LELTUFE E
A rivn wi a set R with two binaly

- Addition $(a, b) \leftrightarrow a+b$
- multiplication : $(a, b) \mapsto a b$

Sucle that
(1) A is an aleliangp under addition:

$$
\begin{aligned}
& -a+b=b+a \quad \forall \quad a, b \in R \\
& -\forall 0 \in A \quad \exists a+0=a \quad \forall a \in R \\
& -\forall a \in A \quad \exists \quad-a \in A \quad \exists \quad a+(-a)=0
\end{aligned}
$$

(2) Multiplication is associzative:

$$
-(a b) c=a(b c)
$$

(3) Multiplication diombutes quer addition

$$
\begin{aligned}
& -a(b+c)=a b+a c \\
& -(a+b) c=a c+b c
\end{aligned}
$$

Example: Let A be an abeliau quoup..

$$
\begin{aligned}
R & =\operatorname{End}(A) \\
& =\{f: A \rightarrow A \mid f(a+b)=f(a)+f(G)\}
\end{aligned}
$$

is a ring, when with $(f+g)(a)=f(a)+g(a)$

$$
(f g)(a)=f(g(a))
$$

Iu this exanyplé the ideulity map:

$$
1=i d_{A}: A \rightarrow A
$$

has the prapeity $f \cdot 1=1 \cdot f=f$
1 is called a enit R is said to be unital
(2)

Defn (Ring homomorphism)
A ring Lomovoopliism is a function $f \cdot R \rightarrow R^{\prime}$ cohere
R and R^{\prime} an sings and $f(a+b)=f(a)+f(b)$
Def lest

$$
f(a b)=f(a) f(b)
$$

Defy (R-module)
An R-module is an abelian group M together with a ring homomomplism $R \rightarrow$ End (M).

Example: A-abeliour group. Then A is a left End (A) - module.

Defn :(R-module homomorplusm)
An R-module homomorphism, is a function $f: M \rightarrow M^{\prime}$ where M and $M^{\prime \prime}$ are R-modules, f is a homomonphi - of abelian groups such that $f(a m)=a f(m)$ $\forall a \in \mathbb{R}$ and $m \in M$
E Home $\left(M, M^{\prime}\right)$ denotes the space of R-nodule homs.
Example: Let R be a ring. Fix $a \in R$
Then $f: R \rightarrow R$ defined by

$$
f(x)=x a
$$

is an R-module homomorphism

Defn (Direct sum)
If $\left\{M_{\alpha}\right\}$ is a collection of R-modules, then an R-module M is said to be a direct sum of the M_{α} 's if $\forall \alpha, \exists$ an R-module homomorphism $\varphi_{\infty}: M_{k} \rightarrow M$ such tat whenever $\left\{\eta_{a}: M_{\alpha} \rightarrow N\right\}$ is a collection of R-module homomorphisms, there exits a unique R-module homomorphism $\eta: M \rightarrow N$ such that

$$
\begin{aligned}
& \eta \circ \varphi_{\alpha}=\eta_{\alpha}
\end{aligned}
$$

Theorem: Every collection of R-modules has a duel sum, which is unique up to unique isomorphism
Proof. Define which preserves the φ_{2} 's

$$
\begin{aligned}
& M=\left\{\left(m_{\alpha}\right) \in \prod_{\alpha} M_{\alpha} \mid m_{\alpha}=0\right. \text { for all but finitely } \\
& \text { many } \alpha\} \\
& \text { sion componentwise }
\end{aligned}
$$

Define $\varphi_{\alpha}: M_{\alpha} \rightarrow M$ by $m \mapsto\left(m_{\beta}\right)$ where $M_{\beta}=\left\{\begin{array}{l}0 \text { if } \alpha \rightarrow \beta \\ m \text { ip } \times=\beta\end{array}\right.$
(4)

Given $\left\{\eta_{\alpha} M_{\alpha} \rightarrow N\right\}$ must have

$$
\eta: M \rightarrow N \text { by } \eta\left(m_{\alpha}\right)=\sum_{\alpha<} \eta_{\alpha}\left(m_{\alpha}\right)
$$

If M^{\prime} is another direct sum, with $\left\{\varphi_{\alpha}^{\prime}: M_{\alpha} \rightarrow M\right\}$, then

$\frac{\text { Corollary }}{\text { Exam }} \operatorname{Hom}\left(\oplus M_{\alpha}, N\right)=\prod_{\alpha} \operatorname{Hom}\left(M_{\alpha}, N\right)=\bigoplus_{\alpha} M_{\alpha}$
Example: (free module) ${ }^{\alpha}$
Let S be any set. The free R-module on S is $R^{5}=\bigoplus_{\alpha \in S} R$
Remark: (projections from a direct sum)
In the dofn of direct sum, fix β
Take $N=M_{\beta}$
Define $\eta_{\alpha}=\left\{\begin{array}{lll}0 & \text { if } & \alpha \neq \beta \\ i_{M_{\alpha}} & \text { if } & \alpha=\beta\end{array}\right.$
Then the induced map $p_{\beta}:=\eta: \not \uplus M \rightarrow M_{\beta}$ satisfies $p_{\beta} 0 \eta_{\alpha}=\left\{\begin{array}{lll}0 & \text { if } & \alpha \neq \beta \\ \text { id } M_{\alpha} \text { if } & \alpha=\beta\end{array}\right.$ projection onto M_{β}.

Theorem Suppose S us a finite set. For every collection $\left\{q_{\alpha}: N \rightarrow M_{\alpha}\right\}$ of R-module homomorphisms, there exists a unique $q: M \rightarrow M$ such that

$$
\begin{gathered}
M \xrightarrow[R]{M} M_{k} \\
q / q_{a}
\end{gathered}
$$

Proof: Omitted
Corollary: If S is finite, $\operatorname{Hom}\left(N, \bigoplus_{\alpha \in S} M_{\alpha}\right)=\prod_{\alpha \in S} \operatorname{Hom}(N, M)$
Corollary: If S is finite

$$
\operatorname{Hom}\left(\bigoplus_{\alpha} M_{\alpha}, \bigoplus_{\beta \in S} N_{\beta}\right)=\prod_{\alpha} \prod_{\beta \in S} \operatorname{Hom}\left(M_{\alpha}, N_{\beta}\right)
$$

It is customary to thick of such a homomorphism as a matrix. Composition is matrix multiplication.
Exercise: If R is unital, then End $R=R$
Corollary: $\operatorname{Hom}_{k}\left(R^{n}, R^{m}\right) \cong M_{m \times n}(R)$
The composition map $\operatorname{Hom}\left(R^{m}, R^{k}\right) \times \operatorname{Hom}\left(R^{n}, R^{m}\right)$

$$
\operatorname{Hom}\left(R^{n}, R^{h}\right)
$$

Corresponds to the matrix milt. map.
(6)

Example (whre $R \cong R \oplus R$)
Suppose $R \rightarrow R \oplus R$ is an uso
It is given by a $\$ 2 \times 1$ matix $\binom{e_{1}}{e_{2}}$ witte entriesur Injectivity meaus: $e_{1} a=e_{2} a=0 \Rightarrow a=0 \quad \forall a \in R$
Serjectivity meams: $\exists f_{1} \& f_{2} \in R \geqslant e_{i} f_{j}=\delta_{i j} \forall i, j$
e.g. (V.S.Sunder)

Let V be a lwo dimemsiond klilbert space witth orthonormal bases $\left\{f_{1}, f_{2}\right\}$

$$
R=\operatorname{End}_{\mathbb{C}}(\Gamma \oplus V \oplus V \otimes V \oplus(V \otimes v) \oplus \cdots)
$$

mull $\left(\vec{x}_{1} \otimes \cdots \otimes \vec{x}_{k}\right)\left(\vec{y}, \otimes \cdots \otimes \vec{y}_{k}\right)=\vec{x}_{1} \otimes \cdot \otimes \vec{x}_{k} \odot \vec{y}_{,} \odot \cdot \otimes \vec{y}_{k}$.
Then $f_{1} \& f_{2} \in R$ (left mult)
defive $e_{i}\left(x_{1} \otimes \cdots x_{k}\right)$

$$
=\left\langle e_{i}, x_{1}\right\rangle x_{2} \otimes \ldots \otimes x_{k}
$$

Theorem: If R is commutative and $R^{n} \cong R^{m}$ then mon

$$
\begin{aligned}
& \text { Proof: } R^{n} \xrightarrow{\varphi} R^{m} \stackrel{\psi}{\longrightarrow} R^{n} \varphi \cdot \psi ; \psi \circ \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \varphi\left(\underset{m_{n}}{\left(A\binom{\vec{e}_{1}}{\vec{e}_{n}}\right)}=\underset{n_{n}}{\binom{\vec{f}_{1}}{\vec{f}_{m}}} \underset{n_{m}}{\left.\underset{B_{m}}{B}\binom{\vec{f}_{1}}{\vec{f}_{m}}\right)}=\binom{\vec{e}_{1}}{\vec{e}_{n}}\right.
\end{aligned}
$$

Then $A B=I_{\text {mxm }}$
Assume $m>n$.
Let $\tilde{A}=[A / 0]_{m \times m}$

$$
\widetilde{B}=\left[\frac{B}{0}\right]_{m \times m}
$$

$$
\begin{aligned}
& \tilde{A} \tilde{B}=A B=I \\
\Rightarrow & \tilde{B} \tilde{A}=I \quad \text { (why?) }
\end{aligned}
$$

But $\quad \tilde{B} \tilde{A}=\left[\begin{array}{ll}B A & 0 \\ 0 & 0\end{array}\right] \Rightarrow E$
LECTURE I

Theorom: If R is a piid, then coery subwrodule of R^{n} is pee of nauk $m \leq n$.
Pf: Induct on n.

$$
\begin{aligned}
n=1, M \subset R \Rightarrow M=(f) \quad f \in R \Rightarrow & a \mapsto a f \\
& R \mapsto M
\end{aligned}
$$

R^{n} spanued by e_{1}, \ldots, e_{n}
cousider R^{n-1} spauned by $e_{2}, \ldots, e_{n} R^{\prime}$ spanned by e_{1} If $M \subset R^{n-1}$ dove
Else, $\frac{M+R^{n-1}}{R^{n-1}} \subseteq \frac{R^{n}}{R^{n}} \approx R$ is a fire module of th. 1, a gen by $f_{1}+R^{n-1}, \quad f_{1} \in R^{1}$
$M \cap R^{n-1}$ in a fue unodule af in $m-1, m \leqslant n$ seu.by $f_{2, \ldots, f m}$
Suppese $m \in M . \exists a_{1} \in R \exists m-a_{1} f_{1} \in R^{n-1} \cdots$
(8)

Defn: (fivitely geu- R-module)
M is a fivitely geverated R-module if ∂ sujective R-wodule hom $R^{n} \rightarrow M$ for some $u \in(N$

$$
K=\left\{x \in R^{n} \nmid x \mapsto 0 \in M\right\} \text {. }
$$

Relation to matrices: $0 \rightarrow K \rightarrow R^{n} \rightarrow M \rightarrow 0$

Change of basis $\longleftrightarrow P A Q$

$$
\begin{aligned}
& P \in G L_{m}(R) \\
& Q \in G L_{n}(R)
\end{aligned}
$$

\therefore A \& PAQ give ruse to isomorphic R-modules
Defu: $A, B \in M_{m \times n}(R)$ are waid to be equivalent if

$$
\exists P \in G L_{m}(R) \& Q \in G L_{n}(R) \quad \exists \quad B=P A Q
$$

Theovem: (Smith cavonical form):
Let R be a p.i.d. Then every $A \in M_{m \times n}(R)$ is equioalent to a matiox of the form $\left(\begin{array}{llll}d_{1} & & \\ d_{2} & 0 & 0 \\ 0 & d_{r} & \\ 0 & 0\end{array}\right)$

* where $d_{1}\left|d_{2}\right| \ldots \mid d_{r}, d_{i} \neq 0$. Moveover, d_{i} s are unique
up to multiplication by units.
Proof: We are allowed elementary row \& colum u ifs First assume that R is a Eudidean domain with norm: $\delta: R \rightarrow \mathbb{N} \quad(\delta(0)=\infty)$. Assume $A \neq 0$
Suppose $a_{i j}$ is such that $\delta\left(a_{i j}\right)$ is minimal By interchanging rows and columns, can make sure teat $\delta\left(a_{11}\right)$ is minimal
For $k>1$ if $a_{k n} \not a_{i k}=a_{1} b_{k}+b_{i k}$. If $b_{i k} \neq 0$,

$$
C_{k} \rightarrow C_{k}-b_{k} C_{1}
$$

Get a new matrix with $\delta\left(a_{p k}\right)<\delta\left(a_{11}\right)$
Again ivterdiaye rows and columns to get $\delta\left(a_{11}\right)$ minimal.
This new value is strictly less than le old one
Caus do the same thing witt the rows
Since $\delta \in \mathbb{N}$, a finite no of steps will result in a matrix for which $a_{11}\left|a_{1 k} \& a_{11}\right| a_{j 1} \not \forall j, k$.
Than use row \& column ops to get

$$
\left(\begin{array}{cccc}
b_{11}^{\prime} & 0 & \cdots & 0 \\
0 & & \\
\cdots & A^{\prime} & \\
0 & &
\end{array}\right)
$$

$$
A^{\prime}=\left(\begin{array}{lll}
a_{22}^{\prime} & a_{23}^{\prime} \cdots & a_{2 n}^{\prime} \\
a_{32}^{\prime} & & \\
a_{n 2}^{\prime} &
\end{array}\right)
$$

proceed by induction
(10) The came method works over a PID with a little modification:
For $a \neq 0$, define $l(a)=$ \# prime factors in the decomposition of a.

$$
[l(a)=0 \text { if a is aunt }]
$$

As bepre, may assume that $l\left(a_{11}\right)$ is miciinal.
Suppose $a_{11} 1 a_{1 k}$
By interdaying cols, assume

$$
a_{11} k a_{12} .
$$

Let $d=\left(a_{11}, a_{12}\right)$
can wite $a_{11} x+a_{12} y=d$
Calculate:

$$
\left(\begin{array}{cc}
a_{11} & a_{12} \\
* & *
\end{array}\right)\left(\begin{array}{cc}
x & \frac{a_{12}}{d} \\
y & -\frac{a_{11}}{d}
\end{array}\right)=\left(\begin{array}{cc}
d & 0 \\
* & *
\end{array}\right)
$$

Moreover $\operatorname{det}\left(\begin{array}{cc}x & \frac{a_{12}}{d} \\ y & -\frac{a_{11}}{d}\end{array}\right)=-\frac{a_{11} x+a_{12} y}{d}=-1$ (unit)

$$
\begin{aligned}
& A\left(\begin{array}{cccc}
x & \frac{a_{12}}{2} & & 0 \\
y & -\frac{d_{11}}{d} & 1 & 0 \\
0 & & 1 & 0
\end{array}\right) \cos =\left(\begin{array}{ccc}
d & 0 & x \\
x & x & \cdots \\
1 & & x
\end{array}\right) \\
& l(d)<l\left(a_{11}\right)
\end{aligned}
$$

Claim: Can arrange that b_{11} divides all the entries of A^{\prime}.
For if not, then $\delta\left(b_{11}\right)$ can he decreased further.
Suppose $b_{11} \not \backslash a_{i j}^{\prime}$.

$$
R_{1} \rightarrow R_{1}+R_{i}
$$

Fist row: $b_{11} a_{i 2}^{\prime} \ldots a_{\text {in }}^{\prime}$
Repeat the above process.
Get a new matrix of type

$$
\left(\begin{array}{cccc}
b_{11} & 0 & \cdots & 0 \\
0 & & A^{\prime} & \\
0 & &
\end{array}\right)
$$

with $\delta\left(b_{11}\right)$ strictly less.

For uniqueves we use the following lemma:
Lemma: Suppose A is equivalent to B.

$$
\begin{aligned}
& \Delta_{i}(A)=\operatorname{gcd} \text { of } i \times i \text { minors of } A \\
& \Delta_{i}(B)=\operatorname{gcd} \text { of } i \times i \text { minors of } B
\end{aligned}
$$

Then $\Delta_{i}(A)$ \& $\Delta_{i}(B)$ differ by units
Pf: Suppose $A Q=B$.
Then cols. of B are lin. combinations of columns of A.
$\therefore i x i$ minors of B are linear combos. of ixi minors of A.
\therefore each Lxi minor of $B \in\left(\Delta_{i}(A)\right)$

$$
\Rightarrow \quad \Delta_{i}(B) \subseteq\left(\Delta_{i}(A)\right)
$$

of Q is invertible, so $A=B Q^{-1}$

$$
\begin{aligned}
& \Rightarrow \quad \Delta_{i}(A) \\
& \therefore\left(\Delta_{i}(A)\right)=\left(\Delta_{i}(B)\right) \\
& \therefore(B))
\end{aligned}
$$

Similarly H $P A=B$, then $\left(\Delta_{i}(A)\right)=\left(\Delta_{i}(B)\right)$
Caubivicy: $\quad \triangle_{i}(P A Q)=\Delta_{i}(A)$
(12)

Suppress $A \sim\left(\begin{array}{ll}d_{1} & \\ d_{2} & \\ & d_{r} \\ & \end{array}\right.$

$$
\begin{aligned}
\Delta_{i}(A) & =d_{1} \ldots d_{i} \cdot u \\
d_{1}=\Delta_{1}(A)_{0} d_{i} & =\frac{\Delta_{i}(A)}{\Delta_{i-1}(A)} u \text { for } i=1, \ldots, r, d_{i=0} i>r
\end{aligned}
$$

$\therefore d$ is are letemind uplo unit by A.
Defy The ith invariant factor of A is the ideal generated by the $i \times i$ minors of A.
Corollary: A and B are equivalent eff they howe the same invariant factors.

Back to finitely generated R-modules:
We have:

$$
\underset{\substack{\left\langle, e \\\left\langle d_{1} e_{r}\right\rangle\right.}}{\mathrm{O}} \underset{\left\langle e_{1}, \ldots, e_{n}\right\rangle}{\longrightarrow} R^{n} \varphi \rightarrow 0
$$

Let $z_{i}=\varphi\left(e_{i}\right)$.
Then $M=R_{3}, \oplus \cdots \oplus R_{z_{n}}$
As an R-module $R_{z_{i}} \approx R / \operatorname{Ann}\left(z_{i}\right)$
where $\operatorname{Ann}\left(z_{i}\right)=\left\{r \in R /{ }_{r} z_{i}=0\right\}=\left(d_{i}\right)$.
$\left(\right.$ put $\left.d_{r+1}=\cdots=d_{n}=0\right) \quad \varphi\left(r e_{i}\right)$

Theorem: (Structure of finitely generated noolules ours a P, D)
If $M(\neq 0)$ is a finitely geverated module over a PID, then $\frac{7}{7}$ elements $z_{2}, z_{2}, \ldots, z_{s} \in M$ such that $M=R_{3} \oplus \ldots \oplus R_{3}$
with $\operatorname{Aun}\left(z_{1}\right) \supset \operatorname{Anu}\left(z_{2}\right) ? \ldots \operatorname{Aun}\left(z_{s}\right)$
ecture $\frac{\pi}{7}$
$\therefore M \approx R /\left(d_{1}\right)^{\oplus} \cdots \oplus R /\left(d_{s}\right) \quad\left(d_{1}\right)>\left(d_{2}\right) \geq x\left(d_{s}\right)$
Defn : (Torsion module)
Let R be any Commutative domain \& M be aw R-modede.

$$
M_{\text {tor }}=\{m \in M / r m=0 \text { for some } r \in R, r \neq 0\}
$$

Moor is a submodule of R, called its torsion module Deft. M is a torsion R-module al $M=M_{\text {for }}$ Theorem: Any finitely generated nodule over a pied. is a dived Sum of $M_{\text {tor }} \xi$ a free submodule.

$$
\begin{aligned}
& \text { Pf } M=R_{z, \oplus} \cdots \oplus R_{z_{s}} \\
& \operatorname{Ann}\left(z_{1}\right) \geqslant \cdots \operatorname{Aan}\left(z_{s}\right)
\end{aligned}
$$

$k=$ largest integer for which $\operatorname{Ann}\left(z_{i}\right) \neq(0) \forall i \geqslant k$.

$$
\begin{aligned}
& M_{\text {tor }}=R_{3_{k}} \oplus \cdots \oplus R_{3_{s}} . \\
& M_{\text {tue }}=R_{3}, \oplus \cdots R_{3_{k-1}}
\end{aligned}
$$

(14)

Example: (the free part us not canonical)

$$
\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z}(1,1) \oplus \mathbb{Z}(0,1)
$$

Definition: (primary component). Let R be a PID Let $p \subset R$ be a prime ideal. The p-primary
component of an'R-module M is

$$
M_{p}=\left\{m \in M / p^{k} m=0 \text { for some } k \in \mathbb{N}\right\} \text {. }
$$

Here p denotes a generator for p.
Clearly,(1) M $\subset M$ is a submodule
(2) $M_{p} \subset M_{\text {tor }}$

Definition (pinchany undue) M is called D-prinuy if $M=M_{P}$ Theorem: (primary decomposition) M is called piny Let R be a PID, and Ma finitely generated torsion R-module. Then
(1) $M_{i}=0$ for all but finitely many prime ideals $p \subset R$.
(2) $M=\bigoplus_{p} M_{p}$ (direct sum over all prime ideals).

