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Abstract. For non-zero integers n and k ≥ 2, a generalized Diophantine m-tuple with
property Dk(n) is a set of m positive integers {a1, a2, . . . , am} such that aiaj + n is a k-th
power for 1 ≤ i < j ≤ m. Define Mk(n) := sup{|S| : S has property Dk(n)}. In this paper,
we study upper bounds on Mk(n), as we vary n over positive integers. In particular, we show
that for k ≥ 3, Mk(n) is O(logn) and further assuming the Paley graph conjecture, Mk(n)
is O((logn)ε). The problem for k = 2 was studied by a long list of authors that goes back to
Diophantus.

1. Introduction

Given a non-zero integer n, we say a set of natural numbers S = {a1, a2, . . . , am} is a
Diophantine m-tuple with property D(n) if aiaj +n is a perfect square for all 1 ≤ i < j ≤ m.
Diophantus first studied such sets of numbers and found the quadruple {1, 33, 68, 105} with
property D(256). The first D(1)-quadruple {1, 3, 8, 120} was discovered by Fermat, and this
was later generalized by Euler, who found the following infinite family of quadruples with
property D(1), namely

{a, b, a+ b+ 2r, 4r(r + a)(r + b)},
where ab+ 1 = r2. In fact, it is known that any D(1)-triple can be extended to a Diophantine
quadruple [1]. In 1969, using Baker’s theory of linear forms in logarithms and a reduction
method based on continued fractions, Baker and Davenport [2] proved that Fermat’s example
is the only extension of {1, 3, 8} with property D(1). In 2004, Dujella [9], using similar meth-
ods, proved that there are no D(1)-sextuples and there are only finitely many D(1)-quintuples,
if any. The conjecture on the non-existence of D(1)-quintuples was finally settled in 2019 by
He, Togbé, and Ziegler in [17].

However, in general, there are D(n)-quintuples for n 6= 1. For instance,

{1, 33, 105, 320, 18240} and {5, 21, 64, 285, 6720}

are Diophantine quintuples satisfying property D(256). Also, we note that there are known
examples of D(n)-sextuples, but no D(n)-septuple is known. So, it is natural to study the
size of the largest tuple with property D(n). Following [8], we define

Mn := sup{|S| : S satisfies property D(n)}.
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Note that if S = {a1, a2, . . .} satisfies property D(n), then x = ai yields an integer point on
the elliptic curve

y2 = (a1x+ n)(a2x+ n)(a3x+ n) (1)

for all i > 3. By Siegel’s theorem (see for example, page 146 of [21]), the number of integer
points on any elliptic curve is bounded. Hence, S cannot be an infinite set. But the known
upper bounds for the number of integer points on (1) depend on the coefficients n, a1, a2, a3 (see
[19]). Therefore, Siegel’s theorem does not give significant information about Mn. However,
the same line of reasoning can produce conditional results. Caporaso, Harris, and Mazur [6]
conjectured that the number of rational points on curves of genus g ≥ 2 is bounded by a
constant which only depends on g (which is implied by a more general conjecture of Lang).
This conjecture implies that supnMn is bounded.

Unconditionally, Dujella [8] showed that

Mn ≤ C log |n|,

where C is an absolute constant. He also showed that for n > 10100, one can choose C = 8.37.
This constant was improved by Becker and Murty [3], who showed that for any n,

Mn ≤ 2.6071 log |n|+O

(
log |n|

(log log |n|)2

)
.

More recently, Güloğlu and Murty [15] discovered a connection between the Paley graph
conjecture (described below) and this problem. They showed that under this conjecture, for
any ε > 0,

Mn � (log |n|)ε,
where the implied constant depends only on ε.

In this paper, we focus on the following natural generalization of the concept of Diophantine
m-tuples.

Definition 1 (generalized Diophantine m-tuples). Fix a natural number k ≥ 2. A set of
natural numbers S = {a1, a2, . . . , am} is said to satisfy property Dk(n) if aiaj + n is a k-th
power for all 1 ≤ i < j ≤ m.

We analogously define the following quantity for each n,

Mk(n) := sup{|S| : S satisfies property Dk(n)}.

