TOPICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 08/09/2006

(1) A matrix $u \in M_{n}(k)$ is said to be unipotent if $u-I$ is nilpotent. Prove the multiplicative version of the Jordan decomposition:

Every invertible matrix x with entries in a perfect field k can be written in a unique way as a product $s u$ of a semisimple matrix s and a unipotent matrix u with $s u=u s$. There exists a polynomial $q(t) \in k[t]$ such that $s=q(x)$.
(2) Suppose k is a field of characteristic $p>0$, and n is a positive integer that is not divisible by p, or that k is of characteristic zero and n is an arbitrary positive integer. Show that if $A^{n}=I$, then A is semisimple.
(3) Let p be a prime number and let $q=p^{e}$ for some positive integer e. Show that a matrix $s \in G L_{n}\left(\mathbf{F}_{q}\right)$ is semisimple if and only if its order is not divisible by p. Show that a matrix $u \in G L_{n}\left(\mathbf{F}_{q}\right)$ is unipotent if and only if its order is a power of p.
(4) Use the previous problem to show that for any $x \in G L_{n}\left(\mathbf{F}_{q}\right)$, with multiplicative Jordan decomposition $x=s u$ (Problem 1), s and u can be taken to be powers of x. [Hint: consider the finite cyclic group generated by x.]
(5) For any matrix $A \in M_{n}(k)$ for which $d_{1}(t), \ldots, d_{s}(t)$ are the invariant factors of $t I-A$, prove the following formula (due to Frobenius):

$$
\operatorname{dim}_{k} Z(A)=\sum_{j=1}^{s}(2 s-2 j+1) \operatorname{deg}\left(d_{s}(t)\right)
$$

(6) Find a polynomial $q(t) \in \mathbf{R}[t]$ such that

$$
q\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

[Hint: look at Problem 2 from the previous assignment.]
(7) Find the semisimple and nilpotent parts in the Jordan decomposition of the matrix

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

[Hint: use the previous exercise.]

