TOPICS IN REPRESENTATION THEORY

OUTLINE OF SOLUTIONS TO THE MIDSEMESTER EXAMINATION

(1) Show that if an endomorphism of a Noetherian module is surjective then it is an isomorphism.
Solution. Let ϕ be an endomorphism of a Noetherian module. By the ascending chain condition the sequence

$$
\operatorname{ker} \phi \subset \operatorname{ker} \phi^{2} \subset \ldots
$$

stabilises. Therefore, there exists a natural number N such that $\operatorname{ker} \phi^{N}=\operatorname{ker} \phi^{2 N}$. Suppose $x \in \operatorname{ker} \phi^{N}$. Since ϕ is surjective, $x=\phi^{N}(y)$ for some y. Since $\phi^{2 N}(y)=\phi^{N}(x)=0, y \in \operatorname{ker} \phi^{2 N}$. Therefore, $y \in \operatorname{ker} \phi^{N}$, and $x=\phi^{N}(y)=0$.
(2) Let k be a field, and let R be the set of $n \times n$ triangular matrices of the from

$$
\left(\begin{array}{cccc}
a & 0 & \cdots & 0 \\
* & a & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & a
\end{array}\right), \text { for some } a \in k
$$

Show that, when thought of as a subring of $M_{n}(k), R$ is local.
Solution. The set of non-units consists of matrices of the above form where $a=0$. This set is seen to be a two sided ideal.
(3) Show that the product of two commuting semisimple matrices with entries in a perfect field is semisimple.
Solution. Let A be a semisimple $n \times n$ matrix over a perfect field k. Since A is semisimple, there is an isomorphism of A-modules

$$
k^{n} \cong \bigoplus_{i}\left(k[t] / p_{i}(t)\right)^{m_{i}}
$$

Since B commutes with A, B is an endomorphism of the above $k[t]$ modules. Since there are no morphisms between the different summands in the decomposition above, B is a direct sum of endomorphisms on the summands. A direct sum of semisimple matrices is semisimple. We may therefore assume, without loss of generality, that there is only one direct summand, i.e.,

$$
k^{n} \cong(k[t] / p(t))^{m}
$$

Date: September 27, 2006.
for some irreducible $p(t) \in k[t]$ and $m \in \mathbf{N}$. For a perfect field, we know that this is isomorphic to $K[u] / u^{m}$, where $K=k[t] / p(t)$, and $t \equiv u \bmod p(t) . K[u] / u^{m}$ is a cyclic $k[t]$-module, hence $B \in k[t]$. Say, $B=q(t)$. Then $A B=t q(t)$, which is a polynomial in the semisimple operator t, hence is also semisimple.
(4) Let $R=(\mathbf{Z} / 2 \mathbf{Z})[\mathbf{Z} / 4 \mathbf{Z}]$. List all the distinct isomorphism classes of simple R-modules. Describe the decomposition of ${ }_{R} R$ into indecomposable R-modules.
Solution. Note that $a 0+b 1+c 2+d 3 \in R$ generates a proper subspace of R if and only if

$$
\left|\begin{array}{llll}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{array}\right|=(a+b+c+d)^{4}=0
$$

Therefore,

$$
M=\{a 0+b 1+c 2+d 3 \mid a+b+c+d=0\}
$$

is the unique maximal proper invariant subspace of R. It follows that R is local, R / M is the unique irreducible R-module and that ${ }_{R} R$ is indecomposable.
(5) Let \mathbf{F}_{q} denote the finite field with q elements. Compute the number of semisimple conjugacy classes in $G L_{3}\left(\mathbf{F}_{q}\right)$ (this is the same as the number of similarity classes in $M_{3}\left(\mathbf{F}_{q}\right)$ which consist of invertible semisimple matrices). Solution. Count the number of rational canonical forms that are semisimple. Suppose the invariant factors are $d_{1}\left|d_{2}\right| d_{3}$. The criterion for semisimplicity is that d_{3} is square-free.
(a) $\operatorname{deg}\left(d_{1}\right)=1$, then $d_{i}=(x-a)$ for all i. Get $q-1$ classes.
(b) $\operatorname{deg}\left(d_{1}\right)=0$ and $\operatorname{deg}\left(d_{2}\right)=1$. Then $\operatorname{deg}\left(d_{3}\right)=2, d_{1}=(x-a)$, and $d_{2}=(x-a)(x-b)$, where $n \neq a$. Get $(q-1)(q-2)$ classes.
(c) $\operatorname{deg}\left(d_{1}\right)=\operatorname{deg}\left(d_{2}\right)=0$. Then d_{3} is a square free polynomial of degree three. The number of such polynomials is $q^{3}-2 q^{2}+2 q-1$.
Therefore there are $q^{2}(q-1)$ semisimple conjugacy classes.