For k ≥ 3 and m ≥ 3, we can apply the celebrated theorem of Faltings [12] to deduce that a
superelliptic curve of the form

yk = f(x) = (a1x+ n)(a2x+ n)(a3x+ n)(a4x+ n) · · · (amx+ n)

has only finitely many rational points and a fortiori, finitely many integral points. Therefore,
a set S satisfying property Dk(n) must be finite. All known upper bounds for the number
of such integral points depend on the coefficients of f(x). In fact, one could produce upper
bounds in terms of the number of prime divisors of the discriminant of f(x) (see [11]). Thus,
the question regarding the size of Mk(n) remains unanswered. Again, the Caporaso-Harris-
Mazur conjecture [6] implies that Mk(n) is uniformly bounded, independent of n. The case
n = 1 is better understood. Unconditionally, Bugeaud and Dujella [5] showed that

M3(1) ≤ 7, M4(1) ≤ 5, Mk(1) ≤ 4 for 5 ≤ k ≤ 176, and Mk(1) ≤ 3 for k ≥ 177.
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In other words, the size of Dk(1)-tuples is bounded by 3 for large enough k. In the general
case, for any n 6= 0 and k ≥ 3, Bérczes, Dujella, Hajdu and Luca [4] obtained upper bounds
for Mk(n). In particular, they showed that for k ≥ 5

Mk(n) ≤ 2|n|5 + 3. (2)

The goal of this paper is to obtain better upper bounds on Mk(n) and the set

Mk(n;L) := sup{|S ∩ [nL,∞)| : S satisfies property Dk(n)}

as we vary n over positive integers. Henceforth, we assume that n > 0.

We produce sharper bounds on Mk(n) under the Paley graph conjecture, namely,

Conjecture 1 (Paley graph conjecture). Let ε > 0 be a real number, S, T ⊆ Fp for an odd
prime p with |S|, |T | > pε, and χ be any non-trivial multiplicative character modulo p. Then,
there is some number δ = δ(ε) for which the inequality∣∣∣∣ ∑

a∈S, b∈T
χ(a+ b)

∣∣∣∣ ≤ p−δ|S||T |
holds for primes p larger than some constant C(ε).

The conjecture is known for the case |S| > p1/2+ε and |T | > pε. For more information
about the conjecture and related recent progress, we refer the readers to [15] and [20, p. 305].
One can expect a similar conjecture to be valid in general for all finite fields, but we will not
need such a generalization here.

Our main theorem is:

Theorem 1.1. Let k be a positive integer ≥ 3. Then, the following holds as n→∞.

(a) For L ≥ 3,

Mk(n,L)� 1,

where the implied constant depends on k and L, but is independent of n.
(b) Unconditionally,

Mk(n)�k log n.

(c) Assuming the Paley graph conjecture, for any ε > 0,

Mk(n)�k,ε (log n)ε.

This improves the bound (2) obtained in [4] in the n-aspect for n > 0. The methods in this
paper could be modified to address the case n < 0, but we do not do so here.

2. Preliminaries

In this section, we develop the necessary ingredients to prove our main theorem.



4 ANUP B. DIXIT, SEOYOUNG KIM, AND M. RAM MURTY

2.1. Gallagher’s large sieve. In 1971, Gallagher [13] discovered an elementary sieve in-
equality which he called the larger sieve. We refer the reader to [7] for the general discussion
but here record the result in a form applicable to our context.

Theorem 2.1. Let N be a natural number and S a subset of {1, 2, . . . , N}. Let P be a set of
primes. For each prime p ∈ P, let Sp = S (mod p). For any 1 < Q ≤ N , we have

|S| ≤

∑
p≤Q,p∈P

log p− logN∑
p≤Q,p∈P

log p
|Sp| − logN

, (3)

where the summations are over primes p ≤ Q, p ∈ P and the inequality holds provided the
denominator is positive.

2.2. A quantitative Roth’s theorem. Quantitative results related to counting exceptions
in Roth’s celebrated theorem on Diophantine approximations were established by a variety of
authors. We will use the following result due to Evertse [10]. For an algebraic number ξ of
degree r, we define the (absolute) height by

H(ξ) :=

(
a

r∏
i=1

max(1, |ξ(i)|)

)1/r

,

where ξ(i) for 1 ≤ i ≤ r are the conjugates (over Q) and a is the positive integer such that

a
r∏
i=1

(x− ξ(i))

has rational integer coefficients with gcd 1.

Theorem 2.2. Let α be a real algebraic number of degree r over Q, and 0 < κ ≤ 1. The
number of rational numbers p/q satisfying max(|p|, |q|) ≥ max(H(α), 2),∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

max(|p|, |q|)2+κ

is at most

225κ−3 log(2r) log(κ−1 log(2r)).

2.3. Vinogradov’s theorem. The following bound on character sums was proved by Vino-
gradov (see [22]).

Lemma 2.3. Let χ (mod q) be a non-trivial Dirichlet character and n be an integer such
that (n, q) = 1. If A ⊆ (Z/qZ)∗ and B ⊆ (Z/qZ)∗ ∪ {0}, then∑

a∈A

∑
b∈B

χ(ab+ n) ≤
√
q|A||B|.

