
LECTURE NOTES

AMRITANSHU PRASAD

1. Basic definitions

Let K be a field.

Definition 1.1. A K-algebra is a K-vector space together with an
associative product A × A → A which is K-linear, with respect to
which it has a unit.

In this course we will only consider K-algebras whose underlying
vector spaces are finite dimensional. The field K will be referred to as
the ground field of A.

Example 1.2. Let M be a finite dimensional vector space over K. Then
EndKM is a finite dimensional algebra over K.

Definition 1.3. A morphism of K-algebras A → B is a K-linear map
which preserves multiplication and takes the unit in A to the unit in
B.

Definition 1.4. A module for a K-algebra A is a vector space over K
together with a K-algebra morphism A → EndKM .

In this course we will only consider modules whose underlying vector
space is finite dimensional.

2. Absolutely irreducible modules and split algebras

For any extension E of K, one may consider the algebra A ⊗K E,
which is a finite dimensional algebra over E.

For any A-module M , one may consider the A⊗K E-module M⊗K E.
Even if M is a simple A-module, M⊗K E may not be a simple A⊗K E-
module:

Example 2.1. Let A = R[t]/(t2 + 1). Let M = R2, the A-module

structure defined by requiring t to act by

(
0 1
−1 0

)
. Then M is an

irreducible A-module, but M⊗RC is not an irreducible A⊗RC-module.
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2 A. PRASAD

Definition 2.2. Let A be a K-algebra. An A-module M is said to be
absolutely irreducible if for every extension field E of K, M ⊗K E is an
irreducible A⊗K E-module.

Example 2.1 gives an example of an irreducible A-module that is not
absolutely irreducible. For any A-module M multiplication by a scalar
in the ground field is an endomorphism of M .

Theorem 2.3. An irreducible A-module M is absolutely irreducible if
and only if every A-module endomorphism of M is multiplication by a
scalar in the ground field.

Proof. We know from Schur’s lemma that D := EndAM is a division
ring. This division ring is clearly a finite dimensional vector space over
K (in fact a subspace of EndKM). The image B of A in EndKM is
a matrix algebra Mn(D) over D. M can be realised as a minimal left
ideal in Mn(D). M is an absolutely irreducible A-module if and only
if it is an absolutely irreducible B-module.

If EndAM = K, then B = Mn(K), and M ∼= Kn. B⊗K E = Mn(E),
and M ⊗K E ∼= En. Thus M ⊗K E is clearly an irreducible B ⊗K E-
module. Therefore, M is absolutely irreducible.

Conversely, suppose M is an absolutely irreducible A-module. Let
K denote an algebraic closure of K. Then M ⊗K K is an irreducible
A⊗K K-module. Moreover, it is a faithful B⊗K K-module. B⊗K K ∼=
Mm(K) and M ⊗K K ∼= K

m
for some m. Consequently dimK B =

dimK(B⊗K K) = m2, and similarly, dimK M = m. On the other hand,
dimK B = n2 dimK D and dimK M = n dimK D. Therefore dimK D =
1, showing that D = K. �

Definition 2.4. Let A be a finite dimensional algebra over a field
K. An extension field E of K is called a splitting field for A if every
irreducible A ⊗K E-module is absolutely irreducible. A is said to be
split if K is a splitting field for A. Given a finite group G, K is said
to be a splitting field for G if K[G] is split.

Example 2.5. Z/4Z is not split over Q. It splits over Q[i].

Example 2.6. Consider Hamilton’s quaternions: H is the R span in
M2(C) the matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

H is a four-dimensional simple R algebra (since it is a division ring),
which is not isomorphic to a matrix algebra for any extension of R. H
is an irreducible H-module over R, but H⊗RC is isomorphic to M2(C)
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and the H ⊗R C-module H ⊗R C is no longer irreducible. Therefore
H does not split over R.

Theorem 2.7 (Schur’s lemma for split finite dimensional algebras).
Let A be a split finite dimensional algebra over a field K. Let M be an
irreducible A-module. Then EndAM = K.