Proof:
Step 1: Suppose $p_{1}, p_{2}, \cdots, p_{h}$ are distinct prime ideals $\operatorname{in} R$, then $M_{p_{1}} \cap\left(M_{p_{2}}+\ldots+M_{p_{h}}\right)=0$.
pf of step 1: Suppose $y \in M_{p_{1}} \cap\left(M_{p_{2}}+\cdots+M_{p_{h}}\right)$
Then $y=y_{2}+\cdots+y_{k}$, where $p_{i} y_{i}=0$ for $i=2, \ldots, k$

$$
\begin{aligned}
& \left(\left(p_{i}\right)=p_{i}\right) \\
& \therefore \quad p_{2}^{k_{2}} p_{3}^{k_{3}} \cdots p_{L}^{k_{h}} y=0
\end{aligned}
$$

Moreover $p_{1}^{k_{1}} y=0$

$$
\therefore\left(p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{h}^{k_{h}}\right) \in \operatorname{ann}(y)
$$

But $1 \in\left(p_{1}^{k_{1}}, p_{2}^{k_{2}} \ldots p_{t}^{k_{h}}\right)$.

$$
\therefore y=0
$$

Step 2: If $M=R x$, where $\operatorname{arn}(x)=(d)$ and $d=g h$, with $(g, h)=1$, then $M=R y+R_{z}$ for some $y, z \in M$ with $\operatorname{ann}(y)=(g)$ and $\operatorname{ann}(z)=h$
pf of Step 2: $r g+s h=1$
Put $y=h x, z=g x$.
Then $x=(\gamma g+s x) x=r z+s y \in R y+R_{z}$

$$
\therefore M=R_{x}=R_{y}+R_{z} \text {. }
$$

Step 3: If $M=R_{x}$, where $\operatorname{ann}(x)=(d)$ and $d=p_{1}^{e} \ldots p_{t}^{e_{t}}$, where the p_{i} 's are distinct primes, then $M=R x, \oplus \cdots \cap x_{t}$ where $\operatorname{aun}\left(x_{i}\right)=\left(p_{i}^{e_{i}}\right) \quad \therefore M=M_{p_{1}}+\cdots+M_{p}$ pf. Af Step 3 Step 2 + iuduchon.
(16)

Conclusion of the proof:
M finitely gen

$$
\begin{aligned}
\Rightarrow M & \left.=R x_{1}+\cdots+R_{x_{a}} \quad \text { (wot nee a divect sum }\right) \\
& =\sum_{p}\left(R x_{1}\right)_{p}+\cdots+\left(R x_{h}\right)_{p} \\
& =\sum_{p} M_{p}
\end{aligned}
$$

The sum must be direct because of Step 1 .
Structure of M_{p}
By the structure theorem for modules over a PID,

$$
\begin{aligned}
& M_{p}=R_{3} \oplus \cdots \oplus R_{z} \\
& \operatorname{ann}\left(z_{i}\right)=p^{k} \text { for some } k \\
& \therefore M_{p}=R / p^{\lambda_{1}} \oplus \cdots \oplus R_{p^{k}}
\end{aligned}
$$

with $\quad \lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{k}$
Corday: Every finitely generated module over a PID is a direct sum of primary cyclic modules
Invarance theorem: Suppose $M=D D_{z, ~} \cdots \oplus D_{z_{s}}=D \omega_{1} \oplus \ldots \oplus D \omega_{1}$, with $\operatorname{ann}\left(z_{1}\right) \supset \cdots \operatorname{sann}\left(z_{s}\right) \& \operatorname{ann}\left(\omega_{1}\right) \supset \cdots \operatorname{Dann}\left(\omega_{s}\right)$, and none of the summands is zero then $r=s$ and $\operatorname{aun}\left(z_{i}\right)=\operatorname{arn}\left(\omega_{i}\right) \quad \forall i=1, \ldots, s$.

Invariance theorem:
Suppose

$$
\begin{aligned}
M & =R z_{1} \oplus \ldots \in z_{s} \\
& =R w_{1} \oplus \ldots \oplus R w_{t}
\end{aligned}
$$

where $\operatorname{aun} z_{1} \supset \ldots$ Dun z_{s}

$$
\operatorname{ann} \omega_{1} \partial \ldots \partial \operatorname{ann} \omega_{t}
$$

and none of the components are O.
Then $s=t$ and $\operatorname{ann} z_{i}=\operatorname{ann} w_{i} \quad \forall 1 \leq i \leq s=t$.
Proof: The ideals $\left(3_{i}\right),\left(\omega_{i}\right)$ are called order ideal,
(1) Reduction to torsion modules:

Suppose u, v are such that

$$
\begin{aligned}
& \operatorname{ann} z_{u} \neq 0, \quad \text { ann } z_{u+1}=0 \\
& \operatorname{ann} w_{v} \neq 0, \quad \text { ann } w_{v+1}=0 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& M= R_{z,} \oplus \cdots \oplus R_{z_{u}} \oplus R_{z_{u+1}} \oplus \cdots \oplus R_{z s} \\
&= R_{w_{1}} \oplus \ldots \oplus R_{w_{v}} \oplus R_{w_{v+1}} \oplus \cdots \oplus R_{w_{t}} \\
& \cong M / M_{\text {tor }} \\
& M_{\text {tor }}
\end{aligned}
$$

$\therefore s-u=t-v$ and it suffices to prove the ltreorem for $M_{\text {tor. So we may assume }} M=M_{\text {tor }}$ (2) Reduction to primary modules:

$$
\begin{aligned}
R_{z} & =A\left(R_{z}\right)_{p} \\
z & =\sum_{p} z_{p}
\end{aligned}
$$

Then $\left(R_{z}\right)_{p}=R_{z}$

$$
\begin{aligned}
\left(R z_{p}\right. & =Z_{p} z_{p}\left(z_{p}\right) \\
\operatorname{ann}(z) & =\prod_{p} \operatorname{ann}\left(z_{p}\right.
\end{aligned}
$$

$$
\begin{aligned}
M=\underset{p}{\oplus} M_{p} & =\underset{p}{\bigoplus}\left[R\left(z_{1}\right)_{p} \oplus \cdots \oplus R\left(z_{s}\right)_{p}\right] \\
& =\underset{p}{\oplus}\left[R\left(w_{1}\right)_{p} \oplus \cdots \oplus R\left(w_{s}\right)_{p}\right]
\end{aligned}
$$

So if the order ideals in the direct sum decompositions of each M_{p} are the same, ttren so are the order ideals in the direct sum decomposition if M.
(3) Proof in the primary case:

Assume $M=M_{p}$.
Then $\operatorname{ann}\left(z_{i}\right)=p^{e_{i}} \quad e_{1} \leqslant \ldots \leqslant e_{s}$

$$
\operatorname{ann}\left(z_{i}\right)=p \quad f_{1} \leq \ldots \leq f_{t}
$$

$p^{k} M=\left\{p^{k} x \mid x \in M\right\}$ is a submodule.
$M \supset p M \supset p^{2} M \supset \ldots$ descending chain.
$M^{(k)}:=P^{k} M / p^{k+1} M$-an $M^{(k)} / p^{-n o d u l e}$ $\operatorname{dim} M^{(k)}=\#\left\{i \mid e_{i}>k\right\}$ field.

$$
=\#\left\{i \mid f_{j}>k\right\}
$$

[Draw a Young diagram: $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=1,2,4,6$

e_{i}-boxes in the th now.
\# $\left\{i \mid e_{i}>k\right\}=$ boxes in the k th column.
k any field
$k[t]$ - ring of polynomials with coeffs in k. Euclidean domain, hence a PID.

We already understand the usomophism classes of finitely generated $k[t]$-modules.
Suppose V is a finitely generated torsion $k[t]$-module. Restricting the $k[t]$-action $\varphi: k[t] \rightarrow$ End (V) to k, gives V the structure of a k-vector space. get: $\rho: k[t] \rightarrow E_{n d}(v)$.
A cyclic $k[t]$ module is of the form $k[t] / p(t)$
for some $p(t) \in k[t]$, hence a finite dimensional
Vector Space
Since V is a finite direct sum of such modules.
V is a finite dimensional k-vector space
Let $T=\varphi(t), \in E n d_{k}(v)$
Then $\varphi\left(a_{0}+a_{1} t+\cdots+a_{n} t^{n}\right)=a_{0}+a_{1} T+\cdots+a_{n} T^{n}$
$\therefore \rho$ us completely determined by T.
(18)

Suppose V^{\prime} is another such $k[t]$-module. $\psi: k[t] \rightarrow$ End
Let $X: V \rightarrow W$ be a $k[t]$-module isomorphism.
for $\alpha \in k$

$$
\begin{aligned}
& \not x(\alpha \vec{v})=x(\varphi(\alpha) \vec{v})=\psi(\alpha) \not x(\vec{v})=\alpha x(\vec{v}) \\
& \therefore x \in \operatorname{Hom}_{k}(V, w) . \quad \notin T=T^{\prime} \circ \neq
\end{aligned}
$$

$\therefore\{$ Isomorphism classes of finitely generated torsion R-vivoluen\} ~

$$
\begin{aligned}
&\{(V, T)\} / \text { bijechiue } \\
&(V, T) \sim\left(V^{\prime}, T^{\prime}\right) \text { if } \exists \notin \in I_{s_{0}}\left(V, V^{\prime}\right) \\
& \exists \notin 0 T=T^{\prime} \circ *
\end{aligned}
$$

$$
M_{n_{n}}(k) / A \sim A^{\prime} \text { н } \partial X \in G L_{n}(k) \ni X A=A^{\prime} X
$$

11
Similarity classes of $n \times n$ matrices over k.
Defn: $A, A^{\prime} \in M_{n}(k)$, then A is similar to A^{\prime} of \exists

$$
X \in G L_{n}(k) \geqslant X A=A^{\prime} X \text {. }
$$

Conclusion: The classification of finitely geurated $k[t]$ modules is equivalent to the classification of sinuilaity classes of $n \times n$ matrices with entries air k

Some examples of the correspondence:
(1)

$$
\begin{aligned}
& p(t) t k[t] \quad d=\operatorname{deg}(p(t)) . \\
& M=k[t] / p(t)
\end{aligned}
$$

Take as basis of $M:\left\{1, t, t^{2}, \ldots, t^{d-1}\right\}$

$$
k[t] \rightarrow \operatorname{End}_{k}(M)
$$

$t \mapsto$ multiplication by t

$$
\begin{aligned}
& 1 \longmapsto t \\
& t \longmapsto t^{2} \\
& t^{d-2} \mapsto t^{d-1} \\
& t^{\alpha-1} \mapsto t^{\alpha}
\end{aligned}
$$

Suppose $p(t)=a_{0}+a_{1} t+\cdots+a_{d} t^{d}, \quad a_{d} \neq 0$.
In $M, p(t)=0$ can assume $a_{d}=1$. $p(t)$ in manic.

$$
a_{0}+a, t+\cdots+a_{d-1} t^{d-1}+t^{d}=0
$$

so $t^{d}=-a_{0}-a_{1} t \cdots-a_{d-1} t^{\delta-1}$
So w.r.t. the basis $\left\{1, t, \ldots, t^{d+1}\right\}$ the mature of is:

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0-a_{0} \\
1 & 0 & \cdots & 0-a_{1} \\
0 & 1 & \ddots & \vdots \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \ddots & -1-a_{d .1}
\end{array}\right)
$$

$=: C_{p(t)}$ the conepavion matrix of $p(t)$.
(20)

Under the correspondence:
$\{$ Finitely gen torsion $k[t]$-modules\} $\longleftrightarrow\{$ Similarity classes of matrices?

$$
\begin{aligned}
& k[t] / p(t) \longleftrightarrow C_{\beta(t)} \\
& x_{c_{p}(t)}=p(t) \quad \therefore C_{p(t)} \sim C_{q(t)} \Leftrightarrow p(t)=q(t) .
\end{aligned}
$$

(2)

$$
\begin{aligned}
& M \longleftrightarrow A \\
& M^{\prime} \longleftrightarrow A^{\prime} \\
& M \oplus M^{\prime} \leftrightarrow\left(\begin{array}{ll}
A & 0 \\
0 & A^{\prime}
\end{array}\right)
\end{aligned}
$$

Theorem (test for similarity of matrices over a field) Let k be any field, $A, B \in M_{n}(k)$.
Then A is similar to B if and only if the matrices $\lambda I-A$ is equivalent $\lambda I-B$ in $M_{n}(k[\lambda])$.
Proof \Rightarrow Suppose $A \sim B$. Then $\exists X \in M_{n}(k)$ invertible

$$
\Rightarrow A X=X B \text {. }
$$

Then $(\lambda I-A) X=X(\lambda I-B)$
Moreover, $\lambda \in M_{u}(k[\lambda])$ is invertible
$\therefore A I \cdot A$ is similar to $\lambda I-B$.
\Leftarrow There is a unique $k[\lambda]$-module homomorphism

$$
n: k[\lambda]^{n} \longrightarrow k^{n}
$$

which sends $\lambda e_{i} \longmapsto A e_{i} \cdot i=1, \ldots, n$

Let $K=\operatorname{ker}(\eta)$ \&f re $k[\lambda]$ module of rank $\leqslant n$.
Lemma: The elements $f_{i}=\lambda e_{i}-\sum_{j=1}^{n} a_{i j} e_{j} \quad 1 \operatorname{sisn}$ form a base for K
Proof $n\left(f_{i}\right)=A e_{i}-\sum_{j=1}^{n} a_{i j} e_{j}=0$

$$
\therefore f_{i} \in K \text { for } 1 \leq i \leq n
$$

Suppose $\sum_{i=1}^{n} h_{i}(\lambda) f_{i}=0$
If any of the $h_{i}(\lambda)$'s is non-zero, then pick the non-zero $h_{i}(\lambda)$ will highest degree, call the degree d. Coeff of $\lambda^{d+1} \mathrm{in}$

$$
\begin{aligned}
& \sum_{i=1}^{n} h_{i}(\lambda) f_{i}=\sum_{i=1}^{n} h_{i}(\lambda)\left(\lambda e_{i}-\sum a_{i j} e_{j}\right) \\
& \quad \text { it } \sum_{i=1}^{n} h_{i}^{(d)} e_{i}
\end{aligned}
$$

where $h_{i}^{(d)}$ is the coeff. of λ^{d} in $h_{i}(\lambda)$.

$$
\begin{aligned}
\therefore h_{i}^{(d)} & =0 \quad \forall i=1, \ldots n, \text { a coutradichion } \\
\square g_{i}(\lambda) & =\lambda h_{i}(\lambda)+b_{i} \\
g_{i}(\lambda) e_{i} & =h_{i}(\lambda) \lambda e_{i}+b_{i} e_{i} \\
& =h_{i}(\lambda)\left(\lambda e-\sum_{j=1}^{n} e_{i} e_{j}\right)+b_{i} e_{i}
\end{aligned}
$$

(22)

$$
\begin{align*}
& \therefore \sum_{i=1}^{n} g_{i}(\lambda) e_{i}=\sum_{i=1}^{n}\left[\ell_{i}(\lambda) f_{i}+\left(b_{i}-\sum_{j=1}^{n} a_{j j}\right) e_{i}\right] \\
& \text { If } \sum_{i=1}^{n} g_{i}(\lambda) e_{i} \in K, \tag{i}
\end{align*}
$$

then $\sum b_{i} e_{i} \in K$

$$
\therefore \quad \sum_{i=1}^{n} g_{i}(\lambda) e_{i}=\sum_{i=1}^{n} h_{i}(\lambda) f_{i} \quad \text { QED. }
$$

\therefore when k^{n} is thought of as $n\left(k[\lambda]^{n}\right)$. then the matrix of relations ∞ is $\lambda I-A$.
If $\lambda I-A$ is equivalent to $\lambda I-B$, then the $k[t]$-modules corresponding to A and B will be isomouptric
Corollary $A \sim B$ eff $\Delta_{i}(\lambda I-A)=\Delta_{i}(\lambda I-B)$ for all $i=1,2, \ldots, n$
[Recall that $\Delta(\lambda I-A) \in k[\lambda]$ is the ith invariant factor of $\left.\lambda I-A \in M_{n}(k[D))\right]$
We have $k^{n}=k[\lambda] 3, \oplus \cdots \oplus[\lambda] z_{n}$
where $\operatorname{ann}\left(z_{i}\right)=$ the isvaiaut factor of $\lambda I-A$
The sequence of order ideals is of the form

$$
\left\{1,1, \ldots, 1, d_{1}, \ldots, d_{s}\right\}(1) \geqslant\left(d_{1}\right)>\left(d_{2}\right) \gg\left(d_{s}\right)
$$

$$
\because A \sim\left(\begin{array}{ccc}
C_{d_{1}(t)} & & 0 \tag{*}\\
0 & \ddots C_{d_{s}(t)}
\end{array}\right)
$$

where $d_{i}(t)$ is the ith invariant factor of $\lambda I-A$
ecture IV
Defn: (mivimal polyuomial)
The minimal polquomial of $A \in M_{n}(k)$ is the enique novic polynomeal $m_{A}(x)$ for which

$$
(m(t))=\{p(t) \in h(t) \mid P(A)=0\}
$$

Computation of the minimal polyusmial:
Obsewe that $p\left(A_{1} \oplus A_{2}\right)=p\left(A_{1}\right) \oplus p\left(A_{2}\right)$.

$$
\begin{aligned}
\therefore P\left(A_{i} \oplus A_{2}\right) & =0 \Leftrightarrow P\left(A_{1}\right)-0 \text { and } p\left(A_{2}\right)=0 . \\
\therefore\left(m_{A_{1} \oplus A_{2}}(t)\right) & =\left(m_{A_{1}}(t)\right) \cap\left(m_{A_{2}}(t)\right)
\end{aligned}
$$

Cousequently in $(*)$,

$$
\begin{aligned}
m_{A}(t) & =d_{s}(t)=\Delta_{n}(\lambda I-A) \\
& =\frac{\operatorname{det}(\lambda I-A)}{\operatorname{ged} d_{b}(n-n) \times(n-1) \text { miumors if } \lambda I-A}
\end{aligned}
$$

Interpretation of primany decomposition
Recall: $M=\underset{p}{\underset{p}{p}} M_{p}$

$$
M_{p} \tilde{=} / /_{p} \lambda_{1} \oplus \cdots R / p_{l} \quad \lambda t_{l} \ldots \in \lambda_{l}
$$

24)

For matrices, this meaus:

$$
A \sim \underset{p}{\oplus} A_{p}
$$

where $A_{p} \sim J_{\lambda_{1}}(p) \oplus \ldots \oplus J_{\lambda_{l}}(p)$
Here $J_{\lambda_{i}}(p)=\left(\begin{array}{l}C \\ \text { couviol fin m }\end{array}\right.$
$d=$ degree p
To see this, take the basis
$e_{00}, e_{01}, \ldots, e_{0 p-1} e_{1,0} e_{1, \ldots}$

$$
\begin{aligned}
& \left.1, x, \ldots x^{d-1}, p(x), x p(x), \ldots, x^{d-1} p(x), p(x)^{2}, x p(x)^{2}, \ldots, x^{d} p(x)^{2}\right) \\
& \ldots, p(x)^{\lambda-1}, x p(x)^{\lambda-1}, \ldots, x^{d-1} p(x)^{\lambda-1} \\
& x^{d}=x^{d}-p(x)+p(x) \\
& = \\
& =-a_{0} e_{0,0}-a_{1} e_{0,1}-\cdots-a_{d, 1} e_{0, d-1}+e_{1,0}
\end{aligned}
$$

Computation of centralisers:
Defy (Centraliser of a mature).
The centralises of a malice $T \in M_{n}(k)$ is the ring

$$
Z(T)=\left\{A \in M_{n}(k) \mid A T=T A\right\}
$$

Recall: Can use T to define a $k[l]$-module structure on 1^{n} :

$$
t \cdot \vec{v}=T \vec{v} .
$$

Fundamental 6 emma:
For any $A \in Z(T)$, the $\operatorname{map} \rho_{A}: \vec{x} \mapsto A \vec{x}$ is a

$$
k^{n} \rightarrow k^{n}
$$

$k[t]$-module homomorphism.

$$
A \mapsto \varphi_{A}
$$

is an isomorphism $Z(T) \rightarrow$ End $_{k[t]}\left(k^{n}\right)$ of rings
Proof: Suppose $A \in Z(T)$

$$
\begin{aligned}
& \varphi_{A}(t \vec{v})=\varphi_{A}(T \vec{V})=A T \vec{v} \\
&=T A \vec{v}=t \varphi_{A}(\vec{v}) \\
& \therefore \varphi_{A} \in \text { End }_{k[t]}\left(k^{n}\right)
\end{aligned}
$$

Conversely, suppose $\varphi \in E_{n} d_{k[E]}\left(k^{u}\right)$, thew

$$
\varphi(\vec{v})=A_{\varphi} \vec{u} \quad \forall \quad \vec{u} \in k^{n}
$$

for some $A_{\varphi} \in M_{n}(k)$.

$$
\begin{aligned}
\varphi\left(t_{\dot{v}}^{\prime}\right) & =A_{\varphi} T \vec{v} \\
t_{\varphi}^{\prime \prime}(\vec{v}) & =T A_{\varphi} \vec{v} . \\
\therefore \quad A_{\varphi} & \in Z(T)
\end{aligned}
$$

The maps $A \mapsto \varphi_{A}$ and $\varphi \mapsto A_{\varphi}$ are clearly homomopluism of rings and are mutual iavenes.
(26)

Lemma: Suppose R is a p.i.d, and pi $\in R$ are such that $(p, q)=1$. Then $\operatorname{Hom}_{R}(R /(p), R(q))=0$.
Proof Suppose $\rho \in \operatorname{Hom}_{R}(R /(p), R /(q))$

$$
\begin{aligned}
& \varphi(1+(p))=a_{\varphi}+(q) \text { for some } a_{\varphi} \in R \\
& 0=\varphi(0)=\varphi\left(p(1+(p))=p \varphi(1+(p))=p a_{\varphi}+(q)\right. \\
& \therefore p a_{\varphi} \in(q)
\end{aligned}
$$

Since $(p, q)=1 p a_{\varphi} \in(q) \Rightarrow a_{\varphi} \in q \Rightarrow \varphi \equiv 0$. QED.
Corday: Suppose $M=\underset{p}{\oplus} M_{p}$ (primary decomposition) is a torsion module over a PID R, then

$$
\operatorname{En} d_{R}(M)=\oplus_{p} \operatorname{End} d_{R}\left(M_{p}\right)
$$

Some notation: $\lambda=\left(\lambda_{1} \geqslant \ldots \geqslant \lambda_{1}\right)$ Young diagram. k some field.

$$
\text { Then } k^{\lambda}:=k[t] /\left(t^{\lambda},\right) \oplus \cdots \oplus(t] /\left(t^{\lambda}\right)
$$

$$
\text { a } k[t] \text {-module. }
$$

e.g. $\lambda=(1, \ldots, 1)^{a}=\left(1^{n}\right)$

$$
\begin{aligned}
& k^{\left(2^{n}\right)}=k^{n-t i m e s} \\
& \lambda=(m, \ldots, m)=:\left(m^{n}\right) \\
& \left.k^{n}\left(m^{n}\right)=\left(k[t] /\left(t^{m}\right)\right)^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
G_{\lambda}(k): & =E_{n d} k[t] k^{\lambda} \\
\text { e.g. } G_{\left(1^{n}\right)}(k) & =G L_{n}(k) \\
G_{\left(m^{n}\right)}(k) & =G L_{n}\left(k[t] / t^{m}\right) .
\end{aligned}
$$

Calculation 0) End $k[t]$ Mp Let M be a finitely
Recall that $M=\oplus M^{\lambda}$ generated torsion $k[t]$-module

$$
M_{p(t)}^{\lambda} \cong k[t] / p(t)^{\lambda, \oplus} \oplus \oplus{ }^{p(1)} / p(t)^{\lambda e}
$$

Chare $p(t)$ is au irreducible monic polynomial, of degree d).
We wish to calculate End $k[t] M_{p(t)}^{\lambda}$.
Lemma: Let $p(t)$ be au irreducide manic polynomial with coefficients in k. Let $E=k[t] / p l$ Then the sings $k[t] /\left(p(t)^{v}\right)^{\&} E[u] /\left(u^{r}\right)$ are isomorphic

Lemma (Hensel): $\exists q(t) \in k[t] /\left(p(t)^{r}\right)$ such that $q(t) \equiv t \bmod p(t)$ and $p(q(t))=0$.
(28)

Motivation: This is avoltrer case of a type of result that was first discovered by Heusel in the context of Diophantine equations:
Suppre $p(t) \in \mathbb{Z}[t], p\left(a_{1}\right) \equiv 0(\bmod p)$, and $p^{\prime}\left(a_{1}\right) \not \equiv 0(\bmod p)$. Then \exists a sequence $\left\{a_{n}\right\}$ of integers such that $a_{n+1} \equiv a_{n}\left(\bmod p^{n}\right)$ and $p\left(a_{n}\right) \equiv 0\left(\bmod p^{n}\right)$
Proof: $p\left(a_{1}+p h\right)=p\left(a_{1}\right)+p h p^{\prime}\left(a_{1}\right)+\frac{p^{2} h^{2}}{2!} p^{\prime \prime}\left(a_{1}\right)+\cdots$ $p^{\prime}\left(a_{1}\right) \neq 0 \quad(\bmod p)$ so it is possible
to solve the congruence

$$
p\left(a_{1}\right)+p h p^{\prime}\left(a_{1}\right) \equiv 0\left(\bmod p^{2}\right)
$$

Let $a_{2}=a_{1}+p h$, where h is a volution.
can continue in this manner to obtain the sequence $\left\{a_{n}\right\}$, which is called a p-adic solution to the equation $p(t)=0$.