The original method of Vinogradov does not produce the bound above and instead gives
the right hand side as

√
2q|A||B|. However, the above bound holds and a short proof of this

can be found in [3, Proposition 2.5].
The next lemma is a variation of a gap principle of Gyarmati [14].
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Lemma 2.4. Let k ≥ 2. Suppose that a, b, c, d are positive integers such that a < b and c < d.
Suppose further that

ac+ n, bc+ n, ad+ n, bd+ n

are perfect k-th powers. Then,

bd ≥ kkn−k(ac)k−1.

Proof. Since (b− a)(d− c) > 0, it is easily seen that

(ac+ n)(bd+ n) > (ad+ n)(bc+ n).

As (ac+ n)(bd+ n) and (ad+ n)(bc+ n) are both perfect k-th powers, we see that

(ac+ n)(bd+ n) ≥ [((ad+ n)(bc+ n))1/k + 1]k

≥ (ad+ n)(bc+ n) + k((ad+ n)(bc+ n))(k−1)/k

≥ (ad+ n)(bc+ n) + k(abcd)(k−1)/k.

Thus,

n(ac+ bd) ≥ n(ad+ bc) + k(abcd)(k−1)/k.

As ad+ bc > ac, we deduce

nbd > k(abcd)(k−1)/k

so that

bd ≥ kkn−k(ac)k−1,
as claimed. �

The following corollaries of the above lemma will be useful to keep in mind as we proceed
with our proof of the main theorem. Loosely speaking, they show that “large” elements of
any set with property Dk(n) have “super-exponential growth.”

Corollary 1. Let k ≥ 3. If n3 ≤ a < b < c < d < e are natural numbers such that the set
{a, b, c, d, e} has property Dk(n), then e ≥ bk−1.

Proof. We have by Lemma 2.4,

ce ≥ kkn−k(bd)k−1 ≥ kkn−k(bc)k−1.

Thus, e ≥ bk−1ck−2n−k ≥ bk−1n2k−6 ≥ bk−1, as claimed. �

An easy induction argument now shows the following.

Corollary 2. Let k ≥ 3 and m ≥ 5. Suppose that n3 ≤ a1 < a2 < . . . < am and the set

{a1, a2, ..., am} has property Dk(n). Then a2+3j ≥ a(k−1)
j

2 provided 1 ≤ j ≤ (m− 2)/3.

3. Proof of the main theorem

3.1. Proof of Theorem 1.1 (a). If k is an even integer, then it reduces to the “square”
case, which was treated by Dujella [8], who showed that M2(n; 3) ≤ 21. Hence, for any even
k, we clearly obtain Theorem 1.1 (a).
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Thus, we can assume k ≥ 3 to be an odd integer. Letm = Mk(n) and S = {a1, a2, a3, . . . , am}
be a generalized m-tuple with property Dk(n). Suppose nL < a1 < a2 < . . . < am for some
L ≥ 3. Consider the system of equations{

a1x+ n = uk

a2x+ n = vk.
(4)

Clearly, x = ai for i ≥ 3 are solutions to this system. Moreover, we have

a2u
k − a1vk = n(a2 − a1). (5)

Let α := (a1/a2)
1/k and ζk := e2πi/k. Then, we prove the following lemma.

Lemma 3.1. Let k ≥ 3 be odd. Suppose u, v satisfy the system of equations (4). Let

c(k) :=

(k−1)/2∏
j=1

(
sin

2πj

k

)2

.

Then, for n > 21/(L−1)c(k)−1/(L−1), ∣∣∣∣uv − α
∣∣∣∣ ≤ a2

2vk
. (6)

Proof. We can write

a2u
k − a1vk = a2

(
uk − (αv)k

)
= a2

k−1∏
j=0

(
u− αζjkv

)

= a2|u− αv|
(k−1)/2∏
j=1

∣∣∣u− αζjkv∣∣∣2 , (7)

where the second equality can be obtained by separating the factor for j = 0 and pairing

u − αζjkv with its complex conjugate (which is distinct since k is odd). Observe that for a
complex number z = x + iy, with x, y real, we have |z|2 ≥ max(x2, y2). Thus, for 1 ≤ j ≤
(k − 1)/2, ∣∣∣u− αζjkv∣∣∣2 ≥ |α|2v2(sin

2πj

k

)2

,

since α and v are real. Using this and (5) in (7), we deduce

na2 ≥ n(a2 − a1) ≥ a2|u− αv| |α|k−1vk−1c(k) ≥ a2|u− αv||α|kvk−1c(k),

since |α| < 1. Therefore, ∣∣∣u
v
− α

∣∣∣ ≤ n(a2 − a1)
a2 c(k)vk|α|k

≤ na2
a1 c(k)vk

.

