
=

∞∑
n=1

ΛK(n)

ns
.

Setting
∆K(N) :=

∑
n≤N

ΛK(n)−N,

we have, for any N ≥ 1,

(3) γK =

[
logN −

∑
n≤N−1

ΛK(n)

n

]
+
∆K(N − 1)

N
+

1

N
−

∞�

N

∆K(x)

x2
dx.

In particular, choosing N = 1, we have

(4)
∞�

1

∆K(x)

x2
dx = 1− γK .

Formula (4) gives us a connecting link between the error term in the
prime ideal theorem and γK . But there are other links we will establish.
In [15], Ihara proved the following bounds for γK :

(5)
γK ≤ 2 log log

√
|dK | (under GRH),

γK ≥ − log
√

|dK | (unconditionally),
where dK denotes the discriminant of K over Q. Ihara used Weil’s explicit
formula to prove (5). We will give simple proofs of (5) and derive new un-
conditional upper bounds for γK .

In [4], the first author proved some unconditional bounds for γK where
K is an almost normal field or has solvable Galois closure. These bounds
depended in an essential way on the earlier work of V. Kumar Murty [27, 28].
In this paper, we obtain unconditional upper bounds for an arbitrary number
field K. In particular, our bounds improve those in [4]. The upper bounds are
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closely related to the size of the hypothetical Siegel’s zero of ζK(s). Recall
that for K ̸= Q, this zero β0, if it exists, is real, simple and the only zero in
the region

|ℜ(s)| > 1− 1

4 log |dK |
, |ℑ(s)| < 1

4 log |dK |
.

If K does not contain a quadratic field, we know by the work of Stark [34]
that the Siegel zero does not exist. In such a case, our unconditional upper
bound is γK = O(log |dK |). More precisely, we prove:

Theorem 1.2. For any number field K, we have

γK = O(log |dK |)

if ζK(s) has no Siegel zero. If it has a Siegel zero β0, the bound is

γK =
1

2β0(1− β0)
+O(log |dK |).

Using known results about the location of Siegel’s zero, we obtain the
effective estimate γK = O(|dK |1/n) with n = [K : Q] and the ineffective
estimate γK = O(|dK |ϵ/n) for any ϵ > 0. Here the implied constants are
absolute.

If for an algebraic number field K, we let PK be the smallest norm of a
prime ideal in K, then (see Theorem 4.1 below)

(6) γK = logPK +
1

PK
−

∞�

PK

∆K(x)

x2
dx.

Formula (3) allows us to focus on the interval where the bulk of the
contribution to γK arises. Indeed, if we assume GRH (see (17) below), then
the optimal choice of N is

N0 = (log |dK |)2(log log |dK |)2,

which leads to

(7) γK = logN0 −
∑
n≤N0

ΛK(n)

n
+O(1),

showing that the main contribution comes from primes of “small” norm. This
formula highlights the intimate relationship between PK and γK .

If q is prime and K = Q(ζq) is the qth cyclotomic field, then PK = q.
In this case, we are led to study error terms in the prime number theorem
for arithmetic progressions. Let us recall several results in this context.

Let π(x) denote the number of primes ≤ x. The classical prime number
theorem, which was proved independently by Hadamard [12] and de la Vallée
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Poussin [36], states that as x→ ∞,

π(x) ∼ Li(x), where Li(x) :=
x�

2

dt

log t
.

Equivalently, if
ψ(x) :=

∑
pn≤x
p prime

log p,

then as x→ ∞, we have ψ(x) ∼ x. For (a, q) = 1, let

ψ(x; q, a) :=
∑

pm≤x,
pm≡a mod q

log p.

Then, the prime number theorem for arithmetic progressions asserts that, as
x→ ∞,

ψ(x; q, a) ∼ x

ϕ(q)
.

Under the assumption of the generalized Riemann hypothesis, one can show
that ∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ = O(
√
x (log qx)2).

Unconditionally, the Siegel–Walfisz theorem states that

(8)
∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ = O(xe−cN
√
log x),

uniformly for q ≤ (log x)N and a constant cN > 0 dependent on N . The
famous Bombieri–Vinogradov theorem (see [2, 37]) establishes that the GRH-
error term holds on average. More precisely, if

√
x(log x)−A ≤ Q ≤

√
x,

then ∑
q≤Q

max
y≤x

max
1≤a≤q
(a,q)=1

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣ = O(
√
xQ(log x)5).

Extending the range of the Bombieri–Vinogradov theorem beyond
√
x

has been an important theme of research in number theory. For example,
Fouvry (see [10, Lemma 6]) has shown that for every A > 0,∑

m≤Q

m

(
ψ(x,m0m, a)−

ψ(x)

ϕ(m0m)

)
= OA(Qx(log x)

−A+1),

uniformly for x ≥ 2, Q ≤ x(log x)−200A−200, where a and m0 are coprime
integers such that m0 ≥ 1 and 1 ≤ |a| ≤ (log x)A. The reader will observe
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that there are no absolute values in the summand. In this context, there is
the conjecture of Elliott and Halberstam [8]: for any A > 0 and ϵ > 0,

(9)
∑

q≤x1−ϵ

max
y≤x

max
1≤a≤q
(a,q)=1

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣ ≪ x

logA x
.

We will discuss below how these results and conjectures are related to the
study of Euler–Kronecker constants.

There are several conjectures on bounding the size of γK in terms of dK ,
over specific families of number fields (see [16, 35]). In particular, for a cy-
clotomic field K = Q(ζm), we write γm for γK and dm for its discriminant.
It is known (see [38, p. 11]) that

log |dm|
ϕ(m)

=
∑
p|m

log p

p− 1
.

Thus, our general bound for γK in this case leads to γm = O(ϕ(m) logm).
Of course, GRH implies that the upper bound should be O(logm).

Henceforth, the letters p and q will denote prime numbers. The link be-
tween γq and primes in arithmetic progressions is revealed by our formula (6),
which in our case reduces to

(10) γq = log q − (q − 1)

∞�

q

E(x, q, 1)

x2
dx+O(1),

where
E(x, q, a) := ψ(x, q, a)− x

ϕ(q)
.

