LECTURE NOTES

AMRITANSHU PRASAD

1. BASIC DEFINITIONS
Let K be a field.

Definition 1.1. A K-algebra is a K-vector space together with an
associative product A x A — A which is K-linear, with respect to
which it has a unit.

In this course we will only consider K-algebras whose underlying
vector spaces are finite dimensional. The field K will be referred to as

the ground field of A.

Example 1.2. Let M be a finite dimensional vector space over K. Then
Endg M is a finite dimensional algebra over K.

Definition 1.3. A morphism of K-algebras A — B is a K-linear map
which preserves multiplication and takes the unit in A to the unit in
B.

Definition 1.4. A module for a K-algebra A is a vector space over K
together with a K-algebra morphism A — Endg M.

In this course we will only consider modules whose underlying vector
space is finite dimensional.

2. ABSOLUTELY IRREDUCIBLE MODULES AND SPLIT ALGEBRAS

For any extension E of K, one may consider the algebra A @k F,
which is a finite dimensional algebra over E.

For any A-module M, one may consider the A® g E-module M @ E.
Even if M is a simple A-module, M ® ¢ E may not be a simple A® x F-
module:

Ezample 2.1. Let A = RJ[t]/(t* +1). Let M = R?, the A-module
structure defined by requiring ¢ to act by < _01 (1) ) Then M is an

irreducible A-module, but M ®gC is not an irreducible AQg C-module.
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2 A. PRASAD

Definition 2.2. Let A be a K-algebra. An A-module M is said to be
absolutely irreducible if for every extension field F of K, M ®k F is an
irreducible A ®  E-module.

Example 2.1 gives an example of an irreducible A-module that is not
absolutely irreducible. For any A-module M multiplication by a scalar
in the ground field is an endomorphism of M.

Theorem 2.3. An irreducible A-module M is absolutely irreducible if
and only if every A-module endomorphism of M is multiplication by a
scalar in the ground field.

Proof. We know from Schur’s lemma that D := EndsM is a division
ring. This division ring is clearly a finite dimensional vector space over
K (in fact a subspace of EndgM). The image B of A in EndgM is
a matrix algebra M, (D) over D. M can be realised as a minimal left
ideal in M,,(D). M is an absolutely irreducible A-module if and only
if it is an absolutely irreducible B-module.

If EndgaM = K, then B = M,(K),and M =2 K". BxE = M,(E),
and M g E = E". Thus M ®k F is clearly an irreducible B ® E-
module. Therefore, M is absolutely irreducible.

Conversely, suppose M is an absolutely irreducible A-module. Let
K denote an algebraic closure of K. Then M ®x K is an irreducible
A®p K-module. Moreover, it is a faithful B®x K-module. B®x K =
M, (K) and M @, K = K" for some m. Consequently dimy B =
dimz(B®x K) = m?, and similarly, dimy M = m. On the other hand,
dimg B = n?dimg D and dimxg M = ndimg D. Therefore dimyg D =
1, showing that D = K. U

Definition 2.4. Let A be a finite dimensional algebra over a field
K. An extension field E of K is called a splitting field for A if every
irreducible A ®  F-module is absolutely irreducible. A is said to be
split if K is a splitting field for A. Given a finite group G, K is said
to be a splitting field for G if K[G] is split.

Ezample 2.5. Z/4Z is not split over Q. It splits over Q[i].

Example 2.6. Consider Hamilton’s quaternions: H is the R span in
M5(C) the matrices

(5= %) )= (00),

H is a four-dimensional simple R algebra (since it is a division ring),
which is not isomorphic to a matrix algebra for any extension of R. H
is an irreducible H-module over R, but H®g C is isomorphic to M, (C)
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and the H ®g C-module H ®g C is no longer irreducible. Therefore
H does not split over R.

Theorem 2.7 (Schur’s lemma for split finite dimensional algebras).
Let A be a split finite dimensional algebra over a field K. Let M be an
irreducible A-module. Then EndyM = K.