Proof. Let T : M → M be an A-module homomorphism. T is a K-
linear map. Fix an algebraic closure L of K. Let λ be any eigenvalue
of T ⊗ 1 ∈ EndA⊗KLM ⊗ L. Then T ⊗ 1 − λI, where I denotes the
identity map of M ⊗K L is also an A ⊗K L-module homomorphism.
However, T ⊗ 1 − λI is singular. Since M is irreducible, this means
that ker(T⊗1−λI) = M , or in other words, T⊗1 = λI. It follows that
λ ∈ K and that T = λI (now I denotes the identity map of M). �

Corollary 2.8 (Artin-Wedderburn theorem for split finite dimensional
algebras). If A is a split semisimple finite dimensional algebra over a
field K if and only if

A = Mn1(K)⊕ · · · ⊕Mnc(K)

for some positive integers n1, . . . , nk.

Proof. A priori, by the Artin-Wedderburn theorem, A is a direct sum
of matrix rings over division algebras containing K in the centre. How-
ever, each such summand gives rise to an irreducible A-module whose
endomorphism ring is the opposite ring of the division algebra. From
Theorem 2.7 it follows therefore that the division algebra must be equal
to K. �

Proposition 2.9. A finite dimensional algebra A is split over a field
K if and only if A

RadA
is a sum of matrix rings over K.

Proof. The simple modules for A and A
RadA

are the same. �

Theorem 2.10. Every finite group splits over some number field.

Proof. Let Q be an algebraic closure of Q. Then by Corollary 2.8,

Q[G] = Mn1(Q)⊕ · · · ⊕Mnc(Q)

Let ek
ij denote the element of Q[G] corresponding to the (i, j)th entry

of the kth matrix in the above direct sum decomposition. The ek
ij’s for

1 ≤ k ≤ c, and 1 ≤ i, j ≤ nk form a basis of A. Each element g ∈ G
can be written in the form

g =
∑
i,j,k

αk
ij(g)ek

ij
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for a unique collection of constants αk
ij(g) ∈ Q. Similarly, define con-

stants βk
ij(g) by the identities

ek
ij =

∑
g∈G

βk
ij(g)g.

Let K be the number field generated over Q by

{αk
ij(g), βk

ij(g)|1 ≤ k ≤ c, 1 ≤ i, j ≤ nk g ∈ G}.

Set Ã =
⊕

i,j,k Kek
ij. Then Ã is a subalgebra of Q[G] that is isomorphic

to K[G]. Moreover,

Ã = Mn1(K)⊕ · · · ⊕Mnc(K).

It follows that every irreducible Ã-module is absolutely irreducible.
Therefore, Ã, and hence K[G] is split. �

Proposition 2.11. Let K be a splitting field for G. Then every ir-
reducible C[G]-module is of the form M ⊗K C for some irreducible
K[G]-module.

Proof. This follows from the fact that C[G] ∼= K[G]⊗K C, and that

K[G] = Mn1(K)⊕ · · · ⊕Mnc(K).

�

Theorem 2.12. Suppose that A is split over K. Then an irreducible A-
module Ae/RadAe (where e is a primitive idempotent) occurs dimK eM
times as a composition factor in a finite dimensional A-module M .

Proof. Let
0 = M0 ⊂ · · ·Mm = M

be a composition series for M . Suppose that k of the factors Mij/Mij−1,
1 ≤ i1 < · · · < ik are isomorphic to Ae/RadAe. Recall that Mi/Mi−1

∼=
Ae/RadAe if and only if eMi is not contained in Mi−1. Therefore, can
find mi1 , . . . ,mik in Mi1 , . . . ,MiK respectively such that emij /∈ Mij−1.
Replacing mij by emij may assume that mij ∈ eM . Since Mij/Mij−1

is irreducible,
Amij + Mij−1 = Mij ,

and hence
eMij = eAemij + eMij−1.

On the other hand if i /∈ {i1, . . . , ik} then

eMi ⊂ Mi−1.

Let a 7→ a be the mapping of A onto the semisimple algebra A =
A/RadA. Then EndAAe = eAe. Since K is a splitting field for A,
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eAe = K. Therefore eAe = Ke + eRadAe. Moreover, eRadAeMi ⊂
Mi−1 for all i, and we have that

eMij = Kmij + eMij−1.