Perhaps based on this kind of reasoning, or on numerical computations
for m ≤ 8000, Ihara [16] made the following conjecture.

Conjecture 1 (Ihara). For K = Q(ζm):

(a) γm > 0 for all m.
(b) There exist positive constants c1, c2 ≤ 2 such that for any ϵ > 0,

(c1 − ϵ) logm < γm < (c2 + ϵ) logm

for sufficiently large m. If m is a prime, one can choose c1 = 1/2 and
c2 = 3/2.

In 2014, K. Ford, F. Luca and P. Moree [9] showed that the prime k-tuple
conjecture, as formulated by Hardy and Littlewood, implies γq < 0 infinitely
often. In fact, they explicitly produced a prime, namely q = 964477901, for
which

γq = −0.18237 . . . .

There are further negative values known for γq and three such values have
been obtained in the recent works of Languasco [21] and Languasco and
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Righi [22] exploiting a new efficient algorithm to compute L′/L(1, χ). How-
ever, it is still not known unconditionally if γm < 0 for infinitely many
positive integers m.

It is also worth mentioning that there are similarities between Conjec-
ture 1(b) and Kummer’s conjecture for cyclotomic extensions. Suppose h1(q)
denotes the ratio of the class numbers of Q(ζq) and Q(ζq + ζ−1

q ). Then
Kummer proved that h1(q) is an integer and conjectured that

h1(q)

(
4π2

q

)(q−1)/4

tends to 1 as q → ∞. This is famously known as Kummer’s conjecture.
It would appear that the quantity above has similar analytic properties
to γq/log q. We refer interested readers to the excellent survey article of
P. Moree [24] for further details.

1.1. Conjecture 1(b) and primes in arithmetic progressions. The
main theme of our paper is to connect the behaviour of the γq to error
terms in the prime number theorem for arithmetic progressions. Recently,
there have been developments towards establishing upper bounds for |γq| as
suggested by Conjecture 1(b). In this direction, Y. Ihara, V. Kumar Murty
and M. Shimura [17] proved that under GRH, for any prime q,

(11) |γq| = O((log q)2)

and unconditionally, for any ϵ > 0,

(12) |γq| = Oϵ(q
ϵ).

The estimate (12) follows from our root discriminant bound mentioned above.
But we will give another proof of the result (12) (see Corollary 4). The bound
(11) was improved by A. I. Badzyan [1], who showed that under GRH,

|γm| = O(logm log logm),

for any positive integer m. Let us note that using the explicit formula for
the discriminant of Q(ζm), we obtain via (5) the inequality γm ≤ 2 logm+
O(log logm).

As for lower bounds, M. Mourtada and V. Kumar Murty [25] have shown
that γq > −11 log q for almost all primes q.

A natural question is whether the bounds in Conjecture 1(b) hold on
average. In this context, V. Kumar Murty [26] proved that

(13)
∑

q∼Q, q prime

|γq| ≪ π∗(Q) logQ,

where q ∼ Q means Q ≤ q ≤ 2Q and π∗(Q) denotes the number of primes
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in this interval. E. Fouvry [10] generalized this to
1

Q

∑
m∼Q

γm = logQ+O(log logQ),

where m runs over all positive integers in the interval and Q ≥ 3. Both of
these results are quite deep. Kumar Murty’s result uses zero density esti-
mates for Dirichlet L-functions, and Fouvry’s theorem uses the latest results
regarding primes in arithmetic progressions. We will give a simplified proof
of (13) and also show:

Theorem 1.3. Assuming the Elliott–Halberstam conjecture, we have

(14)
∑

q∼Q, q prime

|γq − log q| = o(Q).

Consequently, ∑
q∼Q, q prime

γq =
∑

q∼Q, q prime

log q + o(Q) = Q+ o(Q),

and ∑
q∼Q, q prime

|γq| =
∑

q∼Q, q prime

log q + o(Q) = Q+ o(Q).

Fouvry’s methods do not lead to this result because, as he remarks, one
needs a dense set of moduli to apply his method, and the set of primes is too
sparse. Thus, assuming the Elliott–Halberstam conjecture, we see from our
theorem that γq is “usually” log q, and the number of primes q ∼ Q for which
|γq − log q| > ε log q is o(π∗(Q)/ε). We note that a similar result under the
Elliot–Halberstam conjecture was also recently obtained by L. Hong, K. Ono
and S. Zhang [14], who showed that

1

Q

∑
Q≤m≤2Q

|γm − logm| = o(logQ).

Theorem 1.3 also implies that

(15)
∑
q≤Q

|γq|
q − 1

= logQ+ o(logQ),

and it may be possible to prove this weaker assertion unconditionally. To
this end, formula (10) suggests we study

Aq,x :=

x�

2

ψ(t; q, 1)− t/(q − 1)

t2
dt,

for a prime q and real number x. The term Aq,x can be thought of as a
weighted average of the error term in the prime number theorem for a given
arithmetic progression. We prove the following average result for Aq,x.
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Theorem 1.4. Fix δ > 0. For x, y > 2 satisfying log x>yδ and x>x0(δ),
we have ∑

q≤y
q prime

|Aq,x| = O(log y),

where the implied constant only depends on δ.

The condition log x > yδ in Theorem 1.4 can be relaxed to log x >
A(log y)2 for a constant A > 0 if we assume that L(s, χ) has no Siegel zeros
for all χ mod q and all q ≤ y.

Remark. Naively using the GRH-error term, we have Aq,x = O((log q)2)
and therefore, we find that the sum of the errors over primes q up to y is
O(y log y). Hence, the average-error in Theorem 1.4 is much smaller than
expected.

As a consequence of the proof of Theorem 1.4, along with an application
of explicit formula due to Gun, the second author and Rath, we get the
following result.

Theorem 1.5. Let K = Q(ζq) for a prime q and log x > qδ. Then∑
ρ

1

xρρ
= O

(
(log x)

1
2
+ 1

δ e−c
√
log x

)
,

where ρ runs over all the non-trivial zeros of ζK(s) and c is an absolute con-
stant. The implied constant in the O-term depends on δ, but is independent
of q and x.