Defn: Let k be a field of characteristic $p . k$ is said to be prefect if $x \longmapsto x^{p}$ Us an automorphism of k.
Example (1) $k=\mathbb{F}_{q^{n}}$

$$
k^{x} \cong \mathbb{Z}\left(q^{n}-1\right) \mathbb{Z}
$$

Since $\left(q^{n}-1, p\right)=1 ; p$ is a unit in $\mathbb{Z} /\left(q^{n}-1\right) \mathbb{Z}$, hence $x \mapsto x^{p}$ is an automorphism
(2) $k=\mathbb{F}_{q^{n}}((t)) \quad\left[\right.$ Lainent series in $\left.\mathbb{F}_{q^{n}}\right]$ t has no pith root. k is not perfect.
Lemma: Let k be a perfect field. Let $\bar{x} \in k[t] / p(t)$ denote the in rage of $x \in k[t] / p(t)^{r}$.
\exists a ring homomorphism $s: k[t] / p(t) \rightarrow k[t] / p(t)^{\gamma}$ Such that $\overline{s(y)}=y \quad \forall y \in k[t] / p(t):$

Proof: Given $y \in k[t] / p(t)$, consider $y^{1 / p^{m}}$, where m is so langethet $p^{m}>r$.
If $\bar{x}_{1}=\bar{x}_{2}=y$, then $x_{1}-x_{2} \equiv 0 \bmod p(t)$

$$
\begin{aligned}
& \therefore x_{1}^{p^{m}}-x_{2}^{p^{m}}=\left(x_{1}-x_{2}\right)^{p^{m}} \equiv 0 \text { and } p(t)^{v} \\
& \therefore x_{1}^{p^{m}}=x_{2}^{p^{m}}
\end{aligned}
$$

So if co exists, it must have $s(y)=x^{p^{m}}$, where $x \in k[t] / p(t)^{r}$ is any element for which

$$
\bar{x}=y^{1 / p^{m}}
$$

(sly) will not depend on the choice of x)

$$
\begin{aligned}
s\left(x_{1}\right) s\left(x_{2}\right) & =y_{1}^{p^{m}} y_{2}^{p^{m}} \text {, whee } \bar{y}_{i}=x_{i}^{1 / p^{m}} \\
& =\left(y_{1} y_{2}\right)^{p^{m}} \\
& =s\left(x_{1} x_{2}\right), \text { since } \bar{y}_{1} y_{2}=\bar{y}_{1} \bar{y}_{2}=x_{1}^{1 / p^{m} x_{2}^{1 / p m}=\left(x_{1} x_{2}\right)^{1 / p^{m}} .} \begin{aligned}
\therefore \text { is is multiplicative, }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& s\left(x_{1}\right)+s\left(x_{2}\right)=y_{1}^{p^{m}}+y_{2}^{p^{m}} \\
&=\left(y_{1}+y_{2}\right)^{p^{m}} \\
&=s\left(x_{1}+x_{2}\right), \text { since } \overline{y_{1}+y_{2}}=\bar{y}_{1}+\bar{y}_{2} \\
& \text { and }\left(\bar{y}_{1}+\bar{y}_{2}\right)^{p}=\bar{y}_{1}^{p}+\bar{y}_{2}^{p}=x_{1}+y x_{2}
\end{aligned}
$$

(30)

Ute enrage of this homomorphism
As k vector spaces, both rings have dimension r d.
\therefore it is an isomorphism.
Cedune V
Theorem $Z(T)$ is isomorphic to a product of groups of the form $G_{\lambda}(E)$ where λ is a Young diagram and E is a finite extension

$$
\text { of } k
$$

$$
\operatorname{Proof} Z(T)=\operatorname{End}_{k[t]}\left(k^{n}\right)
$$

$$
=E_{n d_{k[t]}}\left(\prod_{p(t)}\left(k^{n}\right)_{p(t)}\right)
$$

$$
=\prod_{p(t)} \text { End }_{k[t]}\left(k^{n}\right)_{p(t)}
$$

$$
\left.=\prod_{p(t)} \text { End }_{k[t]}\left(k[t] /\left(p(t)^{\lambda}\right)^{\oplus} \cdots \oplus^{k[t]} / p(t)^{\lambda}\right)\right)
$$

$$
\begin{aligned}
& \text { Now: End }{ }_{k[l]} k[t)_{\left(p(t)^{\lambda},\right)} \oplus \cdots \theta^{k[t]} /\left(p(t)^{\lambda}\right) \\
& =\operatorname{Ead}_{k[t] /\left(p(t)^{\lambda_{1}}\right)} k[t]_{\left(p(t)^{\lambda_{1}}\right)} \oplus \cdots \oplus \overbrace{\left(p(t)^{\lambda_{1}}\right)} \\
& =\text { End }_{\text {E }[u] /\left(u^{\lambda}\right)} E[u]_{\left.\left(u^{\lambda},\right)^{(}\right) \cdots \oplus}{ }^{\left.E[u] / u_{1}\right)}
\end{aligned}
$$

Proof of Heusel's Coma:
Induct on r.
Suppose $r=1$.
Can take $q(t)=t$.
Now suppose $q_{r-1}(t) \in k[t]$ is such that

$$
q_{r-1}(t) \equiv t \quad \bmod p(t)
$$

and $p\left(q_{r-1}(t)\right) \in(p(t))^{r-1}$.
Then $p\left(q_{r-1}(t)+p(t)^{r-1} h(t)\right)$

$$
\begin{aligned}
& =p\left(q_{r-1}(t)\right)+p(t)^{r-1} h(t) p^{\prime}\left(q_{r-1}(t)\right)+\text { hot. } \\
p^{\prime}\left(q_{r-1}(t)\right) & \equiv p^{\prime}(t) \bmod p(t),\left[\text { since } q_{r-1}(t) \equiv t \bmod p(t)\right]
\end{aligned}
$$

\therefore the congruence

$$
p\left(q_{r-1}(t)\right)+p(t)^{r-1} h(t) p^{\prime}\left(q_{r-1}(t)\right)=0 \operatorname{neod} p(t)^{r}
$$

has a solution $h_{0}(t)$.
Set $q_{r}(t)=q_{r-1}(t)+p(t)^{r-1} h_{0}(t)$
Define a ring homomorphism

$$
k[t, u] /\left(p(t), u^{r}\right) \longrightarrow k[t] / p(t)^{r}
$$

by $\quad t \longmapsto q(t)$ and $u \longmapsto p(t)$
It is surjective, because $t=q(t)+? p(t)$ lies in

$$
\begin{aligned}
& =E_{u d} E[u] \\
& =G_{\lambda}(E)
\end{aligned}
$$

Features of modules:
Definition (Irreducibility)
An R-module M us send to be irreducible if M has no non-hivial proper R-stable subgroups
Definition (Indecompasable)
An R-module M is said to be indecomposable if M is not isomopplic to a direct sum of two nontrivial R-modules.

Remark: A matrix $T \in M_{n}(k)$ will be said to be isseducible, indecomprable, etc, if the Corresponding $k[L]$-module structure on k^{n} is respectively, irreducible, cudecomposable, etc.
Example:

- All irreducible matrices are similar to Cpp(t). where $p(t)$ is an irreducible polyarnial
- All indecomposable matrices are similar to $C_{p(t)^{r}}$ where $P(t)$ is inced., $r \geqslant 2$ is an integer.

32
These are given by the generalised Jordan canonical form

$$
J_{r}(p)=\left(\begin{array}{ccc}
C_{p(t)} & & 0 \\
I & C_{p(t)} & \\
0 & I & \\
0 & I C_{p(t)}
\end{array}\right)_{r d x r d} \quad M=\left(\begin{array}{ccc}
0 & 0 & \frac{1}{0} \\
0 & 0 \\
0 & d \times d .
\end{array}\right.
$$

Invariant subspaces.

$$
\begin{aligned}
& \left\langle e_{1}, \ldots, e_{d}\right\rangle \quad \longleftrightarrow J_{1}(p) \\
& \left\langle e_{1}, \ldots, e_{2 d}\right\rangle \leftrightarrow J_{2}(p) \\
& \left\langle e_{1}, \ldots, e_{(r-1) d}\right\rangle \leftrightarrow \overbrace{\text { maximal invariant subspace }}
\end{aligned}
$$

Theorem (Schar's Lemma)
If M is a simple R-module, then $E_{R} M$ is a division ring.
Prof: $\rho: M \rightarrow M$ be $a_{k} R$-module homomorphism Then $\operatorname{Im\varphi }$ \& kerne are R-statle subgroups of M

$$
\begin{aligned}
\therefore \operatorname{Im} \varphi & =M \\
\operatorname{ken} \varphi & =0
\end{aligned}
$$

Hence φ is a bijection.
Its set theoretic inverse is also au R-module homoncoptlism,

Generalised Jordan canonical form:

Let $\theta(t)=t-q(t)$
Then $\theta(t) \in(p(t))[\because \theta(t) \equiv t(\bmod p(t))]$
But $\theta(t) \notin\left(p(t)^{2}\right)$,
for if it did, then

$$
\begin{aligned}
p(t) & =p(\theta(t)+q(t))=p(q(t))+\theta(t) p^{\prime}(q(t))+\cdots \\
& \equiv 0\left(\bmod p(t)^{2}\right)
\end{aligned}
$$

$\Rightarrow \Leftarrow$
$\therefore \theta(t)=\alpha p(t)$, where α ins a unit.

$$
\begin{aligned}
\text { In }\left(k[x] / p(x) /[u] /\left(u^{v}\right)\right. & \longleftrightarrow k[t] /\left(p(t)^{r}\right) \\
x & \longleftrightarrow q(t) \\
\alpha u & \longleftrightarrow \theta(t)
\end{aligned}
$$

Some unit.
$\operatorname{In}(k[x] / p(x))[u] /\left(u^{r}\right)$, the set

$$
\left\{(\alpha u)^{j} x^{i} \mid 0 \leq j \leq r b \quad 0 \leq i_{\infty} \leq d-1\right\}
$$

is a k-basis,
\therefore :the set

$$
\left\{\theta(t)^{j} q(t)^{i} \mid 0 \leq j \leq r-1, \quad 0 \leq i \leq d-1\right\} \quad \text { is }
$$

a k-basis in $k[t] / p(t)^{r-1}$.

$$
t \theta(t)^{j} \cdot q(t)^{i}=\theta(t)^{j+1}+q(t)^{i+1}
$$

If $i=d-1$,

$$
\begin{aligned}
& t \theta(t)^{i} q(t)^{i}=\theta(t)^{j+1}+q(t)^{d} \\
& =\theta(t)^{1+1}-a_{0}-a_{1} q(t)-\cdots-a_{d-1} q(t)^{d-1} \\
& \text { If } j=r-1 \text {, } \\
& t \theta(+)^{\gamma-1} q(t)^{i}=\theta(t)^{r}+q(t)^{i+1} \\
& =0+q(t)^{i+1}
\end{aligned}
$$

So the matrix of multiplication by t is given by

$$
J_{p}(\lambda)=\left(\begin{array}{ccc}
C_{p} & & 0 \\
I & C_{p} & 0 \\
& I & \\
& 0 & I C_{p}
\end{array}\right)
$$

which will le called a Jordan block.
Theorem: Every matrix over a separable field is simitar to a direct sum of Jordanblocks, which are uniquely determined up to a rearrangement.
This is the generalised Jordan Canonical form of a matrix.

Vectune 开
Defn (Semisiuplicity):
An R-module [matiux] in said to be semisimple if it is a direct sum of simple R-modules. [matrices]
Example : $J_{v}(p)=\left(\begin{array}{ccc}C_{p}(t) & 0 \\ I & 0 & I C_{p}(t)\end{array}\right)$ is not
semisimple
Theorem: The following are equivaleut fer $A \in M_{n}(l)$
(1) A is semisiuple
(2) m_{A} is square-free
(3) The Jordan cauonical form of A causits only of blockes of size 1
(4) $Z(A)$ is a direct sum of matrix rings.

Example: $T=J_{r}(p)=\left(\begin{array}{ccc}C_{p} & & \\ I & 0 \\ 0 & I & C_{p}\end{array}\right)$.
Recall that $\exists q(t) \in k[t] \ni q(t) \equiv t \operatorname{und} p(t)$ and $p(q(t)) \equiv 0 \bmod p(t)^{r}$.

$$
\therefore p(q(T))=0 \Rightarrow m_{q(t)} \mid p(t)
$$

Since $p(t)$ is iureducible $m_{q(T)}(t)=p(t)$
$\therefore g(T)$ is semsimple
Remante Matux is $Q_{C}(t)$ is $C_{p} \oplus C_{p} \oplus \ldots \oplus C_{p}$.
34)

Defn (nilpotenl):
A matix $A($ reop liveon trausfmn) is nilpotent if $A^{n}=0$ for some $n \in \mathbb{N}$.

Lemma: Suppose A is semisinuple and $f(k[t]$ is such ltiat $f(A)$ is nilpotent, then $f(A)=0$.
Proof: $f(A)^{n}=0$

$$
\begin{aligned}
& \Rightarrow m_{A}(t) \mid f(t)^{n} \\
& \Rightarrow m_{A}(t) \mid f(t) \\
& \Rightarrow f(A)=0
\end{aligned}
$$

Theorem: The following are equivalent:

1. A is cyclic

$$
\begin{aligned}
& \text { 2. } m_{A}=X_{A} \\
& \text { 3. } Z \mid A]=k[A]
\end{aligned}
$$

Pf. Consider the rational canonical form.

$$
\begin{aligned}
& k^{n} \cong k[t] \\
& p_{1}(t) \\
&\left.p_{1}(t)\left|p_{2}(t)\right| \ldots \mid p^{2}(t)\right]
\end{aligned}
$$

A is cyclic of $r=1$. (Invariance etroxem)
(1) $\Leftrightarrow(2):$ Note that m_{A} / x_{A}.

$$
\begin{array}{r}
\therefore m_{A}=X_{A} \Leftrightarrow \operatorname{deg}_{A} m_{A}=\operatorname{dog} x_{A} \\
\\
\\
\\
\\
\\
\\
\\
\\
\operatorname{llg}_{11} p_{r}(t)
\end{array}
$$

Beet deg $p_{r}(t)=n$ if $r=1$
(3) Suppose A in cydic

$$
Z(A) \cong E_{n d_{k[t]} k^{n} \cong k[t] / p(t)}
$$

\therefore every dement if $Z(A)$ is a poly. in t.
(3) \Rightarrow (1) Suppose A is not cydic. Then $r>1$

36
Suppose $q(t) \in h[t]$.
Then $\left.q(t)\right|_{k[t] / p_{i}(t)}=0 \quad \xi \quad q(t) t\left(p_{i}(t)\right)$.

$$
\left.\left.\therefore q(t)\right|_{n[t] / p_{r}(t)} \equiv 0 \Rightarrow q(t)\right|_{k[t] /_{p-1}(t)} \equiv 0 \Rightarrow
$$

Let E be the projection onto $k[t] / p_{r+}(t)$.
Then $\left.E\right|_{h[t] / p_{v t}(t)} \equiv 0$ but $\left.E\right|_{\left.k[t] / p_{1} / t\right)} \equiv 0$
$\therefore E \Rightarrow q(t)$ for any $q(t) \in k[t]$.
However, $E \in$ End $_{k[t]} k^{n}=Z(A)$.
Application to the Jordan Canonical form:
Theorem: Suppose $A=S+N$, where S us sis., N is nitpotent, and $S N=N S$.
Than $S, N \in k[A]$
Poof: Cyclic case: theorem is true because S, $N \in Z(A)$
Primary case: $A=A_{p}$

$$
\begin{gathered}
A \sim J_{\lambda_{1}}(p) \oplus \cdots \oplus J_{\lambda_{l}}(p) \\
\lambda_{1} \leqslant \cdots \leqslant \lambda_{l}
\end{gathered}
$$

Proposition (Invariance of semisimplicity \& nilpotence under Field extension).
Let k be a perfect field, and $E_{/ k}$ be a finite extension. An identification $E=k^{d}$ as k-vector spaces gives an embedding

$$
M_{\frac{n}{d}}(E) \hookrightarrow M_{n}(k) \quad \forall n \neq d l_{n}
$$

Let $X \in M_{\frac{n}{d}}(E)$.
Then X is semisimple (resp nilpotent) in $M_{n}(h)$ if X is semisimple (resp. ni(potent) $\operatorname{in} M_{\frac{n}{d}}(E)$.

Proof:
Lemma if $p(t) \in k[t]$ square free then $p(t)$ is square-free in $E[t] \ldots$
Pf. $p_{0}(t)$ irs., then $\left(p_{0}(t), p_{0}^{\prime}(t)\right) \equiv 1$ in $k[t]$, hence in $E[t] \therefore p_{0}(t)$ sq. free in $E(t]$ $p(t)=p_{1}(t) \ldots p_{n}(t)$, then each is $n q$: flue, and they Tr distinct ineducibles have wo common factors.

Lemma: $a \in E, S \in M_{n}(E)$
S is semisimple if S-äI is semisimple
Proposition: Suppose $A=A_{p}$, then the Jordan decomposition of A is unique:
Proof: $A=J_{\underline{\lambda}}(p) \quad \lambda_{2}=\left(\lambda_{1} \leq \ldots \leq \lambda_{l}\right)$

$$
\begin{aligned}
& J_{\lambda}(p)=\left(\begin{array}{cc}
J_{\lambda}(p) & 0 \\
0 & J_{\lambda_{l}}(p)
\end{array}\right) \\
& A=S+N \quad S, N \in Z(A)
\end{aligned}
$$

Then $S, N \in G L_{\underline{2}}(E)=Z\left(J_{\lambda}(0)\right) \subset M_{n}(E)$

$$
\begin{aligned}
& A=q(t) I+J_{\lambda}(0) \\
& A=S+N \\
\therefore \quad & \underbrace{g(t) I-S}_{\text {ss. }}=\underbrace{N-J_{\lambda}(0)}_{\text {milpotent }} \\
\therefore & q(t) I-S=N-J_{\lambda}(0)=0
\end{aligned}
$$

Claim: If $q\left(I_{r}(p)\right)=C_{p}^{\text {or }}$ and $s \leq r$, then

$$
q\left(J_{s}(p)\right)=C_{p}^{0 s}
$$

Pf. $J_{s}(p)$ is the matrix by which $J_{r}(p)$ acts on the subspace spanned by $e_{1}, \ldots, e_{\text {sd }}$.
General case: $A=\oplus A_{p}$
supple $q_{p}\left(A_{p}\right)$ is the semisimple part of A_{p} The minimal polynomial of A_{p} is $p(t)^{r_{p}}$ for some $\gamma_{p} \in \mathbb{N}$.
Let $q \in k[t]$ be such that

$$
q(t) \equiv q_{p}(t) \bmod p(t)^{\gamma_{p}} \quad \forall p
$$

(this exists dy the Chinese Remainder theorem)

$$
\begin{aligned}
& q(A)=(\oplus) q\left(A_{p}\right)=\bigoplus q_{p}\left(A_{p}\right)+\left(p(A)^{r_{p}}\right) \cdot \text {-stag. } \\
& =\circledast S_{p}=S \quad 2 \in D \\
& S=q(A) \quad N=A-q(A) .
\end{aligned}
$$

38
Theorem (Jordan Decomposition Theorem) k perfect.
For ever $A \in M_{n}(k), \exists!S, N \in M_{n}(k)$ such that S is semisimple, N is nilpotent, $S N=N S$ and $A=S+N$.
S and N determined by the above condihous are polynomials in A.
Proof: Only need to prove the uniqueness.
Supper $A=S+N=S^{\prime}+N, S, S^{\prime}$ SSS., N, N^{\prime} nip., SN
$S N=N S$ and $S^{\prime} N^{\prime}-N^{\prime} S^{\prime}$.
Then S, N, S', N^{\prime} are all polynomials in A, hence they all commute.

$$
\therefore \quad S^{\prime}=S+\left(N-N^{\prime}\right)
$$

Sure N, N^{\prime} commute, and ar nipotent
$(N-N)^{\prime}$ is vilipstewe,
(becaux $\left(N-N^{\prime}\right)^{n}=N^{n}-\binom{n}{1} N^{n-1} N^{\prime}+\cdots+(-1)(n-1) N N^{n-1}+(-1)^{n} N^{\prime n}$
In this expansion at least one of N G N has power $\geqslant \frac{n}{2}$.]
$\therefore\left(N-N^{\prime}\right)=q\left(S^{\prime}\right)$ by Lemma.

$$
\Rightarrow \quad N-N^{\prime}=0
$$

$\therefore S=S^{\prime}$ and $N=N^{\prime}$.