We prove that {mi1 , . . . ,mik} is a basis of eM . It is clear that it
is a linearly independent set. If m ∈ eM , then em = m. Therefore,
m ∈ Mik . There exists ξk ∈ K such that m − ξkmk ∈ eMi−1. Now
m − ξkmk ∈ Mik−1

. Continuing in this way, we see that m − ξ1m1 −
· · · − ξkmk ∈ M0 = 0. �

3. Associated modular representations

Let K be a number field with ring of integers R. Let P ⊂ R be a
prime ideal in R. Denote by k the finite field R/P . Consider

RP := {x ∈ K|x = a/b where a ∈ R, b /∈ P}.

RP is called the localisation of R at P .

Lemma 3.1. The natural inclusion R ↪→ RP induces an isomorphism
k = R/P→̃RP /PRP .

Proof. The main thing is to show surjectivity, which is equivalent to
the fact that RP = R + PRP . Given a/b, with a ∈ R and b /∈ P , by
the maximality of P , we know that R = bR + P . Therefore a can be
written in the form a = bx + c, with x ∈ R and c ∈ P . We then have
that a/b = x + c/b ∈ R + PRP . �

It is easy to see that RP is a local ring and that PRP is its unique
maximal ideal.

Proposition 3.2. Let π be any element of P \ P 2. Then PRP is a
principal ideal generated by π. Every element x of K can be written
as x = uπn for a unique unit u ∈ RP and a unique integer n. The
element x ∈ RP if and only if n ≥ 0.

For a proof, we refer the reader to [Ser68, Chapitre I]. The integer n
is called the valuation of x with respect to P (usually denoted vp(x))
and does not depend on the choice of π. The ring RP is an example of
a discrete valuation ring.

The following proposition follows from the fact that RP is a principal
ideal domain. We also give a self-contained proof below.

Proposition 3.3. Every finitely generated torsion-free module over RP

is free.
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Proof. Suppose that M is a finitely generated torsion free module over
RP . Then M := M/PRP M is a finite dimensional vector space over
k. Let {m1, . . . ,mr} be a basis of M over k. For each 1 ≤ i ≤ r pick
an arbitrary element mi ∈ M whose image in M is mi. Let M ′ be
the RP -module generated by m1, . . . ,mr. Then M = M ′ + PRP M . In
other words, M/M ′ = PRP (M/M ′).

Denote by N the RP -module M/M ′. Now take a set {n1, . . . , nr}
of generators of N . The hypothesis that PRP N = N implies that
for each i, ni =

∑
aijnj where aij ∈ PRP for each j. Now regard N

as an RP [x]-module where x acts as the identity. Let A denote the
r×r-matrix whose (i, j)th entry is aij. Let n denote the column vector
whose entries are n1, . . . , nr. We have

(xI − A)n = 0.

By Cramer’s rule,
det(xI − A)m = 0.

All the coefficients of det(xI − A) lie in PRP . Therefore, we see that
(1 + c)m = 0 for some c ∈ PRP . Since PRP is the unique maximal
ideal of RP , it is also the Jacobson radical, which means that (1 + c)
is a unit. It follows that N = 0.1

Consequently M is also generated by {m1, . . . ,mr}. Consider a linear
relation

α1m1 + · · ·+ αrmr = 0

between that mi’s and assume that v := min{vP (α1), . . . , vP (αr)} is
minimal among all such relations. The fact that the mi’s are linearly
independent over k implies that v > 0. Therefore each αi is of the form
πα′i, for some α′i ∈ RP . Replacing the αi’s by the α′i’s gives rise to a
linear relation between the mi’s where the minimum valuation is v−1,
contradicting our assumption that v is minimal.

Therefore M is a free RP -module generated by {m1, . . . ,mr}. �

Let G be a finite group. Let M be a finitely generated K[G]-module.

Proposition 3.4. There exists a RP [G]-module MP in M such that
M = KMP . MP is a free over RP of rank dimK M .

Proof. Let {m1, . . . ,mr} be a K-basis of M . Set

MP =
∑
g∈G

r∑
j=1

RP egmj.