Proof. Let T : M — M be an A-module homomorphism. T is a K-
linear map. Fix an algebraic closure L of K. Let A be any eigenvalue
of T®1 € Endag, M @ L. Then T'® 1 — A, where I denotes the
identity map of M ®x L is also an A ®x L-module homomorphism.
However, T'® 1 — A is singular. Since M is irreducible, this means
that ker(T'®1—AI) = M, or in other words, T’®1 = AI. It follows that
A € K and that T'= Al (now I denotes the identity map of M). O

Corollary 2.8 (Artin-Wedderburn theorem for split finite dimensional
algebras). If A is a split semisimple finite dimensional algebra over a

field K if and only if
A= Mm(K) DD Mnc(K)
for some positive integers ny, ..., ny.

Proof. A priori, by the Artin-Wedderburn theorem, A is a direct sum
of matrix rings over division algebras containing K in the centre. How-
ever, each such summand gives rise to an irreducible A-module whose
endomorphism ring is the opposite ring of the division algebra. From
Theorem 2.7 it follows therefore that the division algebra must be equal
to K. U

Proposition 2.9. A finite dimensional algebra A is split over a field
K if and only if ﬁ is a sum of matrixz rings over K.

Proof. The simple modules for A and ﬁ are the same. O

Theorem 2.10. Fvery finite group splits over some number field.

Proof. Let Q be an algebraic closure of Q. Then by Corollary 2.8,

Q[G] = My, (Q) S D M”c(Q)

Let ef; denote the element of Q[G] corresponding to the (i,7)th entry

of the kth matrix in the above direct sum decomposition. The efj’s for
1<k<c¢and1<i,j <ng form a basis of A. Each element g € G
can be written in the form

g=">al(g)es

/[:7.j7k
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for a unique collection of constants Ozfj(g) € Q. Similarly, define con-
stants (;(g) by the identities

el =Y Bl(9)g.

geG
Let K be the number field generated over Q by

{ai(9):B5(9) 1 <k < e, 1<, j <my g€ Gl

Set A = @, Kel;. Then A is a subalgebra of Q[G] that is isomorphic
to K[G]. Moreover,

A=M, (K)& &M, (K).

It follows that every irreducible A-module is absolutely irreducible.

Therefore, A, and hence K[G] is split. O

Proposition 2.11. Let K be a splitting field for G. Then every ir-
reducible C[G]-module is of the form M ®y C for some irreducible
K[G]-module.

Proof. This follows from the fact that C[G] = K[G] @k C, and that
K[G] = Mm(K) ©---D M’ﬂc(K)
O

Theorem 2.12. Suppose that A is split over K. Then an irreducible A-
module Ae/RadAe (where e is a primitive idempotent) occurs dimg e M
times as a composition factor in a finite dimensional A-module M.

Proof. Let
O=MyC---M,, =M
be a composition series for M. Suppose that k of the factors M;, /M;, 1,
1 <1y < --- < iy are isomorphic to Ae/RadAe. Recall that M;/M; | =
Ae/RadAe if and only if eM; is not contained in M;_ ;. Therefore, can
find my,, ..., m; in My, ..., Mk respectively such that em;, ¢ M, 1.
Replacing m;; by em;, may assume that m;, € eM. Since M;, /Mij_l
is irreducible,
Amy, + My, = M;;,
and hence
eM;, = eAem;, +eM;, ;.
On the other hand if ¢ ¢ {iy,..., 4} then
eM; C M;_;.

Let a — @ be the mapping of A onto the semisimple algebra A=
A/RadA. Then EndyAe = eAe. Since K is a splitting field for A,
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eAe = K. Therefore eAe = Ke + eRadAe. Moreover, eRadAeM; C
M;_; for all 7, and we have that

GMZ'J. = Kmij + €Mij_1.