We conclude this introduction with a curious remark related to almost
primes. As noted earlier, if we assume GRH, we have the formula

−γq = (q − 1)
∑
n≤N0

Λ(n)

n
− logN0 +O(1),

where N0 = Aq2(log q)4 with A a sufficiently large constant. Then

−
∑

2<q<y

γq
q − 1

=
∑

n≤Ay2(log y)4

Λ(n)

n
ω∗
y(n− 1)− 2 log y = o(log y),

where ω∗
y(n) is the number of odd prime divisors of n in the interval

[
√
n/A (log y)−2, y].

If we assume the Elliott–Halberstam conjecture, the left hand side is asymp-
totic to − log y, and we deduce∑

n≤Ay2(log y)4

Λ(n)

n

[
ω∗
y(n− 1)− 1

2

]
= o(log y).
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This essentially means that there are infinitely many primes p such that
(p − 1)/2 is either prime or a product of two prime factors, a result known
unconditionally via the sieve method. The notorious parity problem of sieve
theory is therefore not resolved. Sadly, the theory of the Euler–Kronecker
constants will not capture the fugitive twin prime problem! However, the
calculation does lead to the interest in the study of ω∗

y(n), which we discuss
at the end of the paper.

2. Prolegomena and proof of Theorem 1.1. It may be useful to
derive a very simple limit formula for a general class of Dirichlet series that
will help us understand the nature of the Euler–Kronecker constants. This
is the goal of the following proposition.

Proposition 2.1. Let L(s) be a Dirichlet series such that for some m≥0,
we can write the Laurent series at s = 1 as

−L
′(s)

L(s)
=

∞∑
n=1

bn
ns

=
m

s− 1
+ c+O(s− 1).

Put
S(x) :=

∑
n≤x

bn, E(x) := S(x)−mx.

Assume that
∞�

1

|E(x)|
x2

dx <∞.

Then

c = m+

∞�

1

E(x)

x2
dx.

Moreover, for any N ≥ 1, we have

(16) c = m+

[ ∑
n≤N−1

bn
n

−m logN − S(N − 1)

N

]
+

∞�

N

E(x)

x2
dx.

In particular,

c = m+ lim
N→∞

[ ∑
n≤N−1

bn
n

−m logN − S(N − 1)

N

]
.

Proof. By partial summation, we see that

−L
′(s)

L(s)
= s

∞�

1

S(x)

xs+1
dx =

ms

s− 1
+ s

∞�

1

E(x)

xs+1
dx

=
m

s− 1
+m+ s

∞�

1

E(x)

xs+1
dx.
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By our hypothesis, the last integral is analytic for ℜ(s) ≥ 1 and therefore

c = m+

∞�

1

E(x)

x2
dx.

On the other hand,
N�

1

E(x)

x2
dx =

N�

1

S(x)−mx

x2
dx =

N�

1

S(x)

x2
dx−m logN,

and the integral on the right hand side is equal to
N−1∑
j=1

j+1�

j

(∑
n≤j

bn

)dx
x2

=
∑

n≤N−1

bn
∑

n≤j≤N−1

j+1�

j

dx

x2

=
∑

n≤N−1

bn
∑

n≤j≤N−1

(
1

j
− 1

j + 1

)
.

The innermost sum on the right hand side telescopes and we get
N�

1

S(x)

x2
dx =

∑
n≤N−1

bn

(
1

n
− 1

N

)
.

As

c = m+

N�

1

E(x)

x2
dx+

∞�

N

E(x)

x2
,

this proves (16). Taking limits as N → ∞ in (16) gives the final assertion.

We apply this to derive the limit formula for the Euler–Kronecker con-
stant encoded in Theorem 1.1.

Proof of Theorem 1.1. In the case of the Dedekind zeta-function, m = 1,
and the prime ideal theorem with error term certifies that the hypotheses of
the theorem are satisfied which gives the result via (16).

3. Ihara’s theorems revisited. The prime ideal theorem assuming
GRH is (see [33, Theorem 4])

(17) |∆K(x)| ≪
√
x (log |dK |+ [K : Q] log x) log x.

We will use this fact along with the formula (3) to give simpler proofs of
Ihara’s theorems (5). Ihara used Weil’s explicit formula to prove his theo-
rems. Our treatment shows that there is no need for such heavy artillery,
and our elementary approach suggested by the previous section leads to the
results directly.
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Theorem 3.1. Assuming GRH, we have

γK ≤ [2 log log |dK |]
(
1 +O

(
log log log |dK |
log log |dK |

))
.

Proof. Indeed, given the positivity of ΛK(n) for all n, from (3) we have
the inequality

γK ≤ logN +
∆K(N − 1)

N
+

1

N
−

∞�

N

∆K(x)

x2
dx,

for any value of N ≥ 1. Inserting the bound (17) in the above inequality and
estimating the integral via basic calculus gives

γK ≤ logN +O

(
log |dK |√

N
+ [K : Q]

logN√
N

)
.

Choosing
N = (log |dK |)2(log log |dK |)4

and using a simple corollary of the celebrated Minkowski bound that
[K : Q]/(log |dK |) is bounded for all number fields K ̸= Q (see for exam-
ple [20, Theorem 5, p. 121] or [29, Exercise 6.5.21]), we deduce the desired
result.

4. Euler–Kronecker constants and the least prime ideal norm.
For any algebraic number field K, let PK be the smallest norm of a prime
ideal in K. Using (17), we deduce that

PK ≪ (log |dK |)2.
The function PK is similar (but not necessarily equal) to the least prime
that splits completely in K, which we will discuss in the next section. The
connecting link between γK and PK is provided by the following theorem.

Theorem 4.1. For any algebraic number field K, we have

(18) γK = logPK +
1

PK
−

∞�

PK

∆K(x)

x2
dx.

Assuming GRH, we have

γK = logPK +O

(
log |dK |√

PK

)
.

Proof. We apply (3) and observe that∑
N(a)≤PK−1

Λ(a)

N(a)
=

∑
n≤PK−1

ΛK(n)

n
= 0,

where Λ(a) denotes the usual von Mangoldt function defined on the ideals of
the ring of integers of K. This gives (18). Injecting the error term obtained
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assuming GRH in the prime ideal theorem into (18), the result is now im-
mediate.