Theorem Suppose $A \in M_{n}(h)$ is semisiuple $\&$ $f(t) \in h[t]$, then $f(A)$ is also semisimple Pvorf Suppose $f(A)=S+N$ (Jordan decoupo.) $N=q(f(A))$ for some $q(t) \in h[E)$ $\Rightarrow N=0$.
R any ring (possibly non-unital)
Detn (Noetheriam module)
An R-module M is called Noetlerian if it satisfies the descending chair condition: For every family $M \supset M_{1}>M_{2} \supset \ldots$ of submodules, $\exists N \in \mathbb{N} \exists M_{n}=M_{n+1} \quad \forall n>N$
Deft (Artivian module)
An R-module M is called Artivian if it satisfies the ascending chain condition:
For every family $\mathrm{OCM}_{1}, \mathrm{CM}_{2} \mathrm{C} \ldots$ of submodules $\exists N \in \mathbb{N} \rightarrow M_{n}=M_{n+1}, \quad \forall n>N$

Suppose $u \in E_{n} M$, M Noetherian.

$$
\operatorname{Im} u \supset \operatorname{Im} u^{2} \supset \ldots
$$

must stabilize. Let $\operatorname{Im} u^{\infty}:=\bigcap_{i=1}^{\infty} \operatorname{Im} u^{i}$.
Then $\exists n \in \operatorname{IN} 3 \operatorname{Im} u^{\infty}=\operatorname{Im} u^{n}$
Suppose $u \in \operatorname{End}_{R} M, M$ Artivian

$$
\operatorname{ker} u c k u u^{2} c \ldots
$$

mull stabilize. Let lear $u^{\infty}:=\bigcup_{i=1}^{\infty}$ ha u'

$$
\exists n \in \mathbb{N} \ni k u u^{\infty}=k u u^{\prime \prime}
$$

+1)
Theorem (Fitting)
Suppose an R-module M is both Noetherian and Artivian. Then

$$
M=\operatorname{Im} u^{\infty} \oplus \operatorname{ker} u^{\infty} .
$$

Proof: Let $n \in \mathbb{N}$ be such that $\operatorname{Im} u^{\infty}=\operatorname{Im} u^{n}$ and $\operatorname{ker} u^{\infty}=\operatorname{ker} u^{n}$.

- If $x \in \operatorname{Im} u^{\infty} \cap$ ter u^{∞}.
then $x=u^{n}(y)$ for some $y \in M$

$$
\begin{aligned}
& u^{2 n}(y)=0 \Rightarrow y \in \operatorname{ker} u^{2 n}=\operatorname{ker} u^{n} \\
\therefore & x=u^{n}(y)=0
\end{aligned}
$$

- Suppose $x \in M$.
$u^{n}(x)=u^{2 n}(y)$ for some $y \in M$

$$
x=\underbrace{x-u^{n}(y)}_{k=n}+\underbrace{u^{n}(y)}_{\operatorname{Im} u^{\infty}}
$$

Deft (local ring)
A ring R is said to be local if its set of non-units forms a two-sided ideal.

* Proposition: If M us an indecomposable Noetherian and Qutivian R-module, then
(1) evecy element of End M is either an automorphism or is nilpotent
(2) End R_{R} is local

Proof: Let $u \in E$ End M.
By Fittinjs lemma: $M=\operatorname{Im} u^{\infty} \oplus$ ku u^{∞}.
M indecomposable \Rightarrow eilher
(1) $\operatorname{Im} u^{\infty}=M \Rightarrow u$ automorplian
(2) $\operatorname{her} u^{w}=M \Rightarrow u$ nilpotent.

Suppose u is not a eunit, so u is nippotent
$\therefore u$ is not surjective $\Rightarrow u$ is wot sur. $\forall v \in E_{R} d_{R} M$
\Rightarrow uv is nibotent
u is not injective $\Rightarrow v u$ is not injective $\forall v \in E_{\text {E }} R_{R} M$
\Rightarrow vu is impotent
Suppose $u_{1} \& u_{2}$ are not uvits, but $u_{1}+u_{2}$ is a unit
Let $v_{1}=u_{1}\left(u_{1}+u_{2}\right)^{-1} \quad v_{2}=u_{2}\left(u_{1}+u_{2}\right)^{-1}$.
Then $v_{1}+v_{2}=1$, so $v_{2}=1-v_{1}$
v_{1} is nilpotent so $1-v_{1}$ is a unit.
$\Rightarrow v_{2}$ is a unit $\Rightarrow \longleftarrow$
phluase

* Proposition: Let Mbe a Noetherian and Artivian R-module. Shen the followity are equaivaluit: (1) M is indecomposable
(2) every dement of Endp M is either an automonphism on is milpotent.
(3) EudRM is local
$+2$
Theorem (Krull-Remak-Schmidt)
Let $M \neq 0$ be an R-module which is Noetherian and Artivian. Then E is a finite direct sum of indecomposable R-modules. Up to permutation the iudecomposable direct summands are eviquely determined.
Proof: The existence of a direct summon decomposition into indecomposables follows from the Arhivian cond.
For uniqueness, suppose

$$
M=E_{1} \oplus \cdots \oplus E_{r}=F_{1} \oplus \cdots F_{s}
$$

are two such decompositions.
$i_{M}: M \rightarrow M$ can be represented by a matrix

$$
\begin{array}{rl}
A=\left(a_{i j}\right)_{s \times r} & a_{i j}: E_{j} \rightarrow F_{i} \\
r & B=\left(b_{i j}\right)_{r \times s} \\
b_{i j}: F_{j} \rightarrow E_{i} \\
& A B=\left(\begin{array}{cc}
i d_{F_{1}} & 0 \\
0 & i d_{F_{s}}
\end{array}\right)
\end{array}
$$

$\forall i, i d_{F_{i}}=a_{i i} b_{1 i}+\cdots+a_{i r} b_{r i}$
$\therefore a_{i j} b_{j i}$ is an automorphism for some j
Let $e_{i j}=b_{j i}\left(a_{i j} b_{j i}\right)^{-1} a_{i j}: E_{j} \rightarrow E_{j}$
Then $e_{i j}^{2}=e_{i j} \quad E_{j}=e_{i j} E_{j} \oplus\left(1-e_{i j}\right) E_{j}$

$$
\therefore e_{i j}=1 d_{E_{j}} \text { or } e_{i j}=0
$$

but $a_{i j} e_{i j} b_{j i}=a_{i j} b_{j i}$ is an autoonorphism So must have $e_{i j}=i d_{E_{j}}$
$\therefore a_{i j}$ is ejective and $b_{j i}$ is surjective.
On the other hand, since $a_{y} b_{j i}$ is an automorphism, $a_{i j}$ in surjective a $b_{j i}$ is injective

$$
\left.\begin{array}{rl}
\therefore & a_{i j}: E_{j} \rightarrow F_{i} \\
& b_{j i}: F_{i} \rightarrow E_{j}
\end{array}\right\} \text { are isomorphisms. }
$$

By permuting the E_{i} s $\& F_{j}$ s can assume A is of the form.

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{14} \\
a_{21} & a_{22} & \cdots & a_{24} \\
& & & \vdots \\
a_{51} & a_{52} & \cdots & a_{51}
\end{array}\right)
$$

where $a_{11}: E_{1} \rightarrow F_{1}$ is an isomorphism.
Composing on the right with the automorphism

$$
\left(\begin{array}{cccc}
1-a_{11}^{-1} \cdot a_{12} & 0 & & 0 \\
1 & 0 & \cdots & 0 \\
0 & 1 & & \\
1 a_{11} & 0 & 0 & 1
\end{array}\right)
$$

gives are iso $\left(\begin{array}{lllll}a_{11} & 0 & a_{13} & a_{14} \\ a_{51} & & & \end{array}\right)^{1}$
(44)

Continuing en this manner, can construct an iso

$$
\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & a_{2 r} \\
\vdots & \vdots & \vdots & \vdots \\
0 & a_{s 2} & \ddots & a_{s r}
\end{array}\right): E_{1} \oplus \cdots \oplus E_{1} \rightarrow F_{1} \oplus \cdots \oplus F_{s} .
$$

Restriction to $E_{2} \oplus \cdots \oplus E_{r}$ gives an iso to $F_{2} \oplus \cdots \oplus F_{s}$ So caul proceed by induction on $\min \{r, s\}$.
(If $\min \{r, s\}=1$, then the statement is lear)
Quivers and path algebras:

A graph - edges are directed
\backslash multiple edges between nodes are allowed
Defu (Quiver)
A quiver is a quadruple $Q=\left(Q_{0}, Q_{1}, s, t\right)$ where
Qu - set of vertices
Q, - set of edges
$s: Q_{1} \rightarrow Q_{0}$ starting vertex tu $\quad t: Q_{1} \rightarrow Q_{0}$ terminating

Defy (Representation of a quiver) over afield k
A representation of a quiver $Q=(Q, Q, s, t)_{2}$ consists of a collection $\left\{V_{i} l i \in Q_{0}\right\}$ of ${ }_{2}$ Vector spaces and a collection $\left\{\pi_{\alpha} \mid \alpha \in Q_{1}, \pi_{\mu}: V_{s(\alpha)} \rightarrow V_{t(\alpha)}\right\}$ of k-linear transformations.
Example: $Q:{ }^{1}{ }^{\circ} \alpha$
A representation of Quirk consists of a pain (V, T), where V is $a_{\text {Lector space }}^{k}$ and $T \in E_{n d}(v)$.
Defuse: (Morphism of representations)
If $\left(\pi_{1}, V_{1}\right) \&\left(\pi_{2}, V_{2}\right)$ are two representations of a quiver Q, a morphism $\varphi:(\pi, V) \rightarrow\left(\pi^{\prime}, V^{\prime}\right)$
consists of a collection of k-linear maps

$$
\varphi_{i}: V_{i} \rightarrow V_{i}^{\prime}
$$

Such that $\forall \alpha \in Q_{1}$, the diagram

$$
\begin{aligned}
& V_{s(\alpha)} \xrightarrow{\varphi_{s(\alpha)}} V_{S(\alpha)}^{\prime} \\
& \left.\pi_{\alpha}\right|_{V} \int_{V_{k}} \pi_{\alpha}^{\prime} \quad \text { commutes } \\
& V_{t(\alpha)}
\end{aligned}
$$

Example: $Q: 1_{0} D \alpha$
$\varphi:(V, T) \rightarrow\left(V^{\prime}, T^{\prime}\right)$ consists of a linear map

$$
\begin{aligned}
& \varphi \cdot T= & V \rightarrow Q & \text { Iso. classes }
\end{aligned} \longleftrightarrow \begin{aligned}
& \text { similarity } \\
& \\
&
\end{aligned}
$$ matrices

(46) Example: $Q: 0^{1} \alpha{ }^{2}$

Reaps: $V_{1} \xrightarrow{\varphi_{k}} V_{2}$
Iso. classes: Equivalence classes of live ar tramfences. given by $\left(\operatorname{dim}\left(V_{1}\right), \operatorname{dim}\left(V_{2}\right)\right.$, rank $\left.\varphi_{k}\right)$
Def u (dimension vector)
A dimension vector for a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ is a fuuchion ${ }^{-} d: Q_{0} \rightarrow \mathbb{N u}\{0\}$
Each rep. π, V of Q has a dimension vector $d(\pi, V)$

$$
d(\pi, V)(i)=\operatorname{dim}_{k}\left(V_{i}\right)
$$

Relation to ring theory:

$$
Q=\left(Q_{0}, Q_{1}, s, t\right)
$$

Let $i, j \in Q_{0}$.
possibly empty
A path from i to j is a finite sequence of

$$
\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{n} \in Q_{1}$ are such that

$$
\begin{array}{ll}
s\left(\alpha_{1}\right)=i, \\
t\left(\alpha_{i-1}\right)=s\left(\alpha_{i}\right) \text { for } i=2, \ldots, n \\
t\left(\alpha_{n}\right)=j \quad Q(j, i)=\{\text { paths } i \text { to } j\}
\end{array}
$$

n is called the length of the path.
For $i, j, l \in Q_{0}$, there is a composition of patties

$$
Q(l, j) \times Q(j, i) \rightarrow Q(l, i)
$$

given by
$E Q(i, i)\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right) g\left(\beta_{1}, \ldots, \beta_{m}\right)\right) \mapsto\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m 1}, \alpha_{1}, \ldots, \alpha_{n}\right)$
$(x, y) \stackrel{>}{\longrightarrow y}$
The path algebra of Q is the vecterspace

$$
k[Q]=\bigoplus_{i, j \in Q_{0}} k Q(i, j)=\{\operatorname{Paths}(Q) \rightarrow k\}
$$

where $k Q(i, j)$ denotes the space of k-valued function on $Q(i, j)$.
Multiplication is given by

$$
\left(f_{1} * f_{2}\right)(u)=\sum_{x y=u} f_{1}(x) f_{2}(y)
$$

for any path u in Q. (why is it associative.) $k[Q]$ has unit $\sum_{i \in Q O} e_{i}$
Given a representation $<\in Q, V)$ of a quiver Q
Let $M=\bigoplus_{i} V_{i}$
Define $\pi(u) M$ for a path $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ as follows:

$$
\left.\pi(u)\right|_{V_{s(\alpha,))}}=\quad \pi_{\alpha_{n}} \cdot \cdots \pi_{\alpha_{1}} \quad\left(V_{s\left(\alpha_{1},\right)} \rightarrow V_{t\left(\alpha_{n}\right)}\right)
$$

and $\left.\pi(a)\right|_{V_{i}} \equiv 0$ if $i \neq s\left(\alpha_{1}\right)$
For $f \in k[Q]$ define $\pi(f) m=\sum_{\text {paths } u} f(u) \pi(u) m$
(48)

We have:

$$
\begin{aligned}
\pi\left(f_{1}\right)\left(\pi\left(f_{2}\right) m\right) & =\sum_{u} f_{1}(u) \pi(u) \sum_{v} f_{2}(v) \pi(v) m \\
& =\sum_{u} \sum_{v} f_{1}(u) f_{2}(v) \pi(u)\langle\pi(v) m)
\end{aligned}
$$

Now: $\pi(u) \cdot \pi(v)=\pi(u) \cdot \pi_{\beta_{m}} \cdots \pi_{\beta_{1}}$

$$
\begin{aligned}
& u=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \\
& v=\left(\beta_{1}, \ldots, \beta_{m}\right) \\
&=\pi_{\alpha_{n}} \cdot \ldots \cdot \pi_{\alpha_{1}} \cdot \pi_{\beta_{m}} \circ \ldots \cdot \pi_{\beta_{1}} \\
&=\pi(u v) \\
&=\sum_{u} \sum_{v} f_{1}(u) f_{2}(v) \pi(u v) m \\
&=\sum_{x} \sum_{u v=x} f_{1}(u) f_{2}(v) \pi(u v) m \\
&=\sum_{x} f_{1} * f_{2}(x) \pi(x) m \\
&=\pi\left(f_{1} * f_{2}\right) m
\end{aligned}
$$

Hence, a representation of a quiver gives rise to $a k$-finite module for the path algebra.
k-finite dimensional such that $k \sum_{i} e_{i}$ act by
Conversely, given a $k[Q]$-module M_{h} deficie.
$V_{i}=e_{i} M \quad V_{i}$ is a k-vector space
Each $e_{i}^{2}=e_{i}$, so e_{i} is a projection in M

$$
e_{i} e_{j}=e_{j} e_{i}=0
$$

$\sum_{i \in Q_{0}} e_{i}$ is the identity eidomoplism of M

It follows that

$$
\begin{gathered}
M=\oplus V_{i} \\
\forall \alpha \in Q_{1}, \quad e_{t(\alpha)} \alpha e_{s(\alpha)}=\alpha
\end{gathered}
$$

$\therefore \alpha$ gives rise to a linear trauformation $V_{s(\alpha)} \rightarrow V_{t(\alpha)}$ (π, V)
Get a representation, of the quiver Q.
It can be shown that :
\{Morphisms of representations of quivers\}

$$
\uparrow
$$

$\{k[Q]$-module homomorpluisms\}
Cautalk about direct sums of reps of quivers.
Example: $Q=$ if

$$
k[Q]=k[t]
$$

Example: $Q=10 \xrightarrow{2}$?

$$
\begin{aligned}
k[Q]= & k \cdot e_{1} \oplus k \cdot \alpha \oplus k \cdot e_{2} \\
& e_{1} \alpha=\alpha \quad \alpha e_{2}=\alpha, e_{i}^{2}=e_{i}, e_{1} e_{2}=e_{2} e_{1}=0 .
\end{aligned}
$$

Example: $Q=\alpha G^{1} D^{\beta}$
$k[Q]=k\langle\alpha, \beta\rangle=$ the free k-algebra on two generators
basis: $\left\{\alpha^{m_{1}} \beta^{n_{1}} \alpha^{m_{1}} \beta^{n_{2}} \ldots \alpha^{m_{i}} \beta^{n_{i}} \mid i \in \mathbb{N} \cup\{0\}, m_{i} n_{i} \in \mathbb{N}\right\}$
(50)

Lets calculate the isomorpliwm classes of reps. of this quiver:
A rep. Consists of a vector space V and two linear endomorphiones: $T_{1}, T_{2} \in$ End $_{k} V$

$$
\left(T_{1}, T_{2}, V\right) \sim\left(T_{1}^{\prime}, T_{2}^{\prime}, V^{\prime}\right)
$$

eff \exists iso $\varphi: V \rightarrow V^{\prime} \ni$

$$
\begin{aligned}
& T_{1}^{\prime} \circ \varphi=\rho \circ T_{1} \\
& T_{2}^{\prime} \circ \varphi=\varphi \circ T_{2}
\end{aligned}
$$

In matrix language, this is the problem
of classification of pairs of matrices unto simultaneous similarity, a.k.a., the matrix pair problem.
$A, B \in M_{n}(k)$
$(A, B) \sim\left(A^{\prime}, B^{\prime}\right)$ if $\exists X \in G L_{n}(k)$ such that

Conclusion: Representations of quivers are Noetherian and Artivian le [Q]-modules, hence the Krull-Remak-Schmidt theorem applies.

The classification problem: Fix a field k.
Given a quiver $Q=\left(Q_{0}, Q_{1}, t, s\right)$, determine all the indecomposable representations overt.
Given any two indecomposable reps. over k, describe all the morphisms between them.

Example 1 The linear quiver:

$$
Q:: \stackrel{\alpha_{1}}{\longrightarrow} \cdot \stackrel{\alpha_{2}}{3}{ }_{3} \rightarrow \overbrace{n} \cdot \stackrel{\alpha_{n-1}}{n}
$$

Let (π, V) be au indecouposable sup. of Q
Step 1: If $\pi\left(\alpha_{i}\right)$ is ut irijective then $V_{j}=0 \quad \forall j>2$ Suppose $\pi\left(\alpha_{1}\right) \ldots, \pi\left(\alpha_{i-1}\right)$ are all íyjective and $\pi\left(\alpha_{i}\right)$ is not mijective
Let $W_{i}=\operatorname{kar}\left(\pi\left(\alpha_{i}\right), w_{i-1}=\pi\left(\alpha_{i-1}\right)^{-1}\left(w_{i}\right), W_{i-2}=\pi\left(\alpha_{i-2}\right)^{-1}\left(w_{i-1}\right)\right.$

$$
\begin{aligned}
& V_{1} \xrightarrow{\pi\left(\alpha_{1}\right)} V_{2} \xrightarrow{\pi\left(\alpha_{2}\right)} \cdots \xrightarrow{\longrightarrow} V_{i-1} \xrightarrow{\pi\left(\alpha_{i-1}\right)} V_{i} \xrightarrow{\pi\left(k_{i}\right)} V_{i+1} \rightarrow \cdots \\
& W_{1} \xrightarrow{\sim} W_{2} \xrightarrow{\sim} \cdots W_{i-1} \xrightarrow{\sim} W_{i}
\end{aligned}
$$

(52)

Let $S_{1} \subset V_{1}$ be such that $W_{1} \oplus S_{1}=V_{1}$.
Inductively define S_{j+1} ene thad

$$
\begin{array}{ll}
\text { (1) } W_{j+1} \oplus S_{i+1}=V_{j+1} & V_{j} \xrightarrow{T\left(\alpha_{j}\right)} V_{j+1} \\
\text { (2) } \pi\left(\alpha_{j}\right)\left(S_{j}\right) \subseteq S_{j+1} \quad W_{j} \oplus S_{j} \longrightarrow W_{j+1} \oplus S_{j+1}
\end{array}
$$

this is done by eulaying $\pi\left(\alpha_{j}\right)\left(S_{j}\right)$ to a supplement.
Then $V=W \oplus S$ where

$$
\begin{aligned}
& W=W_{1} \rightarrow \cdots \rightarrow W_{i} \rightarrow 0 \rightarrow \cdots \rightarrow 0 \\
& S=S_{1} \rightarrow S_{i} \rightarrow V_{i+i}, \cdots \rightarrow V_{n}
\end{aligned}
$$

Since V is undecomposable, and $W_{i} \neq 0$, must
lave $S=0$

$$
\therefore V_{i+1}=\cdots=V_{u}=0 .
$$

Step 2: If $\oplus \pi\left(\alpha_{j}\right)$ is wot surjectove, then
$V_{h}=0$ for all $h \leq j$
Proof: So is similar to that of Step 1
Step 3: V is isomouplic to

$$
\begin{aligned}
& 1 \leq j \leq i \leq u
\end{aligned}
$$

If all the $\pi\left(\alpha_{i}\right)^{\prime}$ s are injective, then let $i=n$ else, let ide the first instance where $\pi\left(\alpha_{i}\right)$ is not injective.
If all the $\overline{ }\left(\alpha_{i}\right)$'s are sijechive, then let $y=1$ else let ; be the last instance where t $\left(\alpha_{i}\right)$ is wot suit.

3
By Steps 1 \& 2 , we have that V is of the form

$$
0 \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow V_{j}^{\pi\left(\sigma_{i}\right)} V_{j+1} \xrightarrow{\pi\left(\sigma_{i+1}\right)}+\xrightarrow{T\left(Q_{i-1}\right)} V_{i} \rightarrow 0 \rightarrow \cdots \rightarrow 0 .
$$

and $\pi\left(\alpha_{j}\right), \ldots, \pi\left(\alpha_{i-1}\right)$ are all isomorphisms
$\therefore V$ is 150 to

$$
0 \rightarrow \ldots \rightarrow 0 \rightarrow K^{d} \stackrel{\text { id }}{\longrightarrow} \ldots \stackrel{i d}{\mapsto} K^{d} \rightarrow 0 \rightarrow \ldots \rightarrow 0
$$

Hts ins rindecomposable $\Rightarrow d=1$
Step 4: $[j, i]^{\prime}$'s are indecomposable and pairwise non-isomooplic
Pf Suppose $\left.\tau_{j}, i\right]=w \otimes w^{\prime}, w \neq 0, w^{\prime} \neq 0$
Then $\operatorname{dim}_{k} V=\operatorname{dim}_{k} \oplus V_{i} \geqslant 2$
Hence $j<i$.
Assume wog that $\omega_{j} \neq 0$, so $\omega_{j} \cong K$
Let $h>j$ be minimal $o \omega_{h}=0$.
Since $W^{\prime} \neq 0$, nu st have $h<i, W_{h}^{\prime} \approx k$
$\therefore \pi \oplus \pi^{\prime}\left(\alpha_{h-1}\right)=0$ contradicting that $\alpha_{h-1}=i d$.
Finite rep type
Example 2: $Q=\alpha\left(G_{1}=: \mathcal{L}_{1}(1-\right.$ loop $)$.
Indecomposables $\longleftrightarrow\left\{p(t)^{\gamma} \mid p(t) \in k[t]\right.$ is an irred manic polyusuial \& $r \in \mathbb{N}\}$.
Infinite up type
(54)

Example 3: $L_{2} \alpha$ GB
Claim: the classification problem for L_{2} includes the classification problem for any quiver
More precisely, for every quiver Q \& any rep (π, V) of Q, we will construct a rep $(\tilde{\pi}, \tilde{V})$ of h_{2} such that $(\pi, V) \cong(\sigma, \omega)$ if $(\pi, \widetilde{V}) \cong(\widetilde{\sigma}, \widetilde{\omega})$, $(\tilde{\pi}, \tilde{V})$ is indecomposable eff (π, V) is, and $\operatorname{Hom}_{Q}(V, W) \longrightarrow \operatorname{Hom}_{2_{2}}(\widetilde{V}, \tilde{W})$
This will be done in two steps:
Step 1: the classification problem for ℓ_{2} includes the classification problen for $\mathcal{L}_{t} \forall t \geqslant 2$.