Since a1 > nL, for nL−1 > 2c(k)−1, we obtain∣∣∣u
v
− α

∣∣∣ ≤ a2
2vk

as claimed. �
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Towards the proof of Theorem 1.1 (a), it suffices to show that there are finitely many
solutions (ui, vi) for the system of equations (4) and to estimate this number. In this context,
it is useful to keep in mind that the vi have “super-exponential growth” by Corollary 2. An
estimate for the system of equations (4) would follow from the fact that there are few rational
approximations of α as in (6). In order to show this, we apply Theorem 2.2 to α, which is a

real algebraic number of degree k. Moreover, H(α) ≤ a
1/k
2 with equality if (a1, a2) = 1. We

first derive the following result based on a gap principle which is well-known in the theory of
Diophantine approximation.

Lemma 3.2. Let (ui, vi) denote distinct pairs that satisfy the system of equations (4) with

vi+1 > vi. For n > 21/(L−1)c(k)−1/(L−1), there is an absolute constant i0, depending only on
k, such that for i ≥ i0, ∣∣∣∣uivi − α

∣∣∣∣ < 1

v
k−1/2
i

,

and vi > a42.

Proof. By Lemma 3.1, we have ∣∣∣∣uivi − α
∣∣∣∣ < a2

2vki
.

To prove the lemma, we need to show a2 < 2v
1/2
i for i > i0. But this is now clear by

a simple application of Corollary 2. Indeed, as vki = a2ai + n, we have vi ≥ a
1/k
i and by

Corollary 2,

a2+3j ≥ a(k−1)
j

2 (8)

so that v2+3j ≥ a(k−1)
j/k

2 . Choose a positive integer j0 satisfying (k − 1)j0 > 4k. Since k ≥ 3,
one can choose j0 = 4. Setting i0 = 2 + 3j0, we have vi ≥ vi0 > a42 for all i ≥ i0. This
completes the proof.

�

Now let u1/v1, . . . , um/vm satisfy the system of equations (4) with vi > max(a
1/k
2 , 2) ≥

max(H(α), 2). By Lemma 3.2, for i0 ≤ i ≤ m,∣∣∣∣uivi − α
∣∣∣∣ ≤ 1

v
k−1/2
i

≤ 1

v2.5i
, (9)

because k ≥ 3. Since α = (a1/a2)
1/k < 1, max(ui, vi) = vi. Hence, an application of Theorem

2.2 shows that the number of such i’s is O((log k)(log log k)). This proves Theorem 1.1(a).

3.2. Proof of Theorem 1.1 (b). Let S = {a1, a2, . . . , am} be a generalized Diophantine
m-tuple with property Dk(n) and each ai ≤ n3. Since Mk(n; 3) � 1, it is enough to show
that |S| � log n. We will apply the larger sieve with primes p ≤ Q satisfying p ≡ 1 (mod k)
because such primes have a non-trivial Dirichlet character χ of order k. For these primes p,
we let Sp be the image of S (mod p). Applying Lemma 2.3, with A = B = Sp and a character
χ (mod p) of order k, we obtain

|Sp|(|Sp| − 1) ≤
∑

a∈Sp−{0}

∑
b∈ Sp

χ(ab+ n) + |Sp| ≤
√
p|Sp|+ |Sp|.

Hence,
|Sp| �

√
p.
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Since ai ≤ n3, we take N = n3. Applying Theorem 2.1, we get

∣∣∣S∣∣∣ ≤
∑

p≤Q,p≡1(mod k)

log p− logN

∑
p≤Q,p≡1(mod k)

log p

|Sp|
− logN

.

By the prime number theorem for arithmetic progressions,∑
p≤Q,p≡1(mod k)

log p ∼ Q

ϕ(k)
,

and by a simple partial summation, ∑
p≤Q,p≡1(mod k)

log p
√
p
∼ 2
√
Q

ϕ(k)
.

Since |Sp| �
√
p, we deduce

|S| �k
Q− ϕ(k) logN

2
√
Q− ϕ(k) logN

.

Choosing Q = (ϕ(k) logN)2, we conclude that |S| �k logN � log n as claimed.