Based on similarities of PK with the least prime that splits completely
in K, it is reasonable to conjecture that PK ≪ (log |dK |)1+ϵ for any ϵ > 0.
In the case of the cyclotomic field, this would be tantamount to saying that
the least prime p congruent to 1 (mod m) is O(m1+ϵ), which is related to
the problem of Linnik’s constant. We see that the error term in the theorem
dominates if in fact

PK ≪
(

log |dK |
log log |dK |

)2

,

which is the case with the counterexamples to Ihara’s conjecture provided
in [9].

5. The least prime of degree one. We can split the sum∑
N(a)≤x

Λ(a)

into two parts, according as N(a) is prime or not. In the second sum, the
norm is a power of a prime pf with f ≥ 2. As there are at most [K : Q] prime
ideals above a given prime, we see that the second sum is O([K : Q]

√
x log x).

Thus, ∑
N(a)≤x

Λ(a) =
∑
p≤x

ΛK(p) +O([K : Q]
√
x log x).

Comparing this with (17), we deduce∑
N(a)≤x

Λ(a) =
∑
p≤x

ΛK(p) +O(∆K(x)).

Therefore, applying Proposition 2.1 to the series∑
p

ΛK(p)

ps

we deduce from (3):

Proposition 5.1. Assuming GRH for ζK(s), we have

(19) γK =

[
logN −

∑
p≤N−1

ΛK(p)

p

]
+O

(
log |dK |√

N
+ [K : Q]

logN√
N

)
.

If we let PK be the smallest prime of degree one in K, then the method
of the preceding section now leads to:

Corollary 1. Assuming GRH, we have

γK = logPK +O

(
log |dK |√

PK

)
.
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Thus, from these theorems, we see the intimate connection between γK
and PK , modulo GRH. One can also write down unconditional results using
the known (unconditional) error term in the prime ideal theorem. We will
not do so since we move towards another perspective that reveals a link
between γK and the hypothetical Siegel zero.

6. An application of Stark’s lemma. The following simple lemma
due to Stark [34] is derived from the Hadamard factorization theorem applied
to the Dedekind zeta-function. We will give a streamlined proof.

Lemma 6.1 (Stark, 1974). Let K be an algebraic number field of degree
n = r1+2r2, where K has r1 real conjugate fields and 2r2 complex conjugate
fields. Recall that

ψ(s) :=
Γ ′(s)

Γ (s)

is the digamma function. Then, for any s ∈ C,

(20) −
ζ ′K(s)

ζK(s)
− 1

s− 1
+
∑
ρ

1

s− ρ

=
1

2
log |dK |+

(
1

s
− n

2
log π

)
+
r1
2
ψ

(
s

2

)
+ r2(ψ(s)− log 2),

where the summation is over the non-trivial zeros of ζK(s). In particular,
for σ > 1,

(21) −
ζ ′K(σ)

ζK(σ)
− 1

σ − 1
<

1

σ
+

1

2
log

(
|dK |
22r2πn

)
+
r1
2
ψ

(
σ

2

)
+ r2ψ(σ).

If K ̸= Q, then ζK(s) has at most one zero in the region S given by

ℜ(s) > 1− 1

4 log |dK |
, |ℑ(s)| ≤ 1

4 log |dK |
.

If such a zero exists, it is real and simple and called a Siegel zero.

Proof. Formula (20) is [34, (9)]. As usual, we should group ρ and ρ in
the summation to ensure absolute convergence. For σ > 1, we have

1

σ − ρ
+

1

σ − ρ
> 0,

and this gives (21). Finally, if there are two non-real zeros in the region S,
we rewrite (20) as

(22)
∑
ρ

1

s− ρ
=

1

s− 1
+

1

2
log |dK |+

(
1

s
− n

2
log π

)
+
r1
2
ψ

(
s

2

)
+ r2(ψ(s)− log 2) +

ζ ′K(s)

ζK(s)
.
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As ψ(σ) is monotonically increasing for 0 < σ ≤ 2 and

ψ(1) = −γ, ψ(2) = −γ + 1 < log 2,

we see that all the terms on the right hand side of (22) after the term
1
2 log |dK | are negative. Therefore, for 1 < σ < 2, we have∑

ρ∈S

1

σ − ρ
<

1

σ − 1
+

1

2
log |dK |.

If ρ = β+ iη is in S with η ̸= 0, then ρ is also in S and pairing them together
gives the inequality

2(σ − β)

(σ − β)2 + η2
<

1

σ − 1
+

1

2
log |dK |.

As K ̸= Q, |dK | ≥ 3, and for σ = 1 + 1
log |dK | < 2 we have

(23)
2(σ − β)

(σ − β)2 + η2
<

3

2
log |dK |.

Writing A = 1
2 log |dK | and β = 1 − ϵ, we see that σ − β = 1

2A + ϵ and the
above inequality is equivalent to

2

(
1

2A
+ ϵ

)
< 3A

[(
1

2A
+ ϵ

)2

+ η2
]
.

As |ϵ| < 1
8A and |η| < 1

8A , we deduce that 32A < 28A, a contradiction.
A similar analysis shows we cannot have two real zeros or a real zero which
is not simple in the region S.

The fecundity of (22) is amazing. We record two results needed later.
The first is a fundamental inequality, and the second is an effective bound
on the number n(t) of zeros ρ of ζK(s) with t < |ℑ(ρ)| < t+ 1. The method
is standard (see for example [30, p. 246]). For future reference, we record
these in the following lemmas.

Lemma 6.2. For real s > 1,

(24) −
ζ ′K(s)

ζK(s)
< −

ζ ′K(s)

ζK(s)
+
∑
ρ

1

s− ρ
<

1

s− 1
+

1

2
log |dK |.

Lemma 6.3. We have

n(t) ≪ log |dK |+ [K : Q] log(|t|+ 1),

where the implied constant is absolute.

Theorem 6.4. We have

(25)
∑
n≤x

ΛK(n)

n
≤ e

(
log x+

1

2
log |dK |

)
.
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Proof. For any ϵ > 0, by (24) we have∑
n≤x

ΛK(n)

n
≤

∞∑
n=1

ΛK(n)

n

(
x

n

)ϵ

< xϵ
(
ϵ−1 +

1

2
log |dK |

)
.

