TOPICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 01/09/2006

(1) Find a function from $s: \mathbf{Z} / 5 \mathbf{Z} \rightarrow \mathbf{Z} / 25 \mathbf{Z}$ such that $s\left(x_{1} x_{2}\right)=$ $s\left(x_{1}\right) s\left(x_{2}\right)$ for all $x_{1}, x_{2} \in \mathbf{Z} / 5 \mathbf{Z}$. Show that there can exist at most one such function. Note that this function is not a ring homomorphism.
(2) Find an element $q(t) \in \mathbf{R}[t]$ such that $\left(x^{2}+1\right) \mid(t-q(t))$ and $\left(x^{2}+1\right)^{3} \mid q(t)^{2}+1$.
(3) Compute the generalised Jordan canonical form for the matrix:

$$
\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
-7 & 0 & 0 & -11 \\
5 & 0 & 0 & 8 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

You may use a computer programme for this problem, in which case please give details.
(4) Express $\operatorname{diag}(3,3,4)$ as a polynomial in

$$
\left(\begin{array}{lll}
3 & 0 & 0 \\
1 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) .
$$

(5) Compute the cardinality of the group

$$
\operatorname{Aut}_{\mathbf{F}_{q}[t]}\left(\mathbf{F}_{q}[t] /\left(t^{2}\right) \oplus \mathbf{F}_{q}\right),
$$

where \mathbf{F}_{q} denotes the finite field with q elements, for some prime power q.
(6) For two Young diagrams λ and μ let S denote the set of all injective $k[t]$-module homomorphisms of k^{λ} into k^{μ}. The group $G_{\mu}(k)$ acts on this set by

$$
g \cdot i=g \circ i, \text { for } g \in G_{\mu}(k) \text { and } i \in S .
$$

Compute the number of orbits when $\lambda=(1)$ and $\mu=(1,2)$.