We prove that {m;,,...,m; } is a basis of eM. It is clear that it
is a linearly independent set. If m € eM, then em = m. Therefore,
m € M;, . There exists § € K such that m — §my € eM;—;. Now
m — &{my, € M;, . Continuing in this way, we see that m — §my —
coe—=&emy € My = 0. O

3. ASSOCIATED MODULAR REPRESENTATIONS

Let K be a number field with ring of integers R. Let P C R be a
prime ideal in R. Denote by k the finite field R/P. Consider

Rp :={z € K|z = a/b where a € R, b ¢ P}.
Rp is called the localisation of R at P.

Lemma 3.1. The natural inclusion R — Rp induces an isomorphism

Proof. The main thing is to show surjectivity, which is equivalent to
the fact that Rp = R+ PRp. Given a/b, with a € R and b ¢ P, by
the maximality of P, we know that R = bR + P. Therefore a can be
written in the form a = bx + ¢, with x € R and ¢ € P. We then have
that a/b=x+c¢/b € R+ PRp. O

It is easy to see that Rp is a local ring and that PRp is its unique
maximal ideal.

Proposition 3.2. Let © be any element of P\ P?2. Then PRp is a
principal ideal generated by w. Fvery element x of K can be written
as x = un™ for a unique unit w € Rp and a unique integer n. The
element x € Rp if and only if n > 0.

For a proof, we refer the reader to [Ser68, Chapitre I|. The integer n
is called the valuation of = with respect to P (usually denoted v,(z))
and does not depend on the choice of 7. The ring Rp is an example of
a discrete valuation ring.

The following proposition follows from the fact that Rp is a principal
ideal domain. We also give a self-contained proof below.

Proposition 3.3. Every finitely generated torsion-free module over Rp
is free.
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Proof. Suppose that M is a finitely generated torsion free module over
Rp. Then M := M/PRpM is a finite dimensional vector space over
k. Let {my,...,m,} be a basis of M over k. For each 1 < i < r pick
an arbitrary element m; € M whose image in M is m;. Let M’ be
the Rp-module generated by my,...,m,. Then M = M'+ PRpM. In
other words, M/M' = PRp(M/M’).

Denote by N the Rp-module M/M’. Now take a set {ni,...,n,}
of generators of N. The hypothesis that PRpN = N implies that
for each ¢, n; = > a;n; where a;; € PRp for each j. Now regard N
as an Rp[r]-module where z acts as the identity. Let A denote the
r x r-matrix whose (7, j)th entry is a;;. Let n denote the column vector
whose entries are nq,...,n,.. We have

(I — A)n = 0.
By Cramer’s rule,
det(z] — A)m = 0.
All the coefficients of det(z] — A) lie in PRp. Therefore, we see that
(1 +c¢)m = 0 for some ¢ € PRp. Since PRp is the unique maximal
ideal of Rp, it is also the Jacobson radical, which means that (1 + c¢)
is a unit. It follows that N = 0.!

Consequently M is also generated by {my, ..., m,}. Consider a linear

relation

aymi + -+ a,m, =0

between that m;’s and assume that v := min{vp(ay),...,vp(a,)} is
minimal among all such relations. The fact that the m;’s are linearly
independent over k implies that v > 0. Therefore each «; is of the form
mal, for some o € Rp. Replacing the a;’s by the o/’s gives rise to a
linear relation between the m;’s where the minimum valuation is v — 1,
contradicting our assumption that v is minimal.

Therefore M is a free Rp-module generated by {my,...,m,}. O

Let G be a finite group. Let M be a finitely generated K[G]-module.

Proposition 3.4. There ezists a Rp|G|-module Mp in M such that
M = KMp. Mp is a free over Rp of rank dimyg M.