Choosing ϵ = 1/log x gives the result.

We will improve Ihara’s unconditional lower bound for γK using the above
lemma.

Theorem 6.5. For any algebraic number field K, we have∑
ρ

1

ρ
= γK +

1

2
log |dK | − γn

2
− (r1 + r2) log 2−

n

2
log π + 1,(26)

γK ≥ −1

2
log |dK |+ γn

2
+ (r1 + r2) log 2 +

n

2
log π − 1.(27)

Proof. Recall that from (2), we have

−γK = lim
s→1+

[
−
ζ ′K(s)

ζK(s)
− 1

σ − 1

]
.

Taking the limit s → 1 in (20) and noting the well-known values for the
digamma function,

ψ(1) = −γ, ψ

(
1

2

)
= −γ − 2 log 2,

along with the observation that∑
ρ

1

1− ρ
=

∑
ρ

1

ρ
,

gives the first assertion. For the second, we take the limit σ → 1+ in (21),
and deduce

−γK ≤ 1 +
1

2
log

(
|dK |
22r2πn

)
+
r1
2
ψ

(
1

2

)
+ r2ψ(1).

Again inserting the special values of the digamma function, we deduce

γK ≥ −1

2
log |dK |+ γn

2
+ (r1 + r2) log 2 +

n

2
log π − 1,

as claimed. This improves Ihara’s bound for n ≥ 2 as log π > 1.

We make some editorial remarks. The positivity of (26) is step one in Li’s
criterion for the generalized Riemann hypothesis. Formula (26) also appears
in earlier literature (see [13, Theorem B]) and it allows us to derive an
unconditional upper bound for γK in terms of Siegel’s zero, which does not
seem to have been noted anywhere though both (26) and (27) are nascent
in Ihara’s paper [15].
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Proof of Theorem 1.2. By pairing ρ and 1 − ρ on the left hand side of
(26) and taking real parts, we have

1

2

∑
ρ

ℜ
(
1

ρ
+

1

1− ρ

)
= γK +

1

2
log |dK | − γn

2
− (r1 + r2) log 2−

n

2
log π + 1.

The sum on the left hand side is absolutely convergent and splits into two
parts according as |ℑ(ρ)| ≤ 1 and |ℑ(ρ)| > 1. Using Lemma 6.3, the second
sum is easily seen to be log |dK |. Again by Lemma 6.3, the number of terms
in the first sum is O(log |dK |). We will estimate∑

ρ/∈S: |ℑ(ρ)|<1

ℜ
(

1

1− ρ

)
.

By the cosine law,

|1 + δ − ρ|2 ≤ |1− ρ|2 + δ2 + 2|1− ρ|δ.

Choosing δ = 1/log |dK |, and noting that for ρ /∈ S, 4|1− ρ| ≥ δ, we deduce

|1 + δ − ρ|2 ≤ 25|1− ρ|2.

Consequently,

ℜ
(

1

1− ρ

)
=

1−ℜ(ρ)
|1− ρ|2

≤ 25
1 + δ −ℜ(ρ)
|1 + δ − ρ|2

= 25ℜ
(

1

1 + δ − ρ

)
,

and (24) now implies∑
ρ/∈S: |ℑ(ρ)|<1

ℜ
(

1

1 + δ − ρ

)
≤ 1

δ
+ log |dK |.

Combining everything gives the result if there is no Siegel zero. If there is
a Siegel zero β0, the contribution from it must be taken into account in our
sum over the zeros, and the result is now clear.

Corollary 2. If K/Q is normal and contains no quadratic subfield,
then γK = O(log |dK |).

Proof. By [34, Lemma 8], the existence of β0 implies that K contains a
quadratic field F such that ζF (β0) = 0. Hence the corollary.

There are effective and ineffective bounds for β0. We will not discuss here
the ramifications of all the variegated results that one can obtain. Rather,
we single out one. As noted in the proof of the previous corollary, β0 arises
from a quadratic subfield F of discriminant dF , and Siegel’s bound for β0
gives the ineffective

1− β0 ≫ |dF |−ϵ.
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As 1/2 < β0 < 1, this means β0(1 − β0) ≫ |dF |−ϵ. As |dF |n/2 divides dK
(see, for example, [29, Exercise 5.6.25]), we deduce that

β0(1− β0) ≫ |dK |−2ϵ/n.

Injecting this into Theorem 1.2, we obtain:

Corollary 3. For any number field K and for any ϵ > 0, we have

γK = O(|dK |2ϵ/n),
where the implied constant depends only on ϵ.

As Siegel’s theorem is effective if we take ϵ = 1/2, we get the effective
estimate γK = O(|dK |1/n). It is worth noting that in the case of the cyclo-
tomic field, we deduce from the above corollary the result of Ihara, V. Kumar
Murty and M. Shimura [17] cited in the introduction.

7. Explicit formula and some identities. The previous sections un-
derscore the need for error terms to estimate the size of γK , and this motiv-
ates our discussion of the explicit formula method of the next and later
sections. One of the main ingredients to prove Theorem 1.5 is an explicit
formula by S. Gun, the second author and P. Rath [11]. As usual, Λ(n)
denotes the von Mangoldt function given by

Λ(n) :=

{
log p if n = pk,

0 otherwise.

For 0 < x < 1 and 1/x not a prime power, we have the following explicit
formula (see Ingham [18, p. 81]):∑

n≤1/x

Λ(n)

n
= − log x− γ +

∑
ρ

xρ

ρ
+

1

2
log

1 + x

1− x
− x,

where γ is the Euler–Mascheroni constant and ρ runs over all the non-trivial
zeros of ζ(s). The generalization of the above explicit formula to the Selberg
class S was established in [11].

Let us recall that the Selberg class S, introduced by A. Selberg [32],
consists of meromorphic functions F (s) with the following properties:

(1) (Dirichlet series) F can be expressed as a Dirichlet series

F (s) =
∞∑
n=1

aF (n)

ns
,

which is absolutely convergent in the region ℜ(s) > 1. We also normalize
the leading coefficient as aF (1) = 1.

