TOPICS IN REPRESENTATION THEORY

ASSIGNMENT DUE ON 11/08/2006

(1) Let R be a unital ring. Show that $\operatorname{End}_{R} R=R^{\text {opp }}$.
(2) Let A and B be square matrices of the same size over a commutative ring. Show that if $A B=I$ then $B A=I$.
(3) Give an example where the result of the previous exercise fails to hold over a non-commutative ring.
(4) For which abelian groups A is the $R=\operatorname{End}(A)$ isomorphic to its opposite ring?
(5) Let G be a finite group. Let k be any field. Denote by $k[G]$ the set of all functions

$$
f: G \rightarrow k .
$$

Show that $k[G]$ is a ring when addition is defined pointwise and multiplication is defined as

$$
f g(x)=\sum_{x_{1} x_{2}=x} f\left(x_{1}\right) g\left(x_{2}\right) .
$$

For any homomorphism $\pi: G \rightarrow G L(V)$ (invertibale linear transformations from a finite dimensional k-vector space V to $V)$, show that V becomes a $k[G]$-module by the action:

$$
\pi(f) v=\sum_{g \in G} f(g) \pi(g) v
$$