Proof. Let {mi,...,m,} be a K-basis of M. Set

Mp = Z ZRpegmj.

geG j=1
Then Mp is a finitely generated torsion-free module over Rp. By
Proposition 3.3 it is free. Since each m; € Mp, M = KMp. An

IThis is a special case of Nakayama’s lemma.
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Rp-basis of Mp will also be a K-basis of M. Therefore the rank of Mp
as an Rp-module will be the same as the dimension of M as a K-vector
space. ]

Start with a finite dimensional K[G]-module M. Fix a prime ideal
P in R. By Proposition 3.4 there exists an R[G]-module Mp in M
such that Mp such that KMp = M. M = Mp/PRpMp is a finite
dimensional k|[G]-module. We will refer to any module obtained by
such a construction as a k[G]-module associated to M. However, the
module Mp is not uniquely determined. Different choices of Mp could
give rise to non-isomorphic k[G]-modules, as is seen in the following

Ezample 3.5. Let G = Z/2Z = {0,1}. Consider the two dimensional
Q[G] modules M; and M, where e; acts by

1 0 1 1
T1:<0_1> and T2:<0 _1>

respectively. T} and T; are conjugate over Q, and therefore the Q[G]-
modules M; and M, are isomorphic. However, taking P = (2) C Z,
we get non-isomorphic modules of Z/2Z[G] (1, is not semisimple in
characteristic 2!). Note, however, that they have the same composition
factors.

Theorem 3.6 (Brauer and Nesbitt). Two k[G]-modules associated to
the same K|[G]-module have the same composition factors.

Proof. Let Mp and M}, be a pair of Rp[G]-modules inside M, with Rp-
bases {my,...,m,} and {m/, ..., ml} respectively. Then there exists
a matrix A = (a;j) € GL,(K) such that

/
m; = aj1my + -+ =+ QM.

Replacing M}, with the isomorphic Rp-module 7*M} would result in
replacing A by 7*A. We may therefore assume that A has all entries
in Rp and that at least one entry is a unit. Replacing A by a ma-
trix XAY, where X,Y € GL,(Rp) amounts to changing bases for Mp
and Mp. Let A be the image of A € M,(Rp) in M,(k). A is equiv-
alent to a matrix of the form g 8 , where B € GLy(k). A little
work shows that A is equivalent in M, (Rp) to a matrix of the form

g 7TOC , where B € GL,(Rp). For each z € K|[G] let T'(z) and

T'(x) denote the matrices for the action of x on M with respect to
the bases {mq,...,m,.} and {m],..., m.} respectively. T and T" are
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matrix-valued functions on R. Decompose them as block matrices (of
matrix-valued functions on R):

(X Y , (XY
T_<ZW> and T—(Z, W’)’
Substituting in TA = AT", we get

XB #nY(C B BX' BY’
7B «wWcC |  \ =CZ'" wCW'

Consequently Y =0 and Z = 0, and

— (X 0 — (X Y
(5 0) wa (YT

An algebra homomorphism from any algebra into a matrix ring nat-
urally defines a module for the algebra. If we denote by M and M
the k[G]-modules Mp/PRpMp and M}/ PRp M} respectively, then M
is defined by T and M is defined by T'. The composition factors of
M are those of the module defined by X together with those of the
module defined by Z. Likewise the composition factors of M’ are those
of the module defined by X' together with those of the module defined
by Z’. Since X is similar to X’ the former pair are isomorphic k[G]-
modules. To see that the latter pair have the same composition factors
one may use an induction hypothesis on the dimension of M over K
(the theorem is clearly true when M is a one dimensional K-vector
space). O

Corollary 3.7. If (p,|G|) =1, M is a K[G]-module and P is a prime
ideal containing p, then all k|G]|-modules associated to M are isomor-
phic.

Proof. This follows from Theorem 3.6 and Maschke’s theorem. U

4. DECOMPOSITION NUMBERS

Let G be a finite group and K be a splitting field for G. Denote by
R the ring of integers in K. Fix a prime ideal P in R. Denote by k the
field R/P. Given an irreducible C[G]-module, we know from Prop 2.11
that it is isomorphic to M ® C for some irreducible K [G]-module. By
Proposition 3.4, there is an Rp|[G]-module Mp such that M = KMp.
Let M denote the k|G]-module Mp/PRpMp. By Theorem 3.6, the
composition factors of M and their multiplicities do not depend on the
choice of Mp above.