(2) (Analytic continuation) There exists a non-negative integer mF such
that (s− 1)mFF (s) is an entire function of finite order.
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(3) (Functional equation) There exist real numbers Q > 0 and λi > 0, and
complex numbers µi and w, with ℜ(µi) ≥ 0 and |w| = 1, such that

(28) Φ(s) := Qs
∏
i

Γ (λis+ µi)F (s)

satisfies the functional equation

Φ(s) = wΦ̄(1− s̄).

(4) (Euler product) There is an Euler product of the form

(29) F (s) =
∏

p prime

Fp(s),

where

logFp(s) =

∞∑
k=1

bF (p
k)

pks

with bF (pk) = O(pkθ) for some θ < 1/2.
(5) (Ramanujan hypothesis) For any ϵ > 0,

(30) |aF (n)| = Oϵ(n
ϵ).

The Selberg class has been extensively studied, and interested readers
may refer to survey articles [5, 31, 19] to get an account of the recent devel-
opments.

For ℜ(s) > 1 and F ∈ S, write

logF (s) =

∞∑
n=1

bF (n)

ns
.

Since F satisfies an Euler product, the coefficients bF (n) are only supported
on prime powers. Thus, the logarithmic derivative of F (s) for ℜ(s) > 1 is
given by

−F
′

F
(s) =

∞∑
n=1

ΛF (n)

ns
,

where ΛF (n) is given by ΛF (n) = bF (n) log n. This function ΛF (n) is con-
sidered the generalization of the von Mangoldt function Λ(n). In analogy
with Ihara’s definition of the Euler–Kronecker constants of a number field,
we define, for F ∈ S, the Euler–Kronecker constant γF via the Laurent
expansion

−F
′(s)

F (s)
=

m

s− 1
− γF +O(s− 1).

We now state the explicit formula for elements in S, as shown in [11].
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Theorem 7.1 (GMR explicit formula). Let F ∈ S. For any x ∈ (0, 1)
such that 1/x is not a prime power, we have∑

n≤1/x

ΛF (n)

n
= −mF log x− γF +

∑
ρ

xρ

ρ

+

r∑
j=1

(
λjx

1+µj/λjfλj+µj
(x1/λj ) +

λjx
1+µj/λj

λj + µj

)
,

where ρ runs over all the non-trivial zeros of F and

fu(z) :=
∞∑
n=1

zn

n+ u
.

For a number field K/Q, the Dedekind zeta-function ζK(s) is an element
in the Selberg class. Suppose r1 and 2r2 denote the number of real and
complex embeddings of K respectively. The function

ξK(s) := |dK |s/2 ΓR(s)r1 ΓC(s)r2 ζK(s),

satisfies the functional equation ξK(s) = ξK(1− s). Here,

ΓR(s) := π−s/2 Γ (s/2) and ΓC(s) := 2(2π)−s Γ (s).

We review some basic facts about cyclotomic fields that will be used
below. First, the only prime that ramifies in Q(ζq) is q and it ramifies totally.
That is, (q) = qq−1 with Nq = q. If p is a prime coprime to q, then p factors
as a product of g distinct prime ideals pi each with norm pfp and fp is the
order of p (mod q). Thus, q − 1 = gfp.

Next, in the case of the cyclotomic field Q(ζq), r1 = 0, r2 = (q − 1)/2
and λj = 1, µj = 0. In this setting, the last term in Theorem 7.1 simplifies
considerably. With x replaced by 1/x, we have

(31)
∑
n≤x

Λq(n)

n
= log x− γq +

∑
ρ

1

xρρ
−
(
q − 1

2

)
log

(
1− 1

x

)
.

Lemma 7.2. For a cyclotomic field K = Q(ζq), where q is a prime and
x > 1 not a prime power, we have

γq = −(q − 1)
∑

n≡1 mod q
n≤x

Λ(n)

n
+ log x+

∑
ρ

1

xρ ρ

− q − 1

2
log

(
1− 1

x

)
− log q

q − 1
+O

(
log q

q2

)
,

where the implied constants are independent of q and x.

Proof. Let K = Q(ζq) and pOK = p1 · · · pg be the decomposition of the
ideal pOK . Since K/Q is a Galois extension with degree q − 1, we have
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q − 1 = gfp, where pfp = |OK/pj | = Npj for all 1 ≤ j ≤ g. Thus, for
ℜ(s) > 1,

ζK(s) =

(
1− 1

qs

)−1 ∏
p ̸=q

p prime

(
1− 1

pfps

)− q−1
fp

.

Taking log, we obtain

log ζK(s) = − log

(
1− 1

qs

)
−

∑
p̸=q

p prime

q − 1

fp
log

(
1− 1

pfps

)
.

Differentiating both sides

ζ ′K
ζK

(s) = −
∞∑
n=1

Λq(n)

ns
= −

∑
l≥1

log q

qls
−

∑
p ̸=q

p prime

∑
l≥1

(q − 1) log p

plfps
.

Hence,

(32) Λq(n) =


(q − 1) log p if n = pkfp for some k ∈ N, p ̸= q,

log q if n = ql for some l ∈ N,
0 otherwise.

Thus,

(33)
∑
n≤x

Λq(n)

n
−

∑
n≡1 mod q

n≤x

(q−1)Λ(n)

n
=

∑
ql≤x

log q

ql
=

log q

q−1
+O

(
log q

q2

)
,

noting the remark about fp being the order of p (mod q), underlined earlier.
Using the GMR explicit formula (31), for any x > 1, not a prime power,

γq = −
∑
n≤x

Λq(n)

n
+ log x+

∑
ρ

1

xρ ρ
− q − 1

2

(
log

(
1− 1

x

))
.

Comparing with (33), we have the lemma.