Then MP is a finitely generated torsion-free module over RP . By
Proposition 3.3 it is free. Since each mi ∈ MP , M = KMP . An

1This is a special case of Nakayama’s lemma.
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RP -basis of MP will also be a K-basis of M . Therefore the rank of MP

as an RP -module will be the same as the dimension of M as a K-vector
space. �

Start with a finite dimensional K[G]-module M . Fix a prime ideal
P in R. By Proposition 3.4 there exists an R[G]-module MP in M
such that MR such that KMR = M . M := MP /PRP MP is a finite
dimensional k[G]-module. We will refer to any module obtained by
such a construction as a k[G]-module associated to M . However, the
module MP is not uniquely determined. Different choices of MP could
give rise to non-isomorphic k[G]-modules, as is seen in the following

Example 3.5. Let G = Z/2Z = {0, 1}. Consider the two dimensional
Q[G] modules M1 and M2 where e1 acts by

T1 =

(
1 0
0 −1

)
and T2 =

(
1 1
0 −1

)

respectively. T1 and T2 are conjugate over Q, and therefore the Q[G]-
modules M1 and M2 are isomorphic. However, taking P = (2) ⊂ Z,
we get non-isomorphic modules of Z/2Z[G] (T2 is not semisimple in
characteristic 2!). Note, however, that they have the same composition
factors.

Theorem 3.6 (Brauer and Nesbitt). Two k[G]-modules associated to
the same K[G]-module have the same composition factors.

Proof. Let MP and M ′
P be a pair of RP [G]-modules inside M , with RP -

bases {m1, . . . ,mr} and {m′
1, . . . ,m

′
r} respectively. Then there exists

a matrix A = (aij) ∈ GLr(K) such that

m′
i = ai1m1 + · · ·+ airmr.

Replacing M ′
P with the isomorphic RP -module πaM ′

P would result in
replacing A by πaA. We may therefore assume that A has all entries
in RP and that at least one entry is a unit. Replacing A by a ma-
trix XAY , where X, Y ∈ GLr(RP ) amounts to changing bases for MP

and M ′
P . Let A be the image of A ∈ Mr(RP ) in Mr(k). A is equiv-

alent to a matrix of the form

(
B 0
0 0

)
, where B ∈ GL2(k). A little

work shows that A is equivalent in Mr(RP ) to a matrix of the form(
B 0
0 πC

)
, where B ∈ GLr(RP ). For each x ∈ K[G] let T (x) and

T ′(x) denote the matrices for the action of x on M with respect to
the bases {m1, . . . ,mr} and {m′

1, . . . ,m
′
r} respectively. T and T ′ are
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matrix-valued functions on R. Decompose them as block matrices (of
matrix-valued functions on R):

T =

(
X Y
Z W

)
and T ′ =

(
X ′ Y ′

Z ′ W ′

)
.

Substituting in TA = AT ′, we get(
XB πY C
ZB πWC

)
=

(
BX ′ BY ′

πCZ ′ πCW ′

)
.

Consequently Y
′
= 0 and Z = 0, and

T =

(
X 0
Z W

)
and T

′
=

(
X
′

Y
′

0 W ′

)
.

An algebra homomorphism from any algebra into a matrix ring nat-
urally defines a module for the algebra. If we denote by M and M

′

the k[G]-modules MP /PRP MP and M ′
P /PRP M ′

P respectively, then M

is defined by T and M
′
is defined by T

′
. The composition factors of

M are those of the module defined by X together with those of the
module defined by Z. Likewise the composition factors of M

′
are those

of the module defined by X
′
together with those of the module defined

by Z ′. Since X is similar to X ′ the former pair are isomorphic k[G]-
modules. To see that the latter pair have the same composition factors
one may use an induction hypothesis on the dimension of M over K
(the theorem is clearly true when M is a one dimensional K-vector
space). �

Corollary 3.7. If (p, |G|) = 1, M is a K[G]-module and P is a prime
ideal containing p, then all k[G]-modules associated to M are isomor-
phic.

Proof. This follows from Theorem 3.6 and Maschke’s theorem. �

4. Decomposition Numbers

Let G be a finite group and K be a splitting field for G. Denote by
R the ring of integers in K. Fix a prime ideal P in R. Denote by k the
field R/P . Given an irreducible C[G]-module, we know from Prop 2.11
that it is isomorphic to M⊗K C for some irreducible K[G]-module. By
Proposition 3.4, there is an RP [G]-module MP such that M = KMP .
Let M denote the k[G]-module MP /PRP MP . By Theorem 3.6, the
composition factors of M and their multiplicities do not depend on the
choice of MP above.