Proof Given a rep (π, V) of L_{t} define $(\tilde{\pi}, \tilde{V})$, a sep of h_{2} as follows:

$$
\begin{aligned}
& \tilde{V}_{0}=V_{0}^{\oplus(t+1)} \\
& \tilde{\pi}(\alpha)=\left(\begin{array}{cccc}
0 & 1 & v_{0} & \\
& & 0 & 0 \\
& 0 & & \\
& & & v_{0} \\
& & & 0
\end{array}\right) \quad \tilde{\pi}(\beta)=\left(\begin{array}{ccc}
0 & \pi\left(\alpha_{1}\right) & \\
& & 0 \\
& & \pi\left(\alpha_{\alpha}\right) \\
0 & & 0
\end{array}\right)
\end{aligned}
$$

Suppose $\varphi \in \operatorname{Hom}_{\mathcal{L}_{t}}(V, W)$.
i.e., $\varphi: V_{0} \rightarrow W_{0}$ satisfies $\varphi \circ \pi\left(\alpha_{i}\right)=\sigma\left(\alpha_{i}\right) \circ \varphi \forall i=1, \ldots, t$ Then $\varphi^{(\oplus(t+1)}$ satisfies

$$
\begin{aligned}
& \varphi \cdot \tilde{\pi}(\alpha)=\left(\begin{array}{ccc}
0 & \varphi & 0 \\
0 & & \\
0 & 0
\end{array}\right)=\tilde{\sigma}(\alpha) \circ \varphi \\
& \varphi \cdot \tilde{\pi}(\beta)=\left(\begin{array}{cc}
0 \varphi \cdot \pi\left(\alpha_{1}\right) & \\
& \varphi \cdot \pi\left(\alpha_{t}\right) \\
& 0
\end{array}\right)=\left(\begin{array}{cc}
0 \sigma\left(\alpha_{1}\right) \circ \varphi & 0 \\
0 & \sigma\left(\alpha_{1}\right) \circ \varphi \\
0
\end{array}\right) \\
& \\
& =\tilde{\sigma}(\beta) \cdot \varphi . \\
& \therefore \varphi^{\oplus(t+1)} \in \operatorname{Hom}_{\alpha_{2}}(\tilde{v}, \tilde{W}) .
\end{aligned}
$$

Conuersely, suppere $\psi \in \operatorname{Hom}_{\mathcal{L}_{2}}(V, W)$
Then $\psi: V_{0}^{\oplus t+1} \rightarrow W_{0}^{\oplus t+1^{2}}$ can be represented by ar matix $\psi=\left(\psi_{i j}\right)_{(t+1) \times(t+1)}$, dorer $\psi_{i j}: V_{0} \rightarrow W_{0}$. $\psi_{0} \tilde{\pi}(\alpha)=\tilde{\sigma}(\alpha)_{0} \psi$ implies that ψ is if the form

$$
\left(\begin{array}{llll}
\psi_{0} & \psi_{1} & & \psi_{t} \\
& \psi_{0} & & \\
& & & \psi_{1} \\
& & & \psi_{0}
\end{array}\right)
$$

$\psi_{0} \tilde{\pi}(\beta)=\tilde{\sigma}(\beta) \cdot \psi$ imples, amsong ottre thys, thent $\psi_{0} 0 \pi\left(\alpha_{i}\right)=\sigma(\alpha)_{0} \psi_{i}$, ie, $\psi_{0} \in \operatorname{Hom}_{\perp}(V, W)$
(66) Moreover ψ is an iso. if ψ_{0} is.

Suppress $\varphi: V \rightarrow W$ is an iso, then $\varphi^{\oplus(t+1)}: \widetilde{V} \rightarrow \widetilde{W}$ is arlo an ins
If $\psi: \tilde{V} \rightarrow \tilde{W}$ is auciss, then $\psi_{0}: V \rightarrow W$ in ubs o an icc

$$
\therefore V \cong \omega \text { ल } \widetilde{V} \cong \widetilde{\omega}
$$

Suppose $\psi \in$ End $_{{f_{2}}}(\tilde{V})$. Then ψ is an automouplism (resp nilpotent) iff ψ_{0} is.
Suppose V is indecomporable.
Consider $\psi \in \operatorname{End}_{f_{2}}(\widetilde{V})_{\text {. }}$.
If ψ is not a unit, then $\psi_{0} \in E_{L_{H}}(V)$ is not a unit, so ψ_{0} us vilpotent and hence V is indecomposable.
Convaraly, if V in indecomposable, $\& \varphi \in$ End $_{L_{E}}(V)$ is not a unit, then $\varphi^{\oplus(t+1)} \in$ End $_{L_{2}}(\tilde{V})$ is ut a eurit, hence it is sippotent. $\therefore \varphi^{2}$ is nippotent.
Step 2: The classification problems far all $L_{t}, t \geqslant 2$ include the classification problem for any quiver. Let Q be any quiver. $Q_{0}=\{1, \ldots, n\}, Q=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$
Let (π, V) be a rep of Q

$$
\begin{gathered}
\beta_{j}: s_{j} \rightarrow t_{j} \\
t=n+r
\end{gathered}
$$

Define a $\operatorname{rep}(\tilde{\pi}, \tilde{V})$ of L_{t} as follows

$$
V_{0}^{2}=V_{1} \oplus \ldots \oplus V_{n} .
$$

$\tilde{\pi}\left(\beta_{i}\right)$ is the block matux whose only non-zero block is $1 v_{i}$ at pos (i, i) for $i=1, \ldots, n$.
For $n<i \leq n+r$, let $\tilde{H}\left(\alpha_{i}\right)$ be the bock matrix whose only non-zero block is $\pi\left(\beta_{i-n}\right)$ at pos. $\left(t_{i-n}, s_{i-n}\right)$.

Sepprore c $\in \operatorname{Hom}_{Q}(v, w)$
Let $\bar{\varphi}: \tilde{V}_{0} \rightarrow \tilde{V}_{0}$ be $\tilde{\varnothing}=\varphi(1) \oplus \cdots \oplus \varphi(n)$.
Clearly, $\tilde{\rho}=\tilde{\pi}\left(\alpha_{i}\right)=\tilde{\infty}\left(\alpha_{i}\right) \circ \tilde{\varphi} \quad$ for $i=1, \ldots, n$
$\tilde{\rho} \cdot \tilde{\pi}\left(\alpha_{i}\right)$ is a block with $\varphi(i) \circ \pi(\beta ;)$
at (i, i) th place. \& zeros everywhere else
$\tilde{\sigma}\left(\alpha_{i}\right) \circ \varphi^{\tilde{q}}$ is a black matin with $\sigma\left(\beta_{i}\right) \circ \varphi(i)$
at $(i, i) t h$ place ε zion elsewhere.

$$
\therefore \tilde{\phi} \in \operatorname{Hom}_{\alpha_{t}}(\tilde{V}, \tilde{W}) \quad \tilde{\phi} \text { is an iso. rf } \varphi(1), \ldots, \varphi(u) \text { are }
$$

Conversely suppose $\psi \in \operatorname{Hom}_{t}(\tilde{v}, \tilde{W})$
Then $\psi_{0} \frac{\pi}{\pi}\left(\alpha_{i}\right)=\tilde{\sigma}\left(\alpha_{i}\right) \cdot \psi$ neaus:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\psi_{11} & \psi_{i n} \\
\vdots & \\
\psi_{n 1} & \psi_{n n}
\end{array}\right)\left(\begin{array}{ccc}
0 & & 0 \\
& \pi\left(\beta_{i}\right) & \\
0 & & 0
\end{array}\right)=\binom{\psi_{i i^{\circ} \cdot \pi\left(\beta_{i}\right)}}{\psi_{n i} \cdot \pi\left(\beta_{i}\right)}
\end{aligned}
$$

(58) Over $i=1, \ldots, n$, these identities mean

$$
\psi=\psi(1) \oplus \cdots \notin(n)
$$

for some $\psi(i): V_{i} \rightarrow V_{i}$
Moreover, $\psi_{0} \tilde{\pi}\left(\alpha_{n+i}\right)=\tilde{\sigma}\left(\alpha_{n+i}\right) \circ \psi$ means that

$$
\begin{aligned}
& \left(\begin{array}{cc}
\psi(1) & \\
& \psi(n)
\end{array}\right)\binom{\pi\left(\beta_{i}\right)}{\hat{s}_{i}} \leqslant t_{i}=\left(\psi\left(t_{i}\right) \pi\left(\beta_{i}\right)\right) \\
& \left(\begin{array}{ll}
\nabla\left(\beta_{i}\right) &)\left(\begin{array}{ll}
\psi(i) & \\
& \psi(n)
\end{array}\right)=\left(\sigma\left(\beta_{i}\right)_{0} \psi\left(s_{i}\right)\right.
\end{array}\right) \\
& \therefore \psi\left(t_{i}\right) \circ \pi\left(\beta_{i}\right)=\sigma\left(\beta_{i}\right) \circ \psi\left(s_{i}\right)
\end{aligned}
$$

in other words, $\psi \in \operatorname{Hom}_{Q}(V, W)$
Clearly, ψ is an iso iff $\psi(1)$, , $\psi(u)$ ore Have: $V \cong W \Leftrightarrow \tilde{V} \cong \tilde{W}$.
V is indecamposable of \tilde{V} is.

$$
\operatorname{Hom}_{Q}(V, w)=\operatorname{Hom}_{\mathcal{L}_{t}}(\tilde{V}, \tilde{W})
$$

Ideals:
R any sing. Mas
R can be thought of as a left. R-module R_{R} A left ideal of R is a submodule of R^{R}. Then it

Left ideals are characterised by the /ropentees:
(1) They are closed undue multi
(2) closed under left mult. in k

Quotients:
M is a dele M be a left R-module, M^{\prime} CM be asabmodule.
The quotient group M / M, has the structure of a left R-module, given by

$$
\gamma_{0}\left(m+M^{\prime}\right)=r m+M^{\prime}
$$

Indeed, this does not depend on tue choice of mir its coset.

The same definitions a \& work when left is replaced by right. But then we corite $M^{\prime M}$

Can talk about two-sided ideals, in which care the quotient, devoted. $\frac{M}{M^{\prime}}$ is an (R, \mathbb{R}). Simodule.

Depr (Simple, Irreducible)
An R-module is called simple or irreducible if it is non-trivial and has no non-trial proffer sulmodules.
Rroposition: Let R be amynitul. Any simple R-module is a quotient if R^{R} by a leff ideal
Prosf Let M be a simple R-module. Take $m \neq 0, m \in M$ The map $\begin{aligned} & x \mapsto x \mathrm{xm} \text { is a homomorplism of } R \text { vusdules } \\ & R \longrightarrow M\end{aligned}$
Its inage is a nob trivial, submodule of M, hence it rued be suiective Dts hunal K is a lefe ideal $M \cong R / K$ as a lefe R.modules.
Remare: If K is a left ideal of R, then R / K is simple iff K is a maxival left cideal
Deftr (Filtration).
[imereasing]
An filtrailion of au R-module M is a fivite strictly uncreasing sequence of submodules

$$
\begin{equation*}
M=M_{0} \supset M_{1} \supset \ldots \supset M_{n}=0 \tag{*}
\end{equation*}
$$

Defa (Composition sevies):
A composifion seines is a filfration of the form (t) Where evecy quotient is suce $\frac{M_{i}}{M_{i+1}}$ of succerssive submodules us sicuple.

Theorem: Let M be a Noetherian and Artician
R-module then M has a composition series.
Pf. Note, firstly, that every Noetherian module has a maximal proper submodule:
Let M_{1} be any proper submodule of M (possibly (0)), If M_{1} is maxiinal, done.
Else, $\quad \exists M_{\neq} M_{2} \supsetneqq M_{1}$ proper sulanodule of M
If M_{2} is maximal tres done, els take $M_{3} \ldots$ a maximal proper submodule
This process must yield after a finite no. of steps, on else we would have Constructed an ascending chain without a maximal dement.

Note that submodules of M / M^{\prime} are in bijective Correspondence with submodules if M containing M $\therefore M^{\prime}$ is maximal in M iff M / M^{\prime} is simple.

To complete the proof of the theorem:
If M is simple, there is nothing to prove. Elise $\rightarrow M \underset{\nrightarrow}{>} \nrightarrow 0$ maximal proper submodule
M / M, is simple If M, is simple, then ot done.
Eles $\ni M_{7} \vec{F}^{\prime} M_{2} \neq 0, M_{2}$ maximal propr submodule of M_{1}. Repeating this process, will, by the d.c.c
give rise to a composition series in finitely many steps.
Theorem (Jordan-Hölder)
Suppre M is a Noetherian and Artitian R-module and $M=M_{0} \partial \ldots S M_{m}=0$ is a composition series If $M=N_{0} \supset \cdots D N_{n}=0$ is avolter, then for $m=n$, and for every simple R-module D, we have:

$$
\#\left\{\leqslant \varepsilon_{i n} \left\lvert\, \frac{M_{i-1}}{M_{i}} \cong D\right.\right\}=\#\left\{1 \leqslant c_{i n} \left\lvert\, \cdot \frac{N_{i-1}}{N_{i}} \cong D\right.\right\}(* *)
$$

Prof

Induct on m.
If $m=1$, then M is simple, of.
(62)

If $M_{1}=N_{1}$, then $M_{1} \supset M_{2} \supset \cdots \supset M_{m}$

$$
M_{1} \supset N_{2} \supset \ldots N_{n}
$$

are composition series far M, and the result follows from the induction bypottiesis.
Else consider $M, \cap N, \nsubseteq M$,

$$
\varsubsetneqq N_{1}
$$

The natl. $M_{1} / M_{1} \cap N_{1} \longrightarrow M / N_{1}=D_{N}$
is an isomorphism, since $M=M_{1}+N_{1}$
Similarly, $\dot{N}_{1} / M_{M_{1} \cap N_{1}} \sim M M_{M_{1}}=: D_{M}$
Let $M \cap N_{1} \supset K_{3} \supset \ldots \supset K_{k}$ be any composition series for $M \cap N$,.
Now: $M_{1} \supset M_{2} \supset \cdots \quad \supset M_{m}=0$
and $M_{1} \supset M_{1} \cap N_{1} \supset K_{3} \supset \ldots K_{K}=0$
are composition series for M, of length $m-1$
By the induction hypothesis, $m=k$ and \forall simple R-module D,

$$
\#\left\{2 \leqslant i \leq m \left\lvert\, \frac{M_{i-1}}{M_{i}} \cong D\right.\right\}=\#\left\{z \leqslant i \leqslant k \left\lvert\, \frac{K_{i-1}}{K_{i}} \cong D\right.\right\}
$$

Applying the induction hypothesis again, we see $k=n$ and

$$
=\#\left\{2 \leq i \leq k \left\lvert\, \frac{N_{i 1}}{N_{i}} \cong D\right.\right\} \text { suce } M / N_{1} \cong M_{V_{1}} M_{2}
$$

Example: $R=\mathbb{Z} / 2[\mathbb{Z} / 2]$, as a left R-module
Basis: $\quad 1,1$,
Non-zero proper irvaviaut subspaces should be 1-dimensiond
Now, $a 1_{0}+b 1_{1}, a, b \in \mathbb{U}_{2}$ spans an invariant subsp.
if $\quad 1_{1}\left(a 1_{0}+b 1_{1}\right)=0$ or $a 1_{0}+b 1_{1}$

$$
b 1_{0}+a 1_{1}
$$

If at least one of a \& b is nox-jers, then must have $a=b=1$.
$\therefore R$ has a unique noh-hivial poppa submodule. D
Since it is the only submodule, it can not have a Complement.
Clearly D is simple. : $D \approx R / M$ for some submodula M. The only possibility is $M=D$.

$$
\therefore D \cong R / D \text { (Exercise: Check this explicitly). }
$$

Example: $R=\mathbb{Z} / 3[\mathbb{Z} / 2]$ as a left R-module.
Basis 1., 1,
an. +61 , Spans an invariant subspace if t

$$
1,610+b 1,7=\left\{\begin{array}{l}
0 \\
a 1_{0}+b 1, \text {, or } \\
2 a 10+2 b 1,
\end{array}\right.
$$

$$
b 1_{0}+a 1_{1} \quad \therefore \text {, either } a=b \text { or } a=2 b \text { \& } b=2 a \text {. }
$$

$$
R=\left\langle 1_{0}+1_{1}\right\rangle \oplus\left\langle 1_{0}+21,\right\rangle \text { as an Remodule. }
$$

(64) Deft (Completely seducible module)
or semi-siniple
M is a completely reducible α R-mudule if M is isomorphic to a direct sum of simple R-nodules.
Example 1 was completely reducible, but example 2 was not.

Defy (nilpotent ideal)
Let R be any ring. A (left, right otwo-sided) ideal I is said to be nipptent if $I^{n}=0$ for some $n \in \mathbb{N}$
Prop: The sum of two nilpotent (left, sight, on two sided) ideals es nilpotent
Pf. For left ideals:
Let I, J be left ideals in $R, I^{m}=J^{n}=0$
If $x \in(I+J)^{m+n}$ then $x=\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{m+n}+b_{m+n}\right)$ where $a_{1}, \ldots, a_{m+n} \in I, b_{1}, b_{m+n} \in J$.
The expansion of x consists of monomials

$$
\varepsilon_{1} \ldots \varepsilon_{m+n}, \quad \varepsilon_{i}=\text { either } a_{i} \text { or } b_{i} \forall i
$$

Either $\varepsilon_{i}=a_{i}$ for at least m is.
or $\varepsilon_{i}=b_{i}$ for at least n is
Suppose the former
Then $\ni 1 \leq i_{1} \leqslant \ldots \leq i_{m} \leq m+n \quad \ni \varepsilon_{i j}=a_{i}$ fa $j=1, \ldots, m$.

$$
\begin{aligned}
& x=\left(\varepsilon_{1} \ldots \varepsilon_{i_{1}-1} a_{i_{i}}\right)\left(\varepsilon_{i_{1+1}} \cdots \varepsilon_{i_{2}-1} a_{i_{2}}\right) \cdots\left(\varepsilon_{i_{m+1}} \cdots \varepsilon_{i_{m-1}} a_{i_{m}}\right) \varepsilon_{i_{m+1}} \varepsilon_{m+n} \\
& \therefore x \in A^{m} \varepsilon_{i_{m+1}} \ldots \varepsilon_{m+n}=0 \\
& \therefore(I+J)^{m+n}=0
\end{aligned}
$$

Corollary: Let R be any Noetherion sing. Then R contains a unique maximal nilpotent left ideal.
Proof: By the ascending chain condition, R contains a maximal nipolent left ideal I.
If I_{1} and I_{2} are two maximal nilpotent left ideals, then $I_{1}+I_{2}$ is abs a nilpotent left ideal. By maximality, must have
Lecture 12
Lemma: Let R be a left Noetherian sing. Then the maximal nilpotent left ideal of R is a two-sided ideal.
Proof: Let I be the maximal nitpotent two-sided ideal of R
Consider the left ideal IR

$$
\begin{aligned}
& (I R)^{2}=I^{2} R \\
& (I R)^{3}=I^{3} R
\end{aligned}
$$

$\therefore I R$ is nilpotent. $\therefore I R \subset R \Rightarrow I$ is a rightideal.
(66)

Proposition: Let R be a left Noetheviann ring. Then R has a unique maximal vilpotent left ideal. This ideal is a two-sided ideal, and combiris every milpotent right ideal.
Pf: Only remains to stew that the maximal wilpotent left ideal contains every vipotert sight ideal
Let I be a milpotent right ideal.

$$
(R I)^{n}=R I^{n}=0 \text { for } n \text { suff. laze. }
$$

$\therefore R I$ is a nipotent lefecideal
Def (radical)
(left, right a hwosided)
The unique maximal nitpotent h ideal of a left a right Noelhevian sing is called its radical. The radical of R is denoted $\operatorname{Rad}(R)$.
Theorem: Let R be a unital ring satisfying the Noetherian and Antivion conditions for left ideals. Then e^{R} is semisiuple if and only if $\operatorname{Rad}(R)=0$.
Proof $R=M_{R} M_{1} \oplus \cdots M_{n}, M_{i}$ is simple.
If M is a left ideal in R let $J \subseteq\{1, \ldots, n\}$ be maximal such that

$$
M \cap \bigoplus_{j \in J} M_{j}=\{0\} .
$$

Suppose $i \notin J$. Since M_{c} is sicuple,

$$
M_{i} \cap\left(M_{j \in J}^{\oplus} M_{j}\right)=\left\{\begin{array}{l}
10\} \text { or } \\
M_{i}
\end{array}\right.
$$

If the intersection is $\{0\}$ then

$$
M \cap \underset{j \in J}{\nrightarrow} M_{j} \oplus M_{i}=\{0\}
$$

(becaux if $m=\sum_{j \in J} m_{j}+m_{i}$, then

$$
\left.m_{i}=m-\sum_{j \in J}^{M} m_{j} \in M_{i} \cap\left(M+\underset{j \in J}{M_{j}} M_{j}\right)\right)
$$

Contradicting the maximatity of J

$$
\begin{aligned}
\therefore & M_{i} \subset M \oplus\left(\oplus_{j \in j} M_{j}\right) \\
& \therefore R=M \oplus\left(\bigoplus_{j \in J} M_{j}\right)
\end{aligned}
$$

$$
1=e \oplus e_{j}, \quad e_{,} e_{J} \text { idenppotents. }
$$

If M is nilpotecit, then $M^{n}=0$ for some $n \in \mathbb{N}$

$$
\begin{aligned}
& \Rightarrow e^{n}=0 \text { for some } n \in \mathbb{N} \\
& \Rightarrow e=0 \Rightarrow M=0
\end{aligned}
$$

\therefore R has no non-hivial nilpotent left ideals

$$
\Rightarrow \operatorname{Rad} R=0 .
$$

68
For the converse, we will shoio that if $R a d R=0$, then every left ideal in R is a direct summand.
Each nontrivial left ideal is non-vilpotent.
Lemma (Wedderburn) : Assume R^{R} is Artivian.
Every non-nippotent left ideal has an idempotent element.
Prof:. Let I be a non-nipotent left ideal in R w.l.o.g. assume that I is minimal with this property (using oc).
$I^{2} \neq 0 . \therefore \exists$ minimal non-trivial left ideal KCI such that $I K \neq 0$. (using dee).
Take $x \in K \rightarrow I_{x} \neq 0$
Then $I_{x}={ }_{\psi_{x}}($ by minimality of $K)$
$\therefore a x=x$ for some $a \in I$.

$$
x=a x=a^{2} x=\cdots
$$

In particular, a is not nilpotent.
If $a^{2}=a$ ole. Eton
Else let $N=\{b \in I / b x=0\}$.

$$
a-a^{2} \in N
$$

N is a nontrivial left ideal properly contained in I, Since $N_{x}=0$ but $I_{x} \neq 0$
$\therefore N$ is nilpotent.