3.3. Proof of Theorem 1.1 (c). From Theorem 1.1(a), Mk(n; 3) is bounded, and thus it is
sufficient to consider an m-tuple with the property Dk(n) which lies in [1, N ], where N = n3.
Assume Conjecture 1 holds for some ε > 0. If necessary, we choose larger C(ε) so that the
inequality

pε(1− p−δ) ≥ 3 (10)

also holds for p > C(ε). Without loss of generality, we assume that N is large enough so that
we can take a prime p - n satisfying

C(ε) < p ≤ Q < N, p ≡ 1(mod k),

where Q will be chosen later in the proof. Let S = {a1, a2, . . . , am} ⊂ Z be a Diophantine
m-tuple with property Dk(n) and let Sp = S (mod p) for some prime p in Z. We denote by
ζk a primitive kth root of unity. Since p ≡ 1(mod k), there is a Dirichlet character χ(mod p)
of order k. For i = 0, 1, . . . , k − 1, define for each prime p,

Ti =

{
a ∈ Sp

∣∣∣∣ χ(a) = ζik

}
.

Then we have

|Sp| ≤ |T0|+ |T1|+ · · ·+ |Tk−1|+ 1, (11)

with equality when 0 ∈ Sp. Since p - n, for each a ∈ Ti, there is at most one b0 ∈ Ti such that
ab0+n ≡ 0(mod p). Moreover, for b ∈ Ti\{a, b0}, we have χ(ab+n) = 1, since χ is a character
of order k. Also, it is possible that χ(a2 + n) = −1. Hence, by the triangle inequality, under
the Paley graph conjecture, the assumption |Ti| > pε (thus, |Ti| > 3) implies that

0 < |Ti|(|Ti| − 3) ≤

∣∣∣∣∣∣
∑
a,b∈Ti

χ(ab+ n)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a,b∈Ti

χ(b+ na−1)

∣∣∣∣∣∣ =

∣∣∣∣∣ ∑
a∈nT−1

i
b∈Ti

χ(b+ a)

∣∣∣∣∣ ≤ p−δ|Ti|2,
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where δ = δ(ε). Thus, we have

pε < |Ti| ≤
3

1− p−δ
,

which gives a contradiction to (10), and we must have |Ti| ≤ pε for C(ε) < p ≤ Q with p - n
and p ≡ 1(mod k). From (11), we get

|Sp| ≤ 1 + kpε,

for C(ε) < p ≤ Q with p - n and p ≡ 1(mod k). Take γ = k + C(ε)− ε, then |Sp| < γpε for
these primes, and we obtain∑

p≤Q,p≡1(mod k)

γ log p

|Sp|
>

∑
C(ε)<p≤Q,p≡1(mod k)

p-n

log p

pε

≥
∑

p≤Q,p≡1(mod k)

log p

pε
−
∑

p≤C(ε)

log p

pε
−
∑
p|n

log p

pε
.

The rest of the proof can follow [15]. Alternatively, we present the following proof which is
simpler. Note that we have ∑

p|n

log p

pε
= Oε

(
log n

log logn

)
since the fucntion p 7→ log p/pε has a maximal value depending on ε. Then the application of
the prime number theorem for arithmetic progressions (as applied before) implies

∑
p≤Q,p≡1(mod k)

log p

pε
∼ Q1−ε

(1− ε)ϕ(k)
. (12)

Hence, we have the lower denominator of the expression from Gallagher’s sieve∑
p≤Q,p≡1(mod k)

γ log p

|Sp|
>

Q1−ε

(1− ε)ϕ(k)
−Oε

(
log n

log log n

)
.

Choosing Q = (γϕ(k))1/(1−ε)(logN)1/(1−ε), we obtain∑
p≤Q,p≡1(mod k)

log p

|Sp|
− logN >

(1 + o(1)) logN

(1− ε)
−Oε

(
log n

log logn

)
− logN �ε logN, (13)

and the numerator is bounded above by � (logN)1/(1−ε). Hence, we obtain

|S| � (logN)1/(1−ε)−1 < (logN)O(ε),

and the theorem is proved.

4. Concluding remarks

The methods applied above are effective and one can obtain precise upper bounds for
Mk(n). The key point to note is that though Roth’s theorem is not effective, the number
of exceptions to Roth’s theorem affords an effective estimate as was first noticed by Roth
and Davenport shortly after Roth proved his celebrated theorem. This was subsequently
exploited by a sequence of mathematicians such as Bombieri, Corvaja, Mignotte, van der
Poorten, Schmidt, and finally Evertse whose theorem we have used in this paper.
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349-366. Erratum: ibid., 75, 381.
[13] P. X. Gallagher. A larger sieve. Acta Arith., 18, (1971), 77-81.
[14] K. Gyarmati, On a problem of Diophantus, Acta Arith., 97, (2001), 53-65.
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