Let M1, . . . ,Mc be a complete set of representatives for the isomor-
phism classes of irreducible representations of C[G]. Likewise, denote
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by N1, . . . , Nd a complete set of representatives for the irreducible rep-
resentations of k[G]. By the theorems of Frobenius and of Brauer and
Nesbitt, we know that c is the number of conjugacy classes in G and d
is the number of p-regular conjugacy classes in G, provided that k is a
splitting field for G.

Definition 4.1 (Decomposition matrix). The decomposition matrix of
G with respect to P is the d× c matrix D = (dij) given by

dij = [M j : Ni].

The preceding discussion shows that D is well-defined.

5. Brauer-Nesbitt theorem

Let 1 = ε1 + . . . + εr be pairwise orthogonal idempotents in k[G].

Lemma 5.1. Let ε ∈ k[G] be an idempotent. There exists and idem-

potent e ∈ R̂P [G] such that e = ε.

Proof. Consider the identity

1 = (x + (1− x))2n =
2n∑
i=0

(
2n

r

)
x2n−j(1− x)j.

Define

fn(x) =
n∑

i=0

(
n

r

)
x2n−j(1− x)j.

It follows that

fn(x) ≡ 0 mod xn and fn(x) ≡ 1 mod (1− x)n.

Since f(x)2 satisfies the same congruences,

(5.2) fn(x)2 ∼= f(x) mod xn(1− x)n.

Replacing n by n− 1 gives

(5.3) fn(x) ∼= fn−1(x) mod xn−1(1− x)n−1.

Finally a direct computation yields

(5.4) f1(x) ∼= x mod x2 − x.

Choose any a ∈ RP [G] such that e = ε. Then a2 − a ∈ PRP [G]. By
(5.3)

fn(a)− fn−1(a) ∈ P n−1RP [G],

whence fn(a) is a P -Cauchy sequence. Let e = limn→∞ fn(a) (this is

an element of R̂P [G]). It follows from (5.2) that e is idempotent, and
from (5.4) that e = ε. �
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Lemma 5.5. Let ε1 and ε2 be orthogonal idempotents in k[G] and let

e be any idempotent in R̂P [G] such that e = ε1 + ε2. Then there exist

orthogonal idempotents e1, e2 ∈ R̂P [G] such that ei = εi.

Proof. Choose any a ∈ R̂P [G] such that a = ε1. Set b = eae. Then
b = eae = (ε1 + ε2)ε1(ε1 + ε2) = ε1. Also, be = eb = b. Therefore,

b2 − b ∈ PR̂P [G], whence {fn(b)} converges to an idempotent e1 ∈
R̂P [G] such that

e1 = b1 = ε1, e1e = ee1 = e1.

Set e2 = e − e1, then e2 is idempotent, and e1e2 = e2e1 = 0 and
e2 = e− e1 = ε2, proving the result. �

Lemma 5.6. There exist pairwise orthogonal idempotents e1, . . . , er ∈
R̂P [G] such that ei = ε1 and 1 = e1 + · · ·+ er.

Proof. For r = 1 the result is trivial. Assume therefore, that r > 1 and
that the result holds for r − 1. Set δ = εr−1 + εr. Then

(5.7) 1 = ε1 + · · ·+ εr−2 + δ

is an orthogonal decomposition. By the induction hypothesis, there
exist 1 = e1 + . . . + er−2 + d in R̂P [G] lifting (5.7). The lemma now
follows from Lemma 5.5. �

Now assume that 1 = ε1 + · · · + εr is a decomposition into pair-
wise orthogonal primitive idempotents. Fix a lifting 1 = e1 + · · · + er

in R̂P [G] of orthogonal idempotents. Let M1, . . . ,Ms denote the iso-
morphism classes of irreducible K[G]-modules. Then [K[G]ei, Mj] =
2 dimK eiMj = dimk εiM j = 3M j, Ni] = dij. Consequently,

K[G]ej ∼
s∑

i=1

dijMj.

Passing to associated k[G]-modules,

Pj ∼
s∑

i=1

dijM i

∼
s∑

i=1

dij

r∑
k=1

dikNk.

On the other hand

Pj ∼
r∑

k=1

cjkNk.

2Suppose M = K[G]e for some primitive idempotent e. Then
dimK HomK[G](Mj ,K[G]ei) = dimK eiK[G]f = dimK eiMj

3Theorem 2.12.
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Comparing the two expressions for Pj above shows that

cjk =
s∑

i=1

dijdik,

or that C = DtD.
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