Let $a_{1}=3 a^{2}-2 a^{3}$.
Then $\quad a, x=3 a^{2} x-2 a^{3} x=x$
So $\quad x=a_{1} x=a_{1}^{2} x=\cdots$,
hence a_{1} is not nipotent

$$
\begin{aligned}
a_{1}-a_{1}^{2} & =\left(3 a^{2}-2 a^{3}\right)-\left(3 a^{2}-2 a^{3}\right)^{2} \\
& =\left(3 a^{2}-2 a^{3}\right)\left\{1-\left(3 a^{2}-2 a^{3}\right)\right\} \\
& =a^{2}(3-2 a)\left(1-a^{2}\right)(2 a+1) \\
& =(3-2 a)(2 a+1)\left(a^{2}-a^{3}\right)^{2} \in N^{2}
\end{aligned}
$$

Continuing in titis way, can construct a sequence $a_{1}, a_{2}, a_{3}, \ldots$ such that each a_{i} is not nilpotent and $a_{i}-a_{i}^{2} \in N^{2^{i}}$
Take i so lase that $N^{2^{i}}=0$.
Then a_{i} will be a non-triial idenspotent contained $\operatorname{in} I$.

If $R a d R=0$, then every non-trivial ideal;contaicis a non-zew idempotent.
Let M, be a mivional left ideal
Let $e \in M$, be a non-zero idempotent. $M_{1}=R e_{1}$
$\forall a \in R, \quad a=a e_{1}+\left(a-a e_{1}\right)$
Let $M^{\prime}=\left\{a-a e_{1} \mid a \in R\right\}$. This in auothu left ideal

$$
\Rightarrow M^{\prime} e=0
$$

(70)

$$
\because M, \cap M_{2}^{\prime}=\{0\}
$$

we have $R=M, \oplus M^{\prime}$
If M_{2} us miviaval, then done.
Else repeat this process taking a niximal submodule M_{2} d M : (take $e_{2} \in M_{2}$ \& $\quad e_{2}=M_{2}$,

$$
\begin{aligned}
& a=e_{1} a+e_{2} a+\left(a-e_{1} a-e_{2} a\right) \\
& M^{\prime \prime}=\left\{a-e_{1} a-e_{2} a / a \in R\right\} \ldots
\end{aligned}
$$

By the a.c.c., this process will stop after a ficieite number of steps giving

$$
R=M, \oplus \cdots M_{n}
$$

Depr: (Semisimple sing):
A sing R is sued to be semisinuple of $R R$ is sencisimple
Theorem Let R be a semisiuple Artiniay. Then

$$
R=R, \oplus \cdots \oplus R_{n} .
$$

where R_{1}, \ldots, R_{n} are minimal two-sided ideals. Each R_{i} is a simple ring (ie., it has no proper two sided ideals), and ave uniquely determined.
Proof: Let R, be a minimal two sided ideal in R As left ideals, we have a decoruposition:

$$
\begin{aligned}
& R=R_{1} \oplus R^{\prime}=R e_{1} \oplus R e^{\prime} \\
& 1=e_{1}+e^{\prime}
\end{aligned}
$$

$e_{1} R \cap R e_{1}$ is a two sided ideal contained in R_{1},

$$
\therefore e, R=R e,=R_{1}
$$

On the otter hand

$$
R=e_{1} R \oplus e^{\prime} R
$$

$$
R e_{1} \oplus R e^{\prime} \quad e_{1} R \oplus e^{\prime} R
$$

Suppose $a_{1} \in R_{1}$, then $a_{1}=a_{1} e_{1}=\hat{e}_{1} a_{1}$.

$$
\begin{aligned}
& \operatorname{Re}^{\prime}=\left\{a \in R \mid a e_{1}=0\right\} \\
& 0=a e_{1}=a e_{1}^{2}=e_{1} \underbrace{\hat{R}_{1}}_{\hat{R}_{1}}=e^{2} a=e_{1} a \\
& \therefore \operatorname{Re}^{\prime}=\left\{a \in R \mid e_{1} a=0\right\}=e^{\prime} R
\end{aligned}
$$

$\therefore R^{\prime}$ is alow a tuosided ideal.
If R^{\prime} is not a minimal two sided ideal, continue this process, as in lithe proof of the previous theorem.
Will get $R=R_{1} \oplus \ldots \oplus R_{n}$ a divect sum of minimal two sided ideals.

$$
1=e_{1} \oplus \cdots \oplus e_{n}
$$

sum of primitive curtal idempotent
Defn (primitive idempotent)
e is a primitive (central) idempotent if e can ult be contten as $e=e^{\prime}+e^{\prime \prime}$, where $e^{\prime} \& e^{\prime \prime}$ are (central) idempotents.
If $R=R_{1}^{\prime} \oplus \cdots \oplus R_{n^{\prime}}^{\prime}$ is another such decomposition, then $1=e_{1}^{\prime}+\cdots+e_{n}^{\prime}$.
(72) for any, ci,j
$e_{i} e_{j}^{\prime}$ is also a primitive central idempotent or 0 .

$$
e_{i}=e_{i} \cdot 1=e_{i}\left(e_{1}^{\prime}+\cdots+e_{n^{\prime}}^{\prime}\right)
$$

$\therefore e_{i}=e_{i} e_{j}^{\prime}$ for unique j.

$$
\begin{aligned}
& e_{j}^{\prime}=1 e_{j}^{\prime}=\left(e_{1}+\ldots+e_{u}\right) e_{j}^{\prime} \\
& \therefore e_{j}=e_{i} e_{j}^{\prime}
\end{aligned}
$$

$\therefore \forall i e_{i}=e_{j}$ for a urúgue j QED.
Defy (Simple sing) $\quad R_{1}, \ldots, R_{n}$-Wedilerbarn componcato of R.
R is simple if R has no non-frivial proper two sided ideals.
Theorem (Wedduburn)
Every simple Artinian ring R for which R^{R} us semisimple is isomorphic to the ring of $n \times n$ matrices with entries in a division ring D. n and D are coviquely determined.
Prove: $R^{R}=M, \oplus \cdots M_{n}$
Sum of minimal left e ideals.
Claim: Miss are all isomoplic
Pf. $1=e_{1}+\ldots+e_{n}$

$$
M_{i}=R e_{i}
$$

$R e_{i} R$ is a two sided ileal in R

$$
\begin{aligned}
\therefore & R e_{i} R=R \\
& R e_{i} R e_{j}=R e_{j} \neq 0
\end{aligned}
$$

Ex: $\quad \operatorname{Hom} R\left(R e_{i}, R e_{j}\right)=\left(e_{i} R e_{j}\right)$ opp
$\therefore R e_{j}=R e_{i} a$ for some $a \in e_{i} R e_{j} \quad a \neq 0$
$\therefore x \longmapsto x a$ is an iso $R e_{i} \rightarrow R e_{j}$ of R-modules
Let $D=\operatorname{End}_{R} M_{i}$ (does not depend on i)
Now, let $\gamma_{11}=i d_{M_{1}}$

$$
\gamma_{i 1}=f i x e d \text { ioomorpluism } M, M_{i} \forall i \text {. }
$$

Let $\gamma_{i j}=\gamma_{i i} \gamma_{j 1}^{-1}: M_{j} \rightarrow M_{i} \quad$ (iso.)
and $\quad \gamma_{c j} \gamma_{j h}=\gamma_{i k} \quad \forall v_{i j, k}$.
$\gamma_{i j}$ is of the form: $x \mapsto x c_{j i}$ for some $c_{j i} \in e_{j} R e_{i}$

$$
\begin{array}{ll}
C_{j i} C_{i h}=C_{j h} & \forall i, j, h \\
C_{j i} C_{l h}=0 & \text { i } \quad i \neq l .
\end{array}
$$

Now: $e_{1} R e_{1} \cong \operatorname{End}_{R}\left(M_{1}\right)^{\text {opp }}$
$\forall a_{11} \in e_{1} R e_{1}$ put $a_{i i}=c_{i 1} a_{11} c_{1 i} \in e_{i} \cdot o e_{i}$
\& $a_{11} \rightarrow a_{i c}$ us an undo of rings.
Let $D=\left\{a_{11}+\cdots+a_{n u} \mid a_{11} \in e_{1} R e_{1}\right\}$.
D is a division rimy iso. to e, oe,
$\forall i_{j}, \quad \alpha c_{i j}=c_{i j} \alpha \quad \forall \alpha \in D$.

$$
\therefore \quad R=\sum_{i, j} D c_{i j}
$$

R Noetherian \& Artivian sing
$R^{R}=P_{1} \oplus \cdots \oplus P_{R}$ sindecomposable sett modules. $1=e_{1}+\cdots+e_{k}$
$P_{i}=R e_{i}, e_{1}, \ldots, e_{k}$ are primitive idenspotents in R CRecall: our idempotent e vi called primitive if e cam not be written as a sum $e^{\prime}=e^{\prime}+e^{\prime \prime}$, where e^{\prime} \& e^{r} are orthogonal idengoteuts (ie.. $e^{\prime} e^{\prime}=e^{\prime \prime} e^{\prime}=0$))
Pi's are called the principal eindecomposable R-modutes.
Def: $M \subset R_{R}, \operatorname{Rad}(M):=M \sim \operatorname{Rad} R$
Theorem Let P and Q be principal indespmposable R-modules
Then (1) Rad P is the eevique maximal sabmodule of P
(2) $P \cong Q$ ifs P / R ad $P \cong Q / \operatorname{Rad} Q$.

Proof: (1) Suppose $M \underset{\neq}{\mp} P \quad P=R_{P}$
If M is not nilpotent, then M contains an idempotent $\quad e \neq p$.

$$
p=p e+p(p-e)
$$

Note: p acts on $P=R p$ as a right identity

$$
\therefore p{\underset{e}{\mid \prime}}_{\underset{e}{p}} \therefore p e^{\prime}
$$

\therefore pe lideny.
(76)

$$
\begin{aligned}
p(p-e) p(p-e) & \stackrel{?}{=} \\
& =p(p-e)^{2} \\
& =p\left(p p^{2}-p e-e p+e^{2}\right) \\
& =p(p-e e-e+\varepsilon)
\end{aligned}
$$

$\therefore p(p-e)$ is idempotent.

$$
\begin{aligned}
& p e p(p-e)=p e-p e=0 \\
& p(p-e) p e=p e-p e=0 .
\end{aligned}
$$

\therefore pe and $p(p-e)$ are orthogonal idempotents, Contradicting the fact that p is a primitive idempotent.
\therefore ever proper submodule of P is nilpotent
Recall: Sum of nilpotent left ideals is nilpotent. The sum of all proper sabmodules of P is therefore proper. Hence it is a maximal proper sabmodule of P Moreover this submodule contains all the milpotent left ideals contained in P.
\therefore it must equal $P \cap \operatorname{Rad} R$
(2) $\mathrm{By}(1)$ if $P \approx Q$ then $\operatorname{Rad} P \approx \operatorname{Rad} Q$ (they and the maximal proper submodules).

$$
\therefore P / \operatorname{Rad} P \approx Q / \operatorname{Rad} Q
$$

Conversely, supposep $P /$ Rad $P \rightarrow Q / R a d Q$ is an iso
Suppre $\varphi(P+\operatorname{Rad} P)=x+\operatorname{Rad} Q \operatorname{Rad} Q \quad x \in Q$
Define $\hat{\phi}: P^{\varphi\left(P^{2}+R u d P\right)} \begin{aligned} &= P x+R R_{2} d \theta \\ & R x=R q \\ & R p x=R q\end{aligned}$

$$
R p x=R q
$$

$$
\hat{\phi}(a p)=a p x=a x \text { (forced) }
$$

Similarly, given $\psi: Q / R a d Q \xrightarrow{\sim} P / R a d P$ defive

$$
\hat{\psi}(a q)=a q y-a y \text { where } y \text { is wach }
$$

ltat $\psi(q+\operatorname{Rad} Q)=y$-Rad P.

$$
\begin{aligned}
& \begin{array}{l}
\hat{\psi} \cdot \hat{\varphi} \in \operatorname{End}_{R}(P) \quad \begin{array}{l}
R y=R p \\
r \text { this is a local rivy } \\
R a y
\end{array}=R_{p} .
\end{array} \\
& \hat{\psi} \hat{\hat{\psi}} \cdot \hat{\phi} \text { is citar a uvit or milp remet. } \\
& \hat{\psi} \circ \hat{\phi}(p)=\hat{\psi}(x)=x y \\
& R_{x y}=R_{q y}=R_{p}
\end{aligned}
$$

$\therefore \hat{\psi} \cdot \hat{\varphi}$ is nol sitpotent, hance it is an automoplusm. : q \& φ Qre abso isomorpbismes, and P ETQ
Defn: The Jacobson radical of R us the eiverrection of all maximal ideals unR
Theorem The Jacobson Radical if R is RadR

$$
\text { Pf: } R=P_{1} \oplus \cdots \oplus P_{k}
$$

Evay maximal ideal of R un B the frim $M=R \operatorname{Rad} P_{i} \#\left(\oplus P P_{j}\right)$

78
Theorem: $P \rightarrow P /$ Rad P gives a bijection between the set of isomorphism classes of principal cidecomposable R-modules and the set of iso classes of irreducible R-modules.

Defn (Projective module)
An R-module P is projective if whenever there exist $\alpha: P \rightarrow N$ \& $\beta: M \rightarrow N$ with β sarjectrive, \exists $\gamma: P \rightarrow M$ such that $\beta \circ \gamma=\alpha$:

$$
\begin{gathered}
\gamma ; P \\
M_{\underset{\beta}{L^{\prime}} \downarrow \alpha}^{\longrightarrow N} \rightarrow 0
\end{gathered}
$$

Theorem: P" is projective iff P is cisomovphic to a direct summand of a foe module.
If. Always have a free module F and

$$
\begin{aligned}
& \text { s, id o mono } \\
& F=\vec{q} P \rightarrow 0 \\
& F=(P) \oplus \text { kern. Conurusely, } P O Q=F \quad M \oplus Q \rightarrow N \oplus Q \rightarrow 0
\end{aligned}
$$

Remark: If P is finitely generated, F can be taken io be finitely generated.
Theorem: The principal endeconyposable R-modules ane precisely the indecomposable projective R-modules Pf: Clearly, principe. andec \Rightarrow direct summed 1 free.

Couversely, Suppres $P \oplus Q=R \oplus \cdots \oplus R$

$$
P \oplus Q_{1} \oplus \ldots \oplus Q_{l}=\left(P_{1} \oplus \ldots \oplus P_{k}\right) \oplus \cdots \cdots\left(P, \otimes \ldots P_{h}\right)
$$

By the Krull-Remak-Sclumid't thoovem $P \approx P_{t}$ fersomekick,
Defn (multiplicity)
M any Noetherian and Arhivian R-nudule
D any irreducible R.module.
$[M: D]=\#$ of subquotients in a composition sevies for M which are sommopluic to D.
$\left(\begin{array}{l}\text { Jordan-Holderthm } \Rightarrow[M: D] \text { does not dezend on the } \\ \text { choiur of couposition series. }\end{array}\right.$
Proposition: M any Artinian and Noethrian R-module, $P=R e$ a principal indeconypobable R-module. Then P/RadP is a composition factor of M iff $e M \neq 0$
Proof:
Suppere $[M: P / R a d P] \neq 0 . \quad 0=M_{0} \angle \ldots \quad C M_{n}=M$ Coupp.sat
Have

$$
\begin{gathered}
\begin{array}{l}
\theta \neq 0
\end{array} P \\
M_{i}
\end{gathered} \rightarrow P / \operatorname{RadP} \rightarrow 0
$$

Let $m=\theta(e)$. Since $\theta \neq 0, m \neq 0$

$$
\begin{gathered}
m \div \theta(e)=\theta\left(e^{2}\right)=e \theta(e)=e m \neq 0 \\
\therefore e M \neq 0 .
\end{gathered}
$$

(80)

Conversely, if $e M \neq 0$, have

$$
\begin{aligned}
& 0=M_{0}<\cdots<M_{n}=M \\
& 0=e M_{0}<\cdots<M_{n}=e M \neq 0
\end{aligned}
$$

Claim: e $M_{i} \nsubseteq M_{i-1}$ for some i.
Bf: Suppose not

$$
\begin{aligned}
& e M_{1} \subseteq M_{0}=0 \Rightarrow e M_{1}=0 \\
& e M_{2} \subseteq M_{1} \Rightarrow e M_{2} \subseteq e M_{1}=0 \Rightarrow e M_{2}=0 \\
& e M_{3} \subseteq M_{2} \Rightarrow e M_{3} \subseteq e M_{2}=0 \Rightarrow e M_{3}=0 \\
& \Rightarrow e M_{1}=0
\end{aligned}
$$

Pick $0 \neq m \in M_{i} / M_{i-1}$
Define $P \rightarrow M_{i} / M_{i-1}$ by
ae \mapsto aem $\forall a \in R$. Sine $e M_{i} \subseteq$
Since $M_{i / M_{i-1}}$ is simple, this map is surjective And its havel is Rad.

$$
\therefore P / \operatorname{Rad} P \cong M_{i} / M_{i-1}
$$

The Blocks of R

$$
\begin{equation*}
R=B, \theta \ldots B_{C} \tag{*}
\end{equation*}
$$

a direct sum of two-sided cideals.
Dem (primitive ceubal ${ }^{1}=e_{1}+\cdots+e_{c}$
(P) (priminive ceubal idenypotecit)

Proposifion: A decomposition (k) f R ivto a dired sam of minimal tevo sided ideals is equivalent to a decomiposition (f) of 1 sinto a ssum of primitive central idenypotants which are paircuise orllugovenl
Pf: Start with (t), get (f)

$$
e_{a}=e_{a} e_{1}+\cdots+e_{a} e_{c}
$$

If $a \neq b, e_{a} e_{b} \in B_{a} \cap B_{b} \Rightarrow e_{a} e_{b}=0$
similauly, $e_{a} B_{b}=B_{a} e_{b}=0$ if $a \neq b$.
Moreover, $e_{a} B_{a}=\left(e_{1}+\cdots e_{c}\right) B_{a}=B_{a}=B_{a}\left(e_{1}+\cdots+e_{c}\right)=B_{a} e_{a}$
$\therefore e_{a}$ acts as left and right ideustity on Ba and as 0 on B_{b} if $b \neq a$.
Given $x \in R$, write $x=x_{1}+\cdots+x_{c}$ with $x_{a} \in B_{a}$ ba

$$
e_{a} x=e_{a} x_{a}=x_{a}=x_{a} e_{a}
$$

$\therefore e_{1}, \ldots, e_{c}$ are all central.
If la were notaprimitive ceutal idempotent could write $\quad e_{a}=e_{a^{\prime}}+e_{a^{\prime \prime}}$ both non-3e50 whre $e_{a^{\prime}}$ \& $e_{a^{\prime \prime}}$ ararkipgininitive cential cidounpotents

82
Have $B_{a}=B^{\prime} \oplus B^{\prime \prime}$ where $B^{\prime}=e_{a^{\prime}} B_{a}=B_{a} e_{a^{\prime}}$

$$
B^{\prime} \cap B^{\prime \prime}=e_{a^{\prime}} e_{a^{\prime \prime}} B=O B^{\prime \prime}=e_{a^{\prime \prime}} B_{a^{\prime}}=B_{a} e_{a^{\prime \prime}}
$$

ore two sided ideals, contradicting the endecomposability of Ba_{a}
Conversely, given a decomposition (f) o) 1 into a sam of primitive cental idemppotents, well set $B_{a}=B e_{a}=e_{a} B$
B_{a} is a two -sided ideal.

$$
\begin{aligned}
& B_{a} \cap\left(\oplus_{b \neq a} B_{b}\right)=e_{a}\left(\sum_{b \neq a} e_{v}\right)=0 \\
& \therefore B=B_{1} \oplus \cdots B_{c}
\end{aligned}
$$

As before, the fact that each Ba us indecomposable implies that e_{a} is a primitive central idempotent
Proposition: The decomposition (7), and hence the deconyanition (*) are unique (not just up to isomorphism, $y 1=e_{1}+\cdots+e_{c} a=f_{1}+\cdots+f_{d}$, then $\forall \quad \mid \leqslant a<c, \exists!b 3 e_{a}=f_{b}$ and $\forall \quad 1 \leqslant b \leqslant d$ ヨ! a $\exists f_{b}=e_{a}$)
Prof: $1=e_{1}+\cdots+e_{c}=f_{1}+\cdots+f_{d}$

$$
e_{a}=e_{a} f_{b}+\left(e_{a}-e_{a} f_{b}\right)
$$

Either $e_{a} f_{b}=0$ or $e_{a}=e_{a} f_{b}$
Moreover, $e_{a}=e_{a} f_{1}+\cdots+e_{a} f_{d}$, summand s are orlwogonad

Vb. $e_{a} f_{b}=e_{a}$ for exactly one a, and is 0 otherwise

$$
f_{b}^{\|} \quad Q E D .
$$

The indecompssable tiro sided ideals B_{1}, \ldots, B_{c} are called the bloch of A.
If M is any R-module;

$$
\begin{gathered}
M=e_{1} M \oplus \ldots(\not) e_{c} M \\
\left(e_{a} M \cap\left(\sum_{b \neq a} e_{b} M\right) \subseteq e_{a}\left(\sum_{b \neq a} e_{b}\right) M=0\right. \text { so the }
\end{gathered}
$$ sum is dived).

