What is Control Theory in 2021?

Can AI do Better?

Olivier Pironneau

March 16, 2022

Abstract

Until the twentieth century it was assumed that knowledge means control. Automatic control came in the sixties for electronics with Bellman's dynamic programming and Kalman's filter and received a boost in the eighties with robust and H^{∞} control. Will artificial intelligence algorithms change the practice of control drastically [4],[1].

Parallel Optimal Control [2], which dates from the calculus of variations of Hadamard and the Pontryajin principle [7], is a more functional approach to the optimization of systems. It is heavily used for the design of mechanical devices like airplanes (optimal shape design [6]) and the topological optimisation of materials [3].

Stochastic control [8] remained up to now a mathematical field except for the rare semi-analytical solutions as in the case of linear quadratic control. It is now computationally feasible and its applications to finance for instance. – though challenged by deep neural networks – are in daily use for risk assessment of bank's portfolios.

Finally, perhaps the most mathematically demanding is the mean-field type control [5] and its application to the Monge-Ampere problem.

As this is a colloquium talk, the problems and the main results will be stated only, without assuming any prior knowledge of theses sometimes difficult fields. Yet the talk is for a mathematically trained audience.

References

- [1] D. Bertsekas. Reinforement Learning and Optimal Control. Athena Scientific, 2019.
- [2] D.P. Bertsekas. Dynamic Programming and Stochastic Control. Athena Scientific, 2005.
- [3] François Jouve Anca-Maria Toader Grégoire Allaire, Frédéric De Gournay. Structural optimization using topological and shape sensitivity via a level set method. *Control and cybernetics*, 2005.
- [4] Simon Haykin. Kalman Filtering and Neural Network. 2001.
- [5] J.M. Lasry and P.L. Lions. Mean field games" (pdf). japanese journal of mathematics. 2: 229–260. Japanese Journal of Mathematics., 2:229–260, 2007.
- [6] O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer, 1982.
- [7] L. Pontriaguine, V. Boltianski, R. Gamkrélidzé, and E. Michtchenko. *Théorie Mathematique des Processus Optimaux*. Mir, 1974.
- [8] Jiongmin Yong and Xun Yu Zhou. Stochastic Controls. Springer Verlag, NY, 1999.