TOPICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 18/08/2006

(1) Let $R=\mathbf{R}[\lambda]$, and suppose

$$
M=R /(\lambda-1)^{3} \oplus R /\left(\lambda^{2}+1\right)^{2} \oplus R /(\lambda-1)\left(\lambda^{2}+1\right)^{4} \oplus R /(\lambda+2)\left(\lambda^{2}+1\right)^{2} .
$$

Determine the elementary divisors and invariant factors of M. Write down a matrix T such that M corresponds to T under the correspondence between torsion R-modules and similarity classes of matrices.
(2) Let R be a principal ideal domain, and fix an element $\lambda \in R$. Compute the invariant factors of the $n \times n$ matrix

$$
J_{n}(\lambda)=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
0 & 0 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right)
$$

(3) For any field k prove that two matrices A and B in $M_{n}(k)$ are similar if and only if the matrices $\lambda I-A$ and $\lambda I-B$ are equivalent in $M_{n}(k[\lambda])$.
(4) Recall that the elemantary row and column operations correspond to left and right multiplication respectively by certain 'elementary matrices':
Type 1. The matrix corresponding to the operation of adding a multiple of one row or column to another.
Type 2. The matrix corresponding to scaling a row or column by a unit.
Type 3. The matrix corresponding to interchanging two rows or columns.
Prove that if R is Euclidean then any invertible matrix in $M_{n}(R)$ is a product of elementary matrices. Show that any elementary matrix of Type 3 is a product of elementary matrices of Type 1 and Type 2 (begin with the case of 2×2 matrices). Conclude that any invertible matrix in $M_{n}(R)$ is a product of elementary matrices of Type 1 and Type 2.
(5) If k is a field, then any matrix in $M_{n}(k)$ of determinant 1 is a product of elementary matrices of Type 1.
(6) Let R be a principal ideal domain. Let $a_{1}, \ldots, a_{n} \in R$. Let d be the gcd of a_{1}, \ldots, a_{n}. Show that there exists an invertible matrix Q in $M_{n}(R)$ such that

$$
\left(a_{1}, \ldots, a_{n}\right) Q=(d, 0, \ldots, 0)
$$

(7) Suppose $a_{11}, \ldots, a_{1 n}$ are relatively prime elements in a principal ideal domain. Show that there exists an invertible square matrix with first row $\left(a_{11}, \ldots, a_{1 n}\right)$.