\therefore if M is indecomposable, then $M=e_{a} M$ for unique a \& $e_{b} M=0$ for all $b \neq a$. Say M belongs to the blocte B_{a} Conn refine the block decomposition to write R as a direct sum of indecomposable lift ideal:

$$
\begin{aligned}
& R=B_{1} \oplus \oplus B_{c} \\
& \left(P_{11} \oplus \cdots P_{k_{1}}\right) \oplus \cdots\left(P_{c_{1}} \oplus \cdots \oplus P_{c_{h}}\right) \\
& 1=\left(e_{1}+\cdots+e_{c}+\cdots+e_{c k_{c}}\right)+
\end{aligned}
$$

(each himitive central idempotent is written as a sum of orthogonal primitive edenspotents)
Claim: If $P_{a_{i}} \cong P_{b j}$ then $a=b$

$$
\text { Pf: } \begin{aligned}
{\left[P_{b j}\right.} & \left.: P_{a i} / R a d P_{a i}\right] \neq 0 \Leftrightarrow e_{a i} P_{b j} \neq 0 \Rightarrow e_{a} P_{b j} \neq 0 \\
& \Rightarrow a=b
\end{aligned}
$$

(84) A follows that the block of a projective indecomposable R-module is invariant under isomoplism.
Given an irreducible R-module D all the prinapal indecompesable R-modules $P \Rightarrow D \cong P / R a d P$ lie in the same block B_{a}. We say that D belongs to the block B_{a}.
Theorem: All the composition factors of cu iadecomporable R-module lie in the same blake.
Pf: $[M: D] \neq 0 \Leftrightarrow e M \neq 0$ where $D \cong R e / R a d(R e)$ for some primitive idempotent e, $e^{e} e_{a} \neq 0$ for a unique primitive central idempotent $e_{\text {an: }}$ D belongs to the block B_{a} and $e_{a} M \neq 0$
Since $e_{a} M \neq 0$ for a unique primiture central idempt, all composition factors of M lie in the same block.
Example: R semisimple

$$
\begin{aligned}
& R=M_{n_{1}}\left(F_{1}\right) \oplus \cdots \oplus M_{n_{s}}\left(F_{s}\right) \\
& \| \\
&\left(F_{1}^{1}\right)^{\oplus n_{1}}\left(F_{s}^{n_{s}}\right)^{\oplus n_{s}}
\end{aligned}
$$

the blocks are the matrix algebras.
All the principal indecomposables in a block are isomorphic.

Definition: Two principal indecomposable R-modules P and Q said to be linked if \exists a sequence $P=P_{0}, P_{1}, \ldots, P_{n}=Q$ such that P_{i-1} and P_{i} have a common composition factor for each $i=1, \ldots, n$
Theorem: P and Q lie in the same block af they are linked.
Proof: Since P_{i-1} and P_{t} have a common composition factor, they must belong to the wame block $\forall i$. $: Q$ belongs to the same block at P if P \& Q are linked Foo the converse: Say $p \sim q$ if R_{p} \& R_{q} are un the same linkage clans.

$$
\begin{aligned}
& \quad R_{p} R \subseteq \oplus_{q} R_{p} R_{q} \\
& \quad R_{p} R_{q} \quad\left\{\begin{array}{l}
=0 \text { if } q \text { is not licked to } p \\
\subseteq R_{q} \text { otherwise }
\end{array}\right. \\
& \therefore R_{p} R \subseteq \frac{\oplus}{q 2} R_{q}
\end{aligned}
$$

\therefore the sum of all indecomposables wi a livilage class is a two-sided ideal contained in a single block Ba in two sided ideal has a complement
\therefore Las a left ideal) $R=R e \oplus R e^{\prime} 1=e+e^{\prime}$.

$$
\begin{aligned}
& R e=R e R \\
& \left.R_{e}^{\prime}=R(1-e)=R(1-e) R=R e\right\rfloor R
\end{aligned}
$$

\therefore its complement is a two sided ideal

$$
\therefore \operatorname{ReR\subset } \subset B_{a}
$$

(36)

Exampue: $A \in M_{n}(k) \quad R=Z(A)$

$$
\begin{aligned}
& Z(A)=\oplus \quad Z\left(A_{p}\right) \quad \text { (primary decouposition) } \\
& A_{p} \sim J_{\lambda}(p)=J_{\lambda_{1}}(p) \oplus \cdots \oplus J_{\lambda_{l}}(p)
\end{aligned}
$$

where $J_{\lambda_{i}}(p)=\left(\begin{array}{cc}C_{p} & 0 \\ I \cdot: & I C_{p}\end{array}\right)_{d \lambda_{i} \times d \lambda_{i}} \quad d=\operatorname{deg} p$

$$
Z\left(A_{p}\right) \cong E_{K\left[u d^{2}\right.}\left(K[u]_{u}, 0 \cdots \otimes K[u] / u_{l} \lambda\right)
$$

(where $K=k[t] / p(t)$

$$
>\cong \operatorname{End}_{K[u]}\left(M_{\lambda}\right)
$$

Let K be an algebraically closed field of characteristic 0.1 $K[G]$ is isemisimple G a finite group.
and $K[G] \cong M_{n_{1}}(K) \oplus \cdots \oplus M_{n_{c}}(K):$

$$
\begin{equation*}
n_{1}^{2}+\cdots+n_{c}^{2}=\left|G_{1}\right| \oplus . \tag{c}
\end{equation*}
$$

$C=\#$ \{s iso classes of simple $K[G]$-model $\}$
Theorem :(Frobenius?)

$$
c=\#\{\text { conjugacy classes in } G\}
$$

Proof: Any algebra: fin is an (A, A) - bim
Lemma: For any algebra A, End $A_{A} A_{A}=Z A$
Pf: Given $z \in Z A$, define $\varphi_{z}, A \rightarrow A$ by

$$
\varphi_{z}(a)=z a
$$

Then $\forall b \in A, \varphi_{z}(b a)=z b a=b z a=b \varphi_{3}(a)$

$$
\begin{aligned}
& \text { Then } \forall b \in A, \varphi_{z}(b a) \\
& \therefore \varphi_{z} \in \text { End }_{A} A_{A} \varphi_{z}(a b)=z a b=\varphi_{z}(a) b \\
& \varphi \in \text { End } A \text { define } z_{\varphi}=c
\end{aligned}
$$

Conversely, given $\varphi \in$ End A define $z_{\varphi}=\varphi(1)$
Then $\varphi(a)=a \varphi(1)=a z$

$$
\begin{aligned}
& \quad Q(1) a=z a .
\end{aligned}
$$

Consider $A=k[G]$. What is $Z A$?

$$
\begin{aligned}
f \in Z A & \Leftrightarrow f \cdot e_{g}=e_{g} f \quad \forall g \in G \\
& \Leftrightarrow f\left(e^{\prime}, f g^{-1}\right)=f\left(g^{-1} x\right) \quad \forall x, g \in G \\
& f\left(g x g^{-1}\right)=f(x) \quad \forall x, g \in G
\end{aligned}
$$

Proof
Lemma: Let A be a finite dimensional algebra over K

$$
S:=\operatorname{span}_{k}\{a b-b a \mid a, b \in A\}
$$

$$
T:=\left\{r \in A \mid r^{q} \in S \text { for some power } q \text { of } p\right\} \text {. }
$$

Then (a) T is a subspace of A containing S
(b) \# \{iso.classes of simple A-modules $\}=\operatorname{dim}_{k} A / T$

Proof: (a) $(a+b)^{p}=\sum_{\left(\varepsilon, 1, \ldots, \varepsilon_{p}\right) \in\{a, b\}^{p}} \varepsilon_{1} \ldots \varepsilon_{p}$
Group the summands of the form:
dele.

$$
\therefore t_{1} \xi t_{2} \equiv \ldots \equiv t_{p}(\bmod s)
$$

Gate $\therefore t_{1}+\cdots+t_{p} \equiv p t_{1} \equiv 0(\bmod S)$
Only when $\varepsilon_{1}=\cdots=\varepsilon_{p}$ are the summands all not paircuise distinct, and so $(a+b)^{p}=a^{p}+b^{p} \quad(\operatorname{mid} S)$.

$$
\begin{aligned}
& \underbrace{\|!}_{\begin{array}{l}
\| \\
t_{1}
\end{array}!_{1} \varepsilon_{1} \ldots \varepsilon_{p} \sim \varepsilon_{2} \ldots \varepsilon_{p} \varepsilon_{1} \sim \varepsilon_{3} \ldots \varepsilon_{p} \varepsilon_{1} \varepsilon_{2} \sim \ldots \sim \varepsilon_{p} \varepsilon_{1} \ldots \varepsilon_{p-1}} \\
& t_{2} \approx \varepsilon_{1}^{-1} t_{1} \varepsilon_{1} \quad \therefore t_{2}-t_{1}=\varepsilon_{1}^{-1} t_{1} \varepsilon_{9}-t_{1} \\
& t_{3}=\varepsilon_{2}^{-1} t \varepsilon_{2} \quad=\varepsilon_{1}^{-1}\left(t_{1} \varepsilon_{1}\right)-\left(t_{1} \varepsilon_{1}\right) \varepsilon_{1}^{-1} \in S \text {. }
\end{aligned}
$$

$\Leftrightarrow f$ is a constant on conjugacy classes.
Condusion: $\operatorname{dim}_{K}\left(\right.$ End $\left._{K[G]} K[G]_{K[G]}\right)=\#\{$ conjugacy claver $\}$

On the other hand:

$$
\begin{aligned}
\text { tItre other hand: } \\
\begin{aligned}
& \operatorname{dim}_{k}(\text { End } \\
& k[a] \\
&\left.K[G]_{K[a]}\right)=\sum_{i=1}^{c} \sum_{j=1}^{c} \operatorname{Hom}_{(K[a], K[G]))}\left(B_{i}, B_{j}\right) \\
&=\sum_{i=1}^{c} \sum_{j=1}^{c} \delta_{i j}=c
\end{aligned} .
\end{aligned}
$$

$\therefore C=\#\{$ conjugacy classes in $G\}$
Theorem (Bracer):
Let K be an algebraically closed field of characteristic $p>0$, and let G be a finite group. She number of Esomophism classes of simple. K[G]-modules is the number of p-regular conjugacy classes in G.
Defoe (p-regulan element)
An element $x \in G$ is p-regular if its order is coprime to p.

$$
\begin{aligned}
& \text { coprime to } p \text {. } \\
& \text { (Order of } \left.x=\min \left\{n \in N / x^{n}=1\right\}\right)
\end{aligned}
$$

$\therefore r^{9} \in S$
es $9 \in S$
Then $(r+s)^{9} \in S$ for any power q of p
$\therefore T$ is a subspace.
Moreover: $(a b-b a)^{p}=(a b)^{p} f(b a)^{p}=a c-c a$, where $c=(b a)^{p-1} b$
But $a c-c a \in S$.
$\therefore S C T$.
If A is simple, Wedderburis the $\Rightarrow A \cong M_{n}(K)$ for some n. S consists of trace O matrices.

$$
\therefore \operatorname{dim}_{k}(A / S)=1
$$

But $T \neq A$ because an idempotent with trace, zero can not belong to T.
$\therefore \operatorname{dim}_{k}(A / T)=1=\#$ \{iso. classes. of simple A.end $\}$
In the general coax:
Rad A CT
\#\{iso classes of ivied. A-modules $\}$. $=$ \#isoclams fired A/RadA cunduli $\}$
$\frac{A}{\operatorname{Rad} A}=$ direct sum of simple algebras

$$
=B, \oplus \cdots B_{c} .
$$

define $T_{i} \subset B_{i}$ as we define ACE TCA.

$$
\operatorname{dim}(A / T)=\sum_{i=1}^{c} \operatorname{dim}\left(A_{i} / T_{i}\right)=c
$$

(because $T=T_{1} \oplus \cdots \oplus T_{c}$)
It remains to show that when $A=k[a]$, $\operatorname{dim}_{k} A / T=\#\{p$-regular conjugacy classes in $G\}$

Recall: Each $x \in G$ can be written as sa where s and u are powers of x, s is p-regular and the order of u is a power of p.

$$
\begin{aligned}
& (x-s)^{q q}=(s u-s)^{q}=s^{q} u^{q}-s^{q}=s^{q}-s^{q}=0 \\
& \therefore x-s \in T \\
& \therefore x \equiv s(\bmod T)
\end{aligned}
$$

\therefore any element of $k[G]$ is congruent unodulo p to a p-regular element.

Let r_{1}, \ldots, r_{d} be representatives of etc pry cony We will now show that ppryade elements classes are linearly independent modulo T
Suppers $\sum_{r=1 p-r j u l a r}^{d} a_{i r_{i}}=0(\bmod T) \quad a_{i}=a_{g r G+1} \forall r_{i} \in G$ spry
Let θ_{i} be the order of r_{i} Then $\left(\theta_{i}, p\right)=1$. $\therefore \quad q \equiv 1$ mod $q \theta_{i}$ for some power q : of p (why?)
because p in a unit in $\mathbb{Z} / \theta_{r}, \phi \in Z_{1} o_{r}^{x}$

$$
\therefore \phi^{\text {sully }}=1 \bmod \theta_{r}
$$

\$ Similarly, can find q such that

$$
\begin{aligned}
& \text { can find } q \text { such hat } \\
& q=1 \text { mod } \theta_{i} \quad \forall \text { it } \gg \text {. }
\end{aligned}
$$

The $\left(\sum_{\gamma=1}^{d} a_{i} r_{i}\right)^{\phi} \equiv \sum_{i=1}^{d} a_{i}^{q_{i}} r_{i} \equiv o(\bmod$ S $)$
Lemma: $\left.S \subset\left\{f \in K[G] \mid \sum_{g \in G / g_{x}} f\left(g \times g^{-1}\right)=0\right\} \forall x \in G\right\}$

$$
\begin{aligned}
& R_{1} \sum_{g_{2}}\left(h_{1} h_{2}-h_{2} h_{1}\right)\left(g \times g_{1}^{-1}\right) \\
& =\sum_{s \in a / a_{x}}^{s t g / G x}\left(\sum_{\omega v=g \times s^{-1}} h_{1}(a) \cdot h_{2}(v)-\sum_{s u=S^{\prime} s^{1}} h_{1}(a) h_{1}(v)\right) \\
& =\sum_{\text {gealax }}\left(\sum_{v u=v g \times g+v)} h_{1}(v) h_{2}(v)-\sum_{v a=s g^{\prime}} h^{\prime}(v) l_{(j)}\right)=0 \\
& \text { because }\left\{g \text { Gp }\left\{g / g t G_{G_{x}}\right\}=\left\{v g \mid g \in G / G_{*}\right\}\right. \text {. }
\end{aligned}
$$

Conversely, if $\sum_{g \in G / a_{n}} f\left(g^{-1} g^{-1}\right)=0 \quad \forall x \in G$
then $\sum_{g c a / a_{x}} e_{g *} f \cdot e_{g}=0$

$$
\sum_{g_{t a} a_{x}}^{g \cdot a / a_{x}}\left(e_{g} f e_{g}-f\right)_{\delta}=\text { mut } f
$$

$$
\begin{aligned}
& \text { iq } \sum_{i=1}^{d} a_{i}^{a} r_{i} \equiv 0(\bmod S) \\
& \Rightarrow a_{i}^{9}=0 \forall i \Rightarrow a_{i}=0 \quad \forall i \quad \text { QED }
\end{aligned}
$$

LECTURE NOTES

AMRITANSHU PRASAD

1. Basic definitions

Let K be a field.
Definition 1.1. A K-algebra is a K-vector space together with an associative product $A \times A \rightarrow A$ which is K-linear, with respect to which it has a unit.

In this course we will only consider K-algebras whose underlying vector spaces are finite dimensional. The field K will be referred to as the ground field of A.

Example 1.2. Let M be a finite dimensional vector space over K. Then $\operatorname{End}_{K} M$ is a finite dimensional algebra over K.

Definition 1.3. A morphism of K-algebras $A \rightarrow B$ is a K-linear map which preserves multiplication and takes the unit in A to the unit in B.

Definition 1.4. A module for a K-algebra A is a vector space over K together with a K-algebra morphism $A \rightarrow \operatorname{End}_{K} M$.

In this course we will only consider modules whose underlying vector space is finite dimensional.

2. Absolutely irreducible modules and split algebras

For any extension E of K, one may consider the algebra $A \otimes_{K} E$, which is a finite dimensional algebra over E.

For any A-module M, one may consider the $A \otimes_{K} E$-module $M \otimes_{K} E$. Even if M is a simple A-module, $M \otimes_{K} E$ may not be a simple $A \otimes_{K} E$ module:

Example 2.1. Let $A=\mathbf{R}[t] /\left(t^{2}+1\right)$. Let $M=\mathbf{R}^{2}$, the A-module structure defined by requiring t to act by $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Then M is an irreducible A-module, but $M \otimes_{\mathbf{R}} \mathbf{C}$ is not an irreducible $A \otimes_{\mathbf{R}} \mathbf{C}$-module.

Definition 2.2. Let A be a K-algebra. An A-module M is said to be absolutely irreducible if for every extension field E of $K, M \otimes_{K} E$ is an irreducible $A \otimes_{K} E$-module.

Example 2.1 gives an example of an irreducible A-module that is not absolutely irreducible. For any A-module M multiplication by a scalar in the ground field is an endomorphism of M.

Theorem 2.3. An irreducible A-module M is absolutely irreducible if and only if every A-module endomorphism of M is multiplication by a scalar in the ground field.

Proof. We know from Schur's lemma that $D:=\operatorname{End}_{A} M$ is a division ring. This division ring is clearly a finite dimensional vector space over K (in fact a subspace of $\operatorname{End}_{K} M$). The image B of A in $\operatorname{End}_{K} M$ is a matrix algebra $M_{n}(D)$ over $D . M$ can be realised as a minimal left ideal in $M_{n}(D) . M$ is an absolutely irreducible A-module if and only if it is an absolutely irreducible B-module.

If $\operatorname{End}_{A} M=K$, then $B=M_{n}(K)$, and $M \cong K^{n} . B \otimes_{K} E=M_{n}(E)$, and $M \otimes_{K} E \cong E^{n}$. Thus $M \otimes_{K} E$ is clearly an irreducible $B \otimes_{K} E$ module. Therefore, M is absolutely irreducible.

Conversely, suppose M is an absolutely irreducible A-module. Let \bar{K} denote an algebraic closure of K. Then $M \otimes_{K} \bar{K}$ is an irreducible $A \otimes_{K} \bar{K}$-module. Moreover, it is a faithful $B \otimes_{K} \bar{K}$-module. $B \otimes_{K} \bar{K} \cong$ $M_{m}(\bar{K})$ and $M \otimes_{K} \bar{K} \cong \bar{K}^{m}$ for some m. Consequently $\operatorname{dim}_{K} B=$ $\operatorname{dim}_{\bar{K}}\left(B \otimes_{K} \bar{K}\right)=m^{2}$, and similarly, $\operatorname{dim}_{K} M=m$. On the other hand, $\operatorname{dim}_{K} B=n^{2} \operatorname{dim}_{K} D$ and $\operatorname{dim}_{K} M=n \operatorname{dim}_{K} D$. Therefore $\operatorname{dim}_{K} D=$ 1 , showing that $D=K$.

Definition 2.4. Let A be a finite dimensional algebra over a field K. An extension field E of K is called a splitting field for A if every irreducible $A \otimes_{K} E$-module is absolutely irreducible. A is said to be split if K is a splitting field for A. Given a finite group G, K is said to be a splitting field for G if $K[G]$ is split.

Example 2.5. $\mathbf{Z} / 4 \mathbf{Z}$ is not split over \mathbf{Q}. It splits over $\mathbf{Q}[i]$.
Example 2.6. Consider Hamilton's quaternions: \mathbf{H} is the \mathbf{R} span in $M_{2}(\mathbf{C})$ the matrices

$$
1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{i}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \mathbf{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathbf{k}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

\mathbf{H} is a four-dimensional simple \mathbf{R} algebra (since it is a division ring), which is not isomorphic to a matrix algebra for any extension of $\mathbf{R} . \mathbf{H}$ is an irreducible \mathbf{H}-module over \mathbf{R}, but $\mathbf{H} \otimes_{\mathbf{R}} \mathbf{C}$ is isomorphic to $M_{2}(\mathbf{C})$
and the $\mathbf{H} \otimes_{\mathbf{R}} \mathbf{C}$-module $\mathbf{H} \otimes_{\mathbf{R}} \mathbf{C}$ is no longer irreducible. Therefore \mathbf{H} does not split over \mathbf{R}.

Theorem 2.7 (Schur's lemma for split finite dimensional algebras). Let A be a split finite dimensional algebra over a field K. Let M be an irreducible A-module. Then $\operatorname{End}_{A} M=K$.

Proof. Let $T: M \rightarrow M$ be an A-module homomorphism. T is a K linear map. Fix an algebraic closure L of K. Let λ be any eigenvalue of $T \otimes 1 \in \operatorname{End}_{A_{\otimes_{K} L}} M \otimes L$. Then $T \otimes 1-\lambda I$, where I denotes the identity map of $M \otimes_{K} L$ is also an $A \otimes_{K} L$-module homomorphism. However, $T \otimes 1-\lambda I$ is singular. Since M is irreducible, this means that $\operatorname{ker}(T \otimes 1-\lambda I)=M$, or in other words, $T \otimes 1=\lambda I$. It follows that $\lambda \in K$ and that $T=\lambda I$ (now I denotes the identity map of M).

Corollary 2.8 (Artin-Wedderburn theorem for split finite dimensional algebras). If A is a split semisimple finite dimensional algebra over a field K if and only if

$$
A=M_{n_{1}}(K) \oplus \cdots \oplus M_{n_{c}}(K)
$$

for some positive integers n_{1}, \ldots, n_{k}.
Proof. A priori, by the Artin-Wedderburn theorem, A is a direct sum of matrix rings over division algebras containing K in the centre. However, each such summand gives rise to an irreducible A-module whose endomorphism ring is the opposite ring of the division algebra. From Theorem 2.7 it follows therefore that the division algebra must be equal to K.

Proposition 2.9. A finite dimensional algebra A is split over a field K if and only if $\frac{A}{\operatorname{Rad} A}$ is a sum of matrix rings over K.
Proof. The simple modules for A and $\frac{A}{\operatorname{Rad} A}$ are the same.
Theorem 2.10. Every finite group splits over some number field.
Proof. Let $\overline{\mathbf{Q}}$ be an algebraic closure of \mathbf{Q}. Then by Corollary 2.8,

$$
\overline{\mathbf{Q}}[G]=M_{n_{1}}(\overline{\mathbf{Q}}) \oplus \cdots \oplus M_{n_{c}}(\overline{\mathbf{Q}})
$$

Let $e_{i j}^{k}$ denote the element of $\overline{\mathbf{Q}}[G]$ corresponding to the (i, j) th entry of the k th matrix in the above direct sum decomposition. The $e_{i j}^{k}$'s for $1 \leq k \leq c$, and $1 \leq i, j \leq n_{k}$ form a basis of A. Each element $g \in G$ can be written in the form

$$
g=\sum_{i, j, k} \alpha_{i j}^{k}(g) e_{i j}^{k}
$$

for a unique collection of constants $\alpha_{i j}^{k}(g) \in \overline{\mathbf{Q}}$. Similarly, define constants $\beta_{i j}^{k}(g)$ by the identities

$$
e_{i j}^{k}=\sum_{g \in G} \beta_{i j}^{k}(g) g .
$$

Let K be the number field generated over \mathbf{Q} by

$$
\left\{\alpha_{i j}^{k}(g), \beta_{i j}^{k}(g) \mid 1 \leq k \leq c, 1 \leq i, j \leq n_{k} g \in G\right\}
$$

Set $\tilde{A}=\oplus_{i, j, k} K e_{i j}^{k}$. Then \tilde{A} is a subalgebra of $\overline{\mathbf{Q}}[G]$ that is isomorphic to $K[G]$. Moreover,

$$
\tilde{A}=M_{n_{1}}(K) \oplus \cdots \oplus M_{n_{c}}(K) .
$$

It follows that every irreducible \tilde{A}-module is absolutely irreducible. Therefore, \tilde{A}, and hence $K[G]$ is split.