Let My,..., M. be a complete set of representatives for the isomor-
phism classes of irreducible representations of C[G]. Likewise, denote
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by Ny, ..., Ng a complete set of representatives for the irreducible rep-
resentations of k|[G]. By the theorems of Frobenius and of Brauer and
Nesbitt, we know that ¢ is the number of conjugacy classes in G and d
is the number of p-regular conjugacy classes in G, provided that k is a
splitting field for G.

Definition 4.1 (Decomposition matrix). The decomposition matriz of
G with respect to P is the d x ¢ matrix D = (d;;) given by

dij = [W] : Nz]
The preceding discussion shows that D is well-defined.
5. BRAUER-NESBITT THEOREM
Let 1 =€ + ...+ € be pairwise orthogonal idempotents in k[G].

Lemma 5.1. Let € € k[G] be an idempotent. There exists and idem-
potent e € Rp|G] such that € = e.

Proof. Consider the identity

=t (-2 =3 <2n>x2”_j(1 —ay.

i—0 \ T
Define

It follows that
fo(x) =0 mod 2" and f,(x) =1 mod (1 —z)".

Since f(z)? satisfies the same congruences,

(5.2) fu(2)®> = f(x) mod z™(1 — z)".
Replacing n by n — 1 gives

(5.3) fu(@) = fi(2) mod 2™ M1 —a)" .
Finally a direct computation yields

(5.4) fi(z) =22 mod 2* — .

Choose any a € Rp[G] such that € = ¢. Then a®> —a € PRp[G]. By
(5.3)

fula) = foi(a) € P"'Rp[G],
whence f,(a) is a P-Cauchy sequence. Let e = lim,_, f,(a) (this is

an element of Rp|G]). It follows from (5.2) that e is idempotent, and
from (5.4) that e = e. O



10 A. PRASAD

Lemma 5.5. Let €; and €5 be orthogonal idempotents in k|G| and let
e be any idempotent in }A%p[G] such that e = €1 + e9. Then there exist
orthogonal idempotents ey, eq € ﬁip [G] such that &; = ¢;.

Proof. Choose any a € Rp|G] such that @ = €. Set b = eae. Then
b =eae = (e + €)er(€1 + €3) = €;. Also, be = eb = b. Therefore,
b> — b € PRp|G], whence {f,(b)} converges to an idempotent e; €
Rp|G] such that

élzblztfl, €1e = eep = eq.

Set e = e — ey, then ey is idempotent, and ejes = ege; = 0 and
€y = € — €] = €9, proving the result. O
Lemma 5.6. There exist pairwise orthogonal idempotents ey, ..., e, €

RP[G] such thate; =€, and 1 =e; +---+e,.

Proof. For r = 1 the result is trivial. Assume therefore, that » > 1 and
that the result holds for » — 1. Set 0 = ¢,_; +¢,. Then

(5.7) l=e+ - +eo+0

is an orthogonal decomposition. By the induction hypothesis, there
exist 1 = e; + ...+ e,_9 + d in Rp[G] lifting (5.7). The lemma now
follows from Lemma 5.5. O

Now assume that 1 = € + --- + €, is a decomposition into pair-
wise orthogonal primitive idempotents. Fix a lifting 1 =e; +--- 4 e,
in }A%p[G] of orthogonal idempotents. Let M, ..., M, denote the iso-
morphism classes of irreducible K[G]-modules. Then [K[Gle;, M;] =
*dimg e; M; = dimy ;M ; = *M, N;] = d;;. Consequently,

K[Glej ~>_ di;M;.
i=1
Passing to associated k[G]-modules,

Pj ~ Zdwﬂz
=1

i=1 k=1
On the other hand .
Py~ cjiNy.

k=1

2Suppose M =
dimK HOI’IIK[G] (Mj, K[G]ez)
3Theorem 2.12.

K[G]e for some primitive idempotent e. Then
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Comparing the two expressions for P; above shows that

S
cie = Y dijdiy,

i=1
or that C' = D!'D.
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