TOPICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 01/09/2006

- (1) Find a function from $s : \mathbf{Z}/5\mathbf{Z} \to \mathbf{Z}/25\mathbf{Z}$ such that $s(x_1x_2) = s(x_1)s(x_2)$ for all $x_1, x_2 \in \mathbf{Z}/5\mathbf{Z}$. Show that there can exist at most one such function. Note that this function is not a ring homomorphism.
- (2) Find an element $q(t) \in \mathbf{R}[t]$ such that $(x^2 + 1)|(t q(t))$ and $(x^2 + 1)^3|q(t)^2 + 1$.
- (3) Compute the generalised Jordan canonical form for the matrix:

$$\left(\begin{array}{rrrrr} 0 & 1 & 1 & 0 \\ -7 & 0 & 0 & -11 \\ 5 & 0 & 0 & 8 \\ 0 & 1 & 1 & 0 \end{array}\right).$$

You may use a computer programme for this problem, in which case please give details.

(4) Express diag(3, 3, 4) as a polynomial in

$$\left(\begin{array}{rrrr} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 4 \end{array}\right).$$

(5) Compute the cardinality of the group

$$\operatorname{Aut}_{\mathbf{F}_q[t]}(\mathbf{F}_q[t]/(t^2) \oplus \mathbf{F}_q),$$

where \mathbf{F}_q denotes the finite field with q elements, for some prime power q.

(6) For two Young diagrams λ and μ let S denote the set of all injective k[t]-module homomorphisms of k^{λ} into k^{μ} . The group $G_{\mu}(k)$ acts on this set by

 $g \cdot i = g \circ i$, for $g \in G_{\mu}(k)$ and $i \in S$.

Compute the number of orbits when $\lambda = (1)$ and $\mu = (1, 2)$.