Proposition 2.11. Let K be a splitting field for G. Then every irreducible $\mathbf{C}[G]$-module is of the form $M \otimes_{K} \mathbf{C}$ for some irreducible $K[G]$-module.
Proof. This follows from the fact that $\mathbf{C}[G] \cong K[G] \otimes_{K} \mathbf{C}$, and that

$$
K[G]=M_{n_{1}}(K) \oplus \cdots \oplus M_{n_{c}}(K)
$$

Theorem 2.12. Suppose that A is split over K. Then an irreducible A module $A e / \operatorname{Rad} A e$ (where e is a primitive idempotent) occurs dim_{K} eM times as a composition factor in a finite dimensional A-module M.
Proof. Let

$$
0=M_{0} \subset \cdots M_{m}=M
$$

be a composition series for M. Suppose that k of the factors $M_{i_{j}} / M_{i_{j}-1}$, $1 \leq i_{1}<\cdots<i_{k}$ are isomorphic to $A e / \operatorname{Rad} A e$. Recall that $M_{i} / M_{i-1} \cong$ $A e / \operatorname{Rad} A e$ if and only if $e M_{i}$ is not contained in M_{i-1}. Therefore, can find $m_{i_{1}}, \ldots, m_{i_{k}}$ in $M_{i_{1}}, \ldots, M_{i K}$ respectively such that $e m_{i_{j}} \notin M_{i_{j}-1}$. Replacing $m_{i_{j}}$ by $e m_{i_{j}}$ may assume that $m_{i_{j}} \in e M$. Since $M_{i_{j}} / M_{i_{j}-1}$ is irreducible,

$$
A m_{i_{j}}+M_{i_{j}-1}=M_{i_{j}}
$$

and hence

$$
e M_{i_{j}}=e A_{e m}^{i_{j}}+e M_{i_{j}-1} .
$$

On the other hand if $i \notin\left\{i_{1}, \ldots, i_{k}\right\}$ then

$$
e M_{i} \subset M_{i-1}
$$

Let $a \mapsto \bar{a}$ be the mapping of A onto the semisimple algebra $\bar{A}=$ $A / \operatorname{RadA} A$. Then $\operatorname{End}_{\bar{A}} \overline{\bar{A}} \bar{e}=\bar{e} \bar{A} \bar{e}$. Since K is a splitting field for A,
$\bar{e} \bar{A} \bar{e}=K$. Therefore $e A e=K e+e \operatorname{Rad} A e$. Moreover, $e \operatorname{Rad} A e M_{i} \subset$ M_{i-1} for all i, and we have that

$$
e M_{i_{j}}=K m_{i_{j}}+e M_{i_{j}-1} .
$$

We prove that $\left\{m_{i_{1}}, \ldots, m_{i_{k}}\right\}$ is a basis of $e M$. It is clear that it is a linearly independent set. If $m \in e M$, then $e m=m$. Therefore, $m \in M_{i_{k}}$. There exists $\xi_{k} \in K$ such that $m-\xi_{k} m_{k} \in e M_{i-1}$. Now $m-\xi_{k} m_{k} \in M_{i_{k-1}}$. Continuing in this way, we see that $m-\xi_{1} m_{1}-$ $\cdots-\xi_{k} m_{k} \in M_{0}=0$.

3. Associated modular representations

Let K be a number field with ring of integers R. Let $P \subset R$ be a prime ideal in R. Denote by \mathbf{k} the finite field R / P. Consider

$$
R_{P}:=\{x \in K \mid x=a / b \text { where } a \in R, b \notin P\} .
$$

R_{P} is called the localisation of R at P.
Lemma 3.1. The natural inclusion $R \hookrightarrow R_{P}$ induces an isomorphism $\mathbf{k}=R / P \stackrel{\sim}{\rightarrow} R_{P} / P R_{P}$.

Proof. The main thing is to show surjectivity, which is equivalent to the fact that $R_{P}=R+P R_{P}$. Given a / b, with $a \in R$ and $b \notin P$, by the maximality of P, we know that $R=b R+P$. Therefore a can be written in the form $a=b x+c$, with $x \in R$ and $c \in P$. We then have that $a / b=x+c / b \in R+P R_{P}$.

It is easy to see that R_{P} is a local ring and that $P R_{P}$ is its unique maximal ideal.

Proposition 3.2. Let π be any element of $P \backslash P^{2}$. Then $P R_{P}$ is a principal ideal generated by π. Every element x of K can be written as $x=u \pi^{n}$ for a unique unit $u \in R_{P}$ and a unique integer n. The element $x \in R_{P}$ if and only if $n \geq 0$.

For a proof, we refer the reader to [Ser68, Chapitre I]. The integer n is called the valuation of x with respect to P (usually denoted $v_{p}(x)$) and does not depend on the choice of π. The ring R_{P} is an example of a discrete valuation ring.

The following proposition follows from the fact that R_{P} is a principal ideal domain. We also give a self-contained proof below.

Proposition 3.3. Every finitely generated torsion-free module over R_{P} is free.

Proof. Suppose that M is a finitely generated torsion free module over R_{P}. Then $\bar{M}:=M / P R_{P} M$ is a finite dimensional vector space over \mathbf{k}. Let $\left\{\bar{m}_{1}, \ldots, \bar{m}_{r}\right\}$ be a basis of \bar{M} over \mathbf{k}. For each $1 \leq i \leq r$ pick an arbitrary element $m_{i} \in M$ whose image in \bar{M} is \bar{m}_{i}. Let M^{\prime} be the R_{P}-module generated by m_{1}, \ldots, m_{r}. Then $M=M^{\prime}+P R_{P} M$. In other words, $M / M^{\prime}=P R_{P}\left(M / M^{\prime}\right)$.

Denote by N the R_{P}-module M / M^{\prime}. Now take a set $\left\{n_{1}, \ldots, n_{r}\right\}$ of generators of N. The hypothesis that $P R_{P} N=N$ implies that for each $i, n_{i}=\sum a_{i j} n_{j}$ where $a_{i j} \in P R_{P}$ for each j. Now regard N as an $R_{P}[x]$-module where x acts as the identity. Let A denote the $r \times r$-matrix whose (i, j) th entry is $a_{i j}$. Let \mathbf{n} denote the column vector whose entries are n_{1}, \ldots, n_{r}. We have

$$
(x I-A) \mathbf{n}=0 .
$$

By Cramer's rule,

$$
\operatorname{det}(x I-A) \mathbf{m}=0 .
$$

All the coefficients of $\operatorname{det}(x I-A)$ lie in $P R_{P}$. Therefore, we see that $(1+c) \mathbf{m}=0$ for some $c \in P R_{P}$. Since $P R_{P}$ is the unique maximal ideal of R_{P}, it is also the Jacobson radical, which means that $(1+c)$ is a unit. It follows that $N=0 .{ }^{1}$

Consequently M is also generated by $\left\{m_{1}, \ldots, m_{r}\right\}$. Consider a linear relation

$$
\alpha_{1} m_{1}+\cdots+\alpha_{r} m_{r}=0
$$

between that m_{i} 's and assume that $v:=\min \left\{v_{P}\left(\alpha_{1}\right), \ldots, v_{P}\left(\alpha_{r}\right)\right\}$ is minimal among all such relations. The fact that the \bar{m}_{i} 's are linearly independent over \mathbf{k} implies that $v>0$. Therefore each α_{i} is of the form $\pi \alpha_{i}^{\prime}$, for some $\alpha_{i}^{\prime} \in R_{P}$. Replacing the α_{i} 's by the α_{i}^{\prime} 's gives rise to a linear relation between the m_{i} 's where the minimum valuation is $v-1$, contradicting our assumption that v is minimal.

Therefore M is a free R_{P}-module generated by $\left\{m_{1}, \ldots, m_{r}\right\}$.
Let G be a finite group. Let M be a finitely generated $K[G]$-module.
Proposition 3.4. There exists a $R_{P}[G]$-module M_{P} in M such that $M=K M_{P} . M_{P}$ is a free over R_{P} of rank $\operatorname{dim}_{K} M$.
Proof. Let $\left\{m_{1}, \ldots, m_{r}\right\}$ be a K-basis of M. Set

$$
M_{P}=\sum_{g \in G} \sum_{j=1}^{r} R_{P} e_{g} m_{j} .
$$

Then M_{P} is a finitely generated torsion-free module over R_{P}. By Proposition 3.3 it is free. Since each $m_{i} \in M_{P}, M=K M_{P}$. An

[^0]R_{P}-basis of M_{P} will also be a K-basis of M. Therefore the rank of M_{P} as an R_{P}-module will be the same as the dimension of M as a K-vector space.

Start with a finite dimensional $K[G]$-module M. Fix a prime ideal P in R. By Proposition 3.4 there exists an $R[G]$-module M_{P} in M such that M_{R} such that $K M_{R}=M . \bar{M}:=M_{P} / P R_{P} M_{P}$ is a finite dimensional $\mathbf{k}[G]$-module. We will refer to any module obtained by such a construction as $a \mathbf{k}[G]$-module associated to M. However, the module M_{P} is not uniquely determined. Different choices of M_{P} could give rise to non-isomorphic $\mathbf{k}[G]$-modules, as is seen in the following

Example 3.5. Let $G=\mathbf{Z} / 2 \mathbf{Z}=\{0,1\}$. Consider the two dimensional $\mathbf{Q}[G]$ modules M_{1} and M_{2} where e_{1} acts by

$$
T_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad T_{2}=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)
$$

respectively. T_{1} and T_{2} are conjugate over \mathbf{Q}, and therefore the $\mathbf{Q}[G]$ modules M_{1} and M_{2} are isomorphic. However, taking $P=(2) \subset \mathbf{Z}$, we get non-isomorphic modules of $\mathbf{Z} / 2 \mathbf{Z}[G]$ (T_{2} is not semisimple in characteristic 2!). Note, however, that they have the same composition factors.

Theorem 3.6 (Brauer and Nesbitt). Two $\mathbf{k}[G]$-modules associated to the same $K[G]$-module have the same composition factors.

Proof. Let M_{P} and M_{P}^{\prime} be a pair of $R_{P}[G]$-modules inside M, with $R_{P^{-}}$ bases $\left\{m_{1}, \ldots, m_{r}\right\}$ and $\left\{m_{1}^{\prime}, \ldots, m_{r}^{\prime}\right\}$ respectively. Then there exists a matrix $A=\left(a_{i j}\right) \in G L_{r}(K)$ such that

$$
m_{i}^{\prime}=a_{i 1} m_{1}+\cdots+a_{i r} m_{r} .
$$

Replacing M_{P}^{\prime} with the isomorphic R_{P}-module $\pi^{a} M_{P}^{\prime}$ would result in replacing A by $\pi^{a} A$. We may therefore assume that A has all entries in R_{P} and that at least one entry is a unit. Replacing A by a matrix $X A Y$, where $X, Y \in G L_{r}\left(R_{P}\right)$ amounts to changing bases for M_{P} and M_{P}^{\prime}. Let \bar{A} be the image of $A \in M_{r}\left(R_{P}\right)$ in $M_{r}(\mathbf{k}) . \bar{A}$ is equivalent to a matrix of the form $\left(\begin{array}{cc}\bar{B} & 0 \\ 0 & 0\end{array}\right)$, where $B \in G L_{2}(\mathbf{k})$. A little work shows that A is equivalent in $M_{r}\left(R_{P}\right)$ to a matrix of the form $\left(\begin{array}{cc}B & 0 \\ 0 & \pi C\end{array}\right)$, where $B \in G L_{r}\left(R_{P}\right)$. For each $x \in K[G]$ let $T(x)$ and $T^{\prime}(x)$ denote the matrices for the action of x on M with respect to the bases $\left\{m_{1}, \ldots, m_{r}\right\}$ and $\left\{m_{1}^{\prime}, \ldots, m_{r}^{\prime}\right\}$ respectively. T and T^{\prime} are
matrix-valued functions on R. Decompose them as block matrices (of matrix-valued functions on R):

$$
T=\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right) \quad \text { and } \quad T^{\prime}=\left(\begin{array}{cc}
X^{\prime} & Y^{\prime} \\
Z^{\prime} & W^{\prime}
\end{array}\right)
$$

Substituting in $T A=A T^{\prime}$, we get

$$
\left(\begin{array}{cc}
X B & \pi Y C \\
Z B & \pi W C
\end{array}\right)=\left(\begin{array}{cc}
B X^{\prime} & B Y^{\prime} \\
\pi C Z^{\prime} & \pi C W^{\prime}
\end{array}\right)
$$

Consequently $\bar{Y}^{\prime}=0$ and $\bar{Z}=0$, and

$$
\bar{T}=\left(\begin{array}{cc}
\bar{X} & 0 \\
\bar{Z} & \bar{W}
\end{array}\right) \quad \text { and } \quad \bar{T}^{\prime}=\left(\begin{array}{cc}
\bar{X}^{\prime} & \bar{Y}^{\prime} \\
0 & \overline{W^{\prime}}
\end{array}\right)
$$

An algebra homomorphism from any algebra into a matrix ring naturally defines a module for the algebra. If we denote by \bar{M} and \bar{M}^{\prime} the $\mathbf{k}[G]$-modules $M_{P} / P R_{P} M_{P}$ and $M_{P}^{\prime} / P R_{P} M_{P}^{\prime}$ respectively, then \bar{M} is defined by \bar{T} and \bar{M}^{\prime} is defined by \bar{T}^{\prime}. The composition factors of \bar{M} are those of the module defined by \bar{X} together with those of the module defined by \bar{Z}. Likewise the composition factors of \bar{M}^{\prime} are those of the module defined by \bar{X}^{\prime} together with those of the module defined by $\overline{Z^{\prime}}$. Since X is similar to X^{\prime} the former pair are isomorphic $\mathbf{k}[G]$ modules. To see that the latter pair have the same composition factors one may use an induction hypothesis on the dimension of M over K (the theorem is clearly true when M is a one dimensional K-vector space).

Corollary 3.7. If $(p,|G|)=1, M$ is a $K[G]$-module and P is a prime ideal containing p, then all $\mathbf{k}[G]$-modules associated to M are isomorphic.

Proof. This follows from Theorem 3.6 and Maschke's theorem.

4. Decomposition Numbers

Let G be a finite group and K be a splitting field for G. Denote by R the ring of integers in K. Fix a prime ideal P in R. Denote by \mathbf{k} the field R / P. Given an irreducible $\mathbf{C}[G]$-module, we know from Prop 2.11 that it is isomorphic to $M \otimes_{K} \mathbf{C}$ for some irreducible $K[G]$-module. By Proposition 3.4, there is an $R_{P}[G]$-module M_{P} such that $M=K M_{P}$. Let \bar{M} denote the $\mathbf{k}[G]$-module $M_{P} / P R_{P} M_{P}$. By Theorem 3.6, the composition factors of \bar{M} and their multiplicities do not depend on the choice of M_{P} above.

Let M_{1}, \ldots, M_{c} be a complete set of representatives for the isomorphism classes of irreducible representations of $\mathbf{C}[G]$. Likewise, denote
by N_{1}, \ldots, N_{d} a complete set of representatives for the irreducible representations of $\mathbf{k}[G]$. By the theorems of Frobenius and of Brauer and Nesbitt, we know that c is the number of conjugacy classes in G and d is the number of p-regular conjugacy classes in G, provided that \mathbf{k} is a splitting field for G.

Definition 4.1 (Decomposition matrix). The decomposition matrix of G with respect to P is the $d \times c$ matrix $D=\left(d_{i j}\right)$ given by

$$
d_{i j}=\left[\bar{M}_{j}: N_{i}\right] .
$$

The preceding discussion shows that D is well-defined.

5. Brauer-Nesbitt theorem

Let $1=\epsilon_{1}+\ldots+\epsilon_{r}$ be pairwise orthogonal idempotents in $\mathbf{k}[G]$.
Lemma 5.1. Let $\epsilon \in \mathbf{k}[G]$ be an idempotent. There exists and idempotent $e \in \widehat{R}_{P}[G]$ such that $\bar{e}=\epsilon$.

Proof. Consider the identity

$$
1=(x+(1-x))^{2 n}=\sum_{i=0}^{2 n}\binom{2 n}{r} x^{2 n-j}(1-x)^{j}
$$

Define

$$
f_{n}(x)=\sum_{i=0}^{n}\binom{n}{r} x^{2 n-j}(1-x)^{j} .
$$

It follows that

$$
f_{n}(x) \equiv 0 \quad \bmod x^{n} \text { and } f_{n}(x) \equiv 1 \quad \bmod (1-x)^{n} .
$$

Since $f(x)^{2}$ satisfies the same congruences,

$$
\begin{equation*}
f_{n}(x)^{2} \cong f(x) \quad \bmod x^{n}(1-x)^{n} \tag{5.2}
\end{equation*}
$$

Replacing n by $n-1$ gives

$$
\begin{equation*}
f_{n}(x) \cong f_{n-1}(x) \quad \bmod x^{n-1}(1-x)^{n-1} \tag{5.3}
\end{equation*}
$$

Finally a direct computation yields

$$
\begin{equation*}
f_{1}(x) \cong x \quad \bmod x^{2}-x \tag{5.4}
\end{equation*}
$$

Choose any $a \in R_{P}[G]$ such that $\bar{e}=\epsilon$. Then $a^{2}-a \in P R_{P}[G]$. By

$$
\begin{equation*}
f_{n}(a)-f_{n-1}(a) \in P^{n-1} R_{P}[G], \tag{5.3}
\end{equation*}
$$

whence $f_{n}(a)$ is a P-Cauchy sequence. Let $e=\lim _{n \rightarrow \infty} f_{n}(a)$ (this is an element of $\left.\widehat{R}_{P}[G]\right)$. It follows from (5.2) that e is idempotent, and from (5.4) that $\bar{e}=\epsilon$.

Lemma 5.5. Let ϵ_{1} and ϵ_{2} be orthogonal idempotents in $\mathbf{k}[G]$ and let e be any idempotent in $\widehat{R}_{P}[G]$ such that $\bar{e}=\epsilon_{1}+\epsilon_{2}$. Then there exist orthogonal idempotents $e_{1}, e_{2} \in \widehat{R}_{P}[G]$ such that $\bar{e}_{i}=\epsilon_{i}$.
Proof. Choose any $a \in \widehat{R}_{P}[G]$ such that $\bar{a}=\epsilon_{1}$. Set $b=e a e$. Then $\bar{b}=\overline{e a e}=\left(\epsilon_{1}+\epsilon_{2}\right) \epsilon_{1}\left(\epsilon_{1}+\epsilon_{2}\right)=\epsilon_{1}$. Also, $b e=e b=b$. Therefore, $b^{2}-b \in P \widehat{R}_{P}[G]$, whence $\left\{f_{n}(b)\right\}$ converges to an idempotent $e_{1} \in$ $\widehat{R}_{P}[G]$ such that

$$
\bar{e}_{1}=\bar{b}_{1}=\epsilon_{1}, \quad e_{1} e=e e_{1}=e_{1} .
$$

Set $e_{2}=e-e_{1}$, then e_{2} is idempotent, and $e_{1} e_{2}=e_{2} e_{1}=0$ and $\bar{e}_{2}=\bar{e}-\bar{e}_{1}=\epsilon_{2}$, proving the result.
Lemma 5.6. There exist pairwise orthogonal idempotents $e_{1}, \ldots, e_{r} \in$ $\widehat{R}_{P}[G]$ such that $\bar{e}_{i}=\epsilon_{1}$ and $1=e_{1}+\cdots+e_{r}$.
Proof. For $r=1$ the result is trivial. Assume therefore, that $r>1$ and that the result holds for $r-1$. Set $\delta=\epsilon_{r-1}+\epsilon_{r}$. Then

$$
\begin{equation*}
1=\epsilon_{1}+\cdots+\epsilon_{r-2}+\delta \tag{5.7}
\end{equation*}
$$

is an orthogonal decomposition. By the induction hypothesis, there exist $1=e_{1}+\ldots+e_{r-2}+d$ in $\widehat{R}_{P}[G]$ lifting (5.7). The lemma now follows from Lemma 5.5.

Now assume that $1=\epsilon_{1}+\cdots+\epsilon_{r}$ is a decomposition into pairwise orthogonal primitive idempotents. Fix a lifting $1=e_{1}+\cdots+e_{r}$ in $\widehat{R}_{P}[G]$ of orthogonal idempotents. Let M_{1}, \ldots, M_{s} denote the isomorphism classes of irreducible $K[G]$-modules. Then $\left[K[G] e_{i}, M_{j}\right]=$ $\left.{ }^{2} \operatorname{dim}_{K} e_{i} M_{j}=\operatorname{dim}_{\mathbf{k}} \epsilon_{i} \bar{M}_{j}={ }^{3} \bar{M}_{j}, N_{i}\right]=d_{i j}$. Consequently,

$$
K[G] e_{j} \sim \sum_{i=1}^{s} d_{i j} M_{j}
$$

Passing to associated $\mathbf{k}[G]$-modules,

$$
\begin{aligned}
P_{j} & \sim \sum_{i=1}^{s} d_{i j} \bar{M}_{i} \\
& \sim \sum_{i=1}^{s} d_{i j} \sum_{k=1}^{r} d_{i k} N_{k}
\end{aligned}
$$

On the other hand

$$
P_{j} \sim \sum_{k=1}^{r} c_{j k} N_{k}
$$

[^1]Comparing the two expressions for P_{j} above shows that

$$
c_{j k}=\sum_{i=1}^{s} d_{i j} d_{i k}
$$

or that $C=D^{t} D$.

References

[Ser68] Jean-Pierre Serre. Corps locaux. Hermann, Paris, 1968. Troisième édition, Publications de l'Université de Nancago, No. VIII.

The Institute of Mathematical Sciences, Chennai.
URL: http://www.imsc.res.in/~amri

[^0]: ${ }^{1}$ This is a special case of Nakayama's lemma.

[^1]: ${ }^{2}$ Suppose $M=K[G] e$ for some primitive idempotent e. Then $\operatorname{dim}_{K} \operatorname{Hom}_{K[G]}\left(M_{j}, K[G] e_{i}\right)=\operatorname{dim}_{K} e_{i} K[G] f=\operatorname{dim}_{K} e_{i} M_{j}$
 ${ }^{3}$ Theorem 2.12.