The function Z(x) =
∑

ρ 1/(x
ρρ), which appears in the above lemma,

is rather mysterious. Note that ζK(ρ) = 0 if and only if ζK(ρ) = 0. Hence,
Z(x) is a real-valued function. From the GMR explicit formula, we see that
the series Z(x) converges for x > 1. Denoting the sum of the reciprocals of
the real zeros in the critical strip by R, we note that

(34) Z(1)−R =
∑
ρ

1

ρ
=

1

2

∑
ρ

(
1

ρ
+

1

ρ

)
=

1

2

∑
ρ

ρ+ ρ

|ρ|2
,

where the summations are over the non-real zeros. Since the number of zeros
of ζK(s) in the critical strip with |ℑ(s)| < T is ≪ qT log qT , using partial
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summation, one can conclude that Z(1) converges and is O(q log q). There-
fore, it is of interest to understand whether Z(x) is bounded as x → ∞,
as we vary over the number fields K. For cyclotomic fields, this is answered
in Theorem 1.5.

It would appear that understanding Z(x) for smaller values of x holds the
key to unravelling the nature of γq. The study of Z(x) associated to ζK(s)
for any number field K is of independent interest. For instance, we know
that Z(1) > 0 from (34). However, for x > 1, the sign of Z(x) is unclear.

As we are interested in the real part of Z(x), we can estimate it using
GRH. Indeed, pairing up ρ and ρ, we get

ℜ(Z(x)) ≪ x−1/2
∑
ρ

1

|ρ|2
≪ log |dK |√

x
,

an estimate consonant with our earlier study in previous sections.

8. Averaging γq and proof of Theorem 1.3. Let

ψq(x) =
∑
n≤x

Λq(n).

Then ψq(x) = 0 for x < q, and for x ≥ q, from (32) and formula (4) of
Theorem 1.1 we have

ψq(x) =

[
log x

log q

]
+ (q − 1)ψ(x, q, 1).

Writing ∆q(x) = ψq(x)− x and using formula (18) we have

γq = log q −
∞�

q

∆q(x)

x2
dx.

For x ≥ q, we have

∆q(x) = (q − 1)E(x, q, 1) +

[
log x

log q

]
,

where
E(x, q, 1) = ψ(x, q, 1)− x

q − 1
.

Therefore,

(35) γq = log q + (q − 1)

∞�

q

E(x, q, 1) dx

x2
+O

(
1

q

)
,

making it patently clear that the sign behaviour of γq is intimately connected
with oscillations of the error term in the prime number theorem for arith-
metic progressions. We will average this formula over primes q to deduce
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both (13) and Theorem 1.3. To this end, we need two lemmas. The first is a
standard sieve result, and the second is a variation of a lemma of Fouvry [10].

Lemma 8.1. For a fixed positive integer m and x > m, the number of
solutions of the equation

p− 1 = mq,

with p and q prime ≤ x is

≪ x

ϕ(m) log2(x/m)
.

Proof. This is a classical application of Brun’s sieve and can be found in
many places such as, for example, [3, Exercise 13, p. 110].

Lemma 8.2. We have∑
q∼Q, q prime

ψ(2x, q, 1)− ψ(x, q, 1) ≪ x

logQ
+

x

log x
+
√
x log2 x.

Proof. The sum in question is clearly bounded by

(log x)#{(p, r, q) : pr − 1 = qm, pr ∼ x, q ∼ Q}.

As in [10], we observe that the contribution from r ≥ 2 is at most∑
pr∼x, r≥2

d(pr − 1) ≪ x1/2 log x,

where d(n) denotes the divisor function. When r = 1, Q ≤
√
x, we can apply

the Brun–Titchmarsh theorem to bound the size of the set by∑
q∼Q, q prime

(π(2x, q, 1)− π(x, q, 1)) ≪
∑

q∼Q, q prime

x

q log x
≪ π(x)

logQ
,

using the Chebyshev estimate∑
q∼Q, q prime

1

q
= O

(
1

logQ

)
.

When Q >
√
x, we have m ≤

√
x and so we can reverse the roles of q and m.

Applying Lemma 8.1, we see that the set is bounded by∑
m∼x/Q

x

ϕ(m) log2 x
≪ x

log2 x
,

using the well-known formula due to Landau,∑
m≤x

1

ϕ(m)
=
ζ(2)ζ(3)

ζ(6)
log x+ c+O

(
log x

x

)
.

This completes the proof.
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Proof of Theorem 1.3. Summing (35) over primes q, we have∑
q∼Q

|γq − log q| ≪ Q

∞�

Q

(∑
q∼Q

|E(x, q, 1)|
)
dx

x2
.

We split the integral into two parts according as x < Q1+ϵ and x ≥ Q1+ϵ.
In the second part, we apply the Elliott–Halberstam conjecture and deduce
the total contribution to the right hand side of the above inequality is

≪ Q

logAQ

for any A > 0. The first part is

≪ Q

Q1+ϵ�

Q

∑
q∼Q

(
ψ(x, q, 1) +

x

q

)
dx

x2
≪ Q

Q1+ϵ�

Q

(∑
q∼Q

ψ(x, q, 1)
) dx
x2

+ ϵQ.

By Lemma 8.2, we have

Q

Q1+ϵ�

Q

(∑
q∼Q

ψ(x, q, 1)
) dx
x2

≪ Q

Q1+ϵ�

Q

(
x

logQ
+

x

log x
+
√
x log2 x

)
dx

x2
≪ ϵQ.

This completes the proof.

We remark that if instead of breaking the integral at Q1+ϵ, we broke it
at Q2+ϵ, then we could have used the Bombieri–Vinogradov theorem instead
of the Elliott–Halberstam conjecture. This would then give an unconditional
estimate and a new proof of (13).

9. Proof of Theorems 1.4 and 1.5. Towards the proof of Theorem
1.4, we first prove the following lemma, which is a more precise version of
[9, Proposition 3].

Lemma 9.1. Let δ > 0 be fixed. There is an x0(δ) such that for any
x > x0(δ) and any prime q satisfying log x > qδ,
(36)

γq = −(q− 1)
∑

n≡1 mod q
n≤x

Λ(n)

n
+log x− log q

q − 1
+O((log x)

1
2
+ 1

δ exp(−c
√
log x))

for some constant c > 0 independent of q and x.
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Proof. For K = Q(ζq),

ζK(s) = ζ(s)
∏
χ ̸=χ0

L(s, χ),

where the product is over all irreducible characters χ mod q and χ0 is the
principal character. Taking the logarithmic derivative on both sides, we de-
duce

(37) γq = γ +
∑
χ ̸=χ0

L′

L
(1, χ).

For χ ̸= χ0,
L′

L
(1, χ) = −

∞∑
n=1

χ(n)Λ(n)

n
.

Using similar methods as in the proof of prime number theorem, it is known
(see [23, Chapter 11, Cor. 11.18]) that

B(x) :=
∑
n≤x

χ(n)Λ(n) ≪ x exp(−c
√
log x)

for x > x0(δ) and log x > qδ. By partial summation,∑
n>x

χ(n)Λ(n)

n
=

1

x
B(x) +

∞�

x

B(u)

u2
du = O(

√
log x exp(−c

√
log x)).

Therefore,
L′

L
(1, χ) = −

∑
n≤x

χ(n)Λ(n)

n
+O(

√
log x exp(−c

√
log x)).

From (37),

(38) γq = γ −
∑
n≤x
χ ̸=χ0

χ(n)Λ(n)

n
+O(q

√
log x exp(−c

√
log x))

= γ −
∑
n≤x
χ ̸=χ0

χ(n)Λ(n)

n
+O((log x)

1
2
+ 1

δ exp(−c
√

log x)).

It is well-known (see [23, Exercise 4, Chapter 6.2]) that∑
n≤x

Λ(n)

n
= log x− γ +O(exp(−c

√
log x)).

Using this and the fact that∑
χ mod q

χ(n) =

{
q − 1 if n ≡ 1 mod q,

0 otherwise,
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we can write (38) as

γq = log x−
∑
n≤x

Λ(n)

n
−

∑
n≤x
χ ̸=χ0

χ(n)Λ(n)

n
+O((log x)

1
2
+ 1

δ exp(−c
√
log x))

= − log q

q − 1
+ log x− (q − 1)

∑
n≡1 mod q

n≤x

Λ(n)

n

+O

(
log x

x

)
+O((log x)

1
2
+ 1

δ exp(−c
√
log x)),

where in the last step we have separated q |n and q coprime to n in the first
sum of the penultimate step and used∑

n≤x, q|n

Λ(n)

n
=

∞∑
j=1

log q

qj
−

∑
qj>x

log q

qj
=

log q

q − 1
+O

(
log x

x

)
.

Noting that

O

(
log x

x

)
= O((log x)

1
2
+ 1

δ exp(−c
√
log x))

completes the proof.

Corollary 4. For any ϵ > 0, we have γq = O(qϵ).

Proof. We put log x = qϵ in (36). The error term is clearly O(qϵ). The
Brun–Titchmarsh inequality (see for example [9, Proposition 6]) shows that
for x ≥ 10q, ∑

n≡1 mod q
n≤x

Λ(n)

n
≪ log x+ (log q)(log log(x/q))

q − 1
.

By formula (36), the result follows.

Proof of Theorem 1.4. Using partial summation and the Siegel–Walfisz
theorem (noting that q is in the range of applicability), we get the identity∑

n≡1 mod q
n≤x

Λ(n)

n
=

x�

2

ψ(t; q, 1)

t2
dt+O

(
1

q

)
.

Moreover,
x�

2

ψ(t; q, 1)

t2
dt =

x�

2

ψ(t; q, 1)−
(

t
q−1

)
t2

dt+

x�

2

(
t

q−1

)
t2

dt = Aq,x +
log x

q − 1
− log 2

q − 1
.
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Therefore,

(39) Aq,x =
∑

n≡1 mod q
n≤x

Λ(n)

n
− log x

q − 1
+O

(
1

q

)
.

From Lemma 9.1, for log x > qδ,

(40) Aq,x = − γq
q − 1

+O

(
log q

q2

)
+O

(
1

q − 1
(log x)

1
2
+ 1

δ exp(−c
√

log x)

)
= − γq

q − 1
+O

(
1

q

)
.

We now invoke V. Kumar Murty’s result [26], as stated in (13), given by
1

π(y)

∑
q≤y

|γq| = O(log y).

By partial summation, we obtain∑
q≤y

|γq|
q − 1

= O(log y).

Using this in (40), we conclude that
∑

q≤y |Aq,x| ≪ log y. This proves The-
orem 1.4.

Proof of Theorem 1.5. Combining Lemmas 7.2 and 9.1, for log x > qδ

and x > x0(δ), the result now follows immediately.

10. Concluding remarks. Two formulas of independent interest emerge
from our study. One is (see (40))

Aq,x = − γq
q − 1

+O

(
log q

q2

)
+O

(
1

q − 1
(log x)

1
2
+ 1

δ exp(−c
√
log x)

)
= − γq

q − 1
+O

(
1

q

)
,

and the other is (see (39))

Aq,x =
∑

n≡1 mod q
n≤x

Λ(n)

n
− log x

q − 1
+O

(
1

q

)
,

both valid for log x > qδ. Thus,

−
∑
q≤y

γq
q − 1

=
∑
n≤x

Λ(n)

n

[
ωy(n− 1)−

∑
q≤y

1

q − 1

]
+O(log log y).

Here, ωy(n) denotes the number of distinct prime divisors of n not exceed-
ing y. Heuristic reasoning would suggest that ωy(n) has normal order log log y
and the Erdős–Kac theorem is inapplicable given our range of y compared
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to x. This naturally leads to the question of studying small prime divisors
of p+ a, where p runs over prime numbers and a is a fixed integer. This mo-
tivated us to study the distribution of ωy(p+ a), where p runs over primes,
and in [7], we establish a “localized” Erdős–Kac theorem for ωy(p+a), which
relies on a general method initiated in [6].
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Abstract (will appear on the journal’s web site only)
As a natural generalization of the Euler–Mascheroni constant γ, Y. Ihara

introduced the Euler–Kronecker constant γK attached to any number field
K. He obtained bounds on γK conditional upon the generalized Riemann
hypothesis. In this paper, we establish unconditional bounds on γK in terms
of the Siegel zero of ζK(s). We also produce an alternative proof of Ihara’s
theorem without invoking the explicit formula. Furthermore, using known
upper bounds on γQ(ζq), we obtain a bound on the error term in the prime
number theorem, averaging over certain arithmetic progressions